
Computerized nipple identification for multiple image analysis in
computer-aided diagnosis

Chuan Zhoua), Heang-Ping Chan, Chintana Paramagul, Marilyn A. Roubidoux, Berkman
Sahiner, Labomir M. Hadjiiski, and Nicholas Petrickb)
Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109

Abstract
Correlation of information from multiple-view mammograms (e.g., MLO and CC views, bilateral
views, or current and prior mammograms) can improve the performance of breast cancer diagnosis
by radiologists or by computer. The nipple is a reliable and stable landmark on mammograms for
the registration of multiple mammograms. However, accurate identification of nipple location on
mammograms is challenging because of the variations in image quality and in the nipple projections,
resulting in some nipples being nearly invisible on the mammograms. In this study, we developed a
computerized method to automatically identify the nipple location on digitized mammograms. First,
the breast boundary was obtained using a gradient-based boundary tracking algorithm, and then the
gray level profiles along the inside and outside of the boundary were identified. A geometric
convergence analysis was used to limit the nipple search to a region of the breast boundary. A two-
stage nipple detection method was developed to identify the nipple location using the gray level
information around the nipple, the geometric characteristics of nipple shapes, and the texture features
of glandular tissue or ducts which converge toward the nipple. At the first stage, a rule-based method
was designed to identify the nipple location by detecting significant changes of intensity along the
gray level profiles inside and outside the breast boundary and the changes in the boundary direction.
At the second stage, a texture orientation-field analysis was developed to estimate the nipple location
based on the convergence of the texture pattern of glandular tissue or ducts towards the nipple. The
nipple location was finally determined from the detected nipple candidates by a rule-based confidence
analysis. In this study, 377 and 367 randomly selected digitized mammograms were used for training
and testing the nipple detection algorithm, respectively. Two experienced radiologists identified the
nipple locations which were used as the gold standard. In the training data set, 301 nipples were
positively identified and were referred to as visible nipples. Seventy six nipples could not be
positively identified and were referred to as invisible nipples. The radiologists provided their
estimation of the nipple locations in the latter group for comparison with the computer estimates.
The computerized method could detect 89.37% (269/301) of the visible nipples and 69.74% (53/76)
of the invisible nipples within 1 cm of the gold standard. In the test data set, 298 and 69 of the nipples
were classified as visible and invisible, respectively. 92.28% (275/298) of the visible nipples and
53.62% (37/69) of the invisible nipples were identified within 1 cm of the gold standard. The results
demonstrate that the nipple locations on digitized mammograms can be accurately detected if they
are visible and can be reasonably estimated if they are invisible. Automated nipple detection will be
an important step towards multiple image analysis for CAD.
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I. INTRODUCTION
Breast cancer is one of the leading causes for cancer mortality among women.1 The most
successful method for the early detection of breast cancer is screening mammography.2,3 It
has been demonstrated that an effective computer-aided diagnosis (CAD) system can provide
a second opinion to the radiologists and improve the accuracy of detection and characterization
of mammographic abnormalities, which, in turn, may reduce unnecessary biopsies. In clinical
practice, radiologists routinely use a cranio-caudal (CC) and a mediolateral oblique (MLO)
view along with mammograms obtained in previous years, for detecting and interpreting breast
lesions. The multiple views allow for imaging of most of the breast tissue and increase the
chance of the breast lesion to be detected. Our previous studies have demonstrated that
computerized multiple view analysis could not only improve breast lesion detection with two-
view information fusion,4,5 but also improve malignant and benign lesion characterization by
interval change analysis.6 Our techniques used the nipple location, the only reliable landmark
on the mammogram, as the reference point for two-view (CC and MLO views) information
fusion and regional registration of temporal pairs of mammograms of the same view. However,
the nipple location was manually identified on the mammograms in these studies.

Automated methods for detection of the nipple location have been reported by Chandrasekhar,
7 Mendez,8 and Yin.9 In their methods, the breast boundary was extracted and then the nipple
location was identified by searching for the maximum and minimum of the gradient changes
or average intensity in a small region along the breast boundary. However, without mentioning
the use of a training data set or how to train the detection program, Chandrasekhar et al. reported
the performance of their method using a very limited data set of 24 images with 8 CC views
and 16 oblique views. For 23 of the images (96%), the root-mean-square error of their detection
method was reported to be less than 1 cm at an image resolution of 400 μm×400 μm per pixel.
Mendez et al. tested 156 mammograms that included lateral oblique and CC views. They
reported that the average distance between the detected nipple location and the true position
identified by two radiologists was 13.5 mm. Mendez et al. also tested Yin's method using the
same 156 mammograms and obtained an average distance of 16.5 mm, while Yin et al. reported
an average distance of 10 mm when tested on 80 mammograms. Neither Mendez et al. nor Yin
et al. reported whether the nipple was in profile on the images, nor reported results for both
training and test sets.

In a random sample of mammograms, many nipples cannot be positively identified, even by
experienced mammography radiologists. Breast boundary-based methods therefore cannot
accurately locate these nipples. For the cases that the nipple is not readily visible, a radiologist
may examine the patterns of glandular tissue and ducts to find where they converge, and then
estimate the nipple location in the convergent area. However, to our knowledge, no study has
been reported to use texture convergence information for computerized nipple detection.

Computerized identification of nipple location on digitized mammograms is challenging
because of the variations in image quality and in the nipple projections, especially for the
nipples that are very flat and nearly invisible on the mammograms. In this study, we developed
an automated technique for nipple identification on digitized mammograms with the
information of nipple intensity changes, nipple geometric characteristics, and texture
convergence toward nipple. Automated nipple detection will be the fundamental step towards
the development of a multiple-image CAD system using our image registration techniques.
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II. MATERIALS AND METHODS
A. Database

A total of 744 mammograms of 182 patients was used in our study. A data set consisting of
377 mammograms of 77 patients was used as training data set for development of the algorithms
and 367 mammograms of 105 patients were used as the test data set. The mammograms were
randomly selected from the patient files in the Department of Radiology at the University of
Michigan with approval of the Institutional Review Board (IRB). The mammograms were
acquired with GE mammography systems and were digitized with a LUMISYS 85 laser film
scanner with a pixel size of 50 μm×50 μm and 4096 gray levels. The gray levels are linearly
proportional to optical densities (O.D.) from 0.1 to greater than 3 O.D. units. The nominal O.D.
range of the scanner is 0–4. The full resolution mammograms were first smoothed with a 16×16
box filter and subsampled by a factor of 16, resulting in 800 μm×800 μm images of
approximately 225×300 pixels in size.

The 744 mammograms were randomly divided into a training and a test data set of 377 and
367 mammograms, respectively. For each mammogram, the image was first displayed on a
monitor and visually inspected using windowing functions. According to the appearance of
the nipple profile projection on the mammograms, the mammograms were classified into one
of two classes: visible nipple class in which the nipple profiles were clearly projected on the
mammogram and positively identifiable, and the invisible nipple class in which the nipple
locations could not be positively identified. 301 of the 377 training images and 298 of the 367
test images were classified into the visible nipple class, while the remaining 76 and 69 images
in the training and test data sets, respectively, were classified into the invisible nipple class.

In each mammogram, the nipple location was identified by experienced Mammography
Quality Standards Act (MQSA) radiologists. This location was used as the “gold standard” for
training the algorithms and evaluating of the computer performance. The radiologist visually
inspected the image displayed on a monitor with a graphical user interface and used the
windowing function to enhance the breast boundary. The radiologist marked the nipple location
by using the cursor. One radiologist estimated the nipple location for all of the images in the
visible nipple class. For the invisible nipple class, one radiologist estimated the nipple locations
twice, another radiologist estimated the nipple location only once. The “gold standard” was
estimated by averaging the radiologists' readings. Since the breast boundary is not a straight
line, the averages of the x and y coordinates of two points along the breast boundary generally
do not fall on the boundary. An average between two readings was thus estimated as the
intersection between the breast boundary and the normal to the midpoint of the line connecting
the two readings, as shown in Fig. 1. When the two readings are not too far apart, this method
is very close to that obtained by finding their midpoint along the breast boundary. However,
this method is less prone to error if the breast boundary points are noisy. Using this averaging
method, the average point R′ was first estimated from Radiologist 1's two readings R0 and
R1, then the “gold standard” was found as the average of point R′ with Radiologist 2's reading
R2.

B. Breast boundary detection
The detection of breast boundary was the first step in our computerized nipple detection
algorithm. The breast boundary separated the breast from the surrounding background which
included the directly exposed area, the patient identification information, and lead markers.
Computerized analysis was then performed only around the breast region after boundary
detection. The breast boundary was first identified by a boundary tracking technique. The
automated boundary tracking technique previously developed10,11 was modified to improve
its performance. The breast boundary was identified by a gradient-based method as follows.
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The background of the image was estimated initially by searching for the largest background
peak from the gray level histogram of the image. A preliminary edge was found by a horizontal
line-by-line gradient analysis starting from the top to the bottom of the image. The criterion
used in detecting the edge points was the steepness of the gradient along the horizontal
direction. The steeper the gradient, the greater the likelihood that an edge existed at that
corresponding location. The preliminary edge served as a guide for a more accurate tracking
algorithm that was subsequently applied. The tracking of the breast boundary started from
approximately the middle of the breast image and moved upward and downward along the
boundary. The direction to search for a new edge point was guided by the previously tracked
edge points. The edge location was determined by searching for the maximum gradient along
the gray level profile normal to the tracking direction. Because the boundary tracking was
guided by the preliminary edge and the previously detected edge points, it could steer around
the breast boundary and was less prone to diversion by noise and artifacts. After upward and
downward tracking was finished, the tracked edges were smoothed to remove noisy
fluctuations. A simple linear interpolation was used to connect the edge points so that a
continuous breast boundary was found. An example of the tracked breast boundary is shown
in Figs. 2(a) and 2(b).

C. Limiting the nipple search region
If the breast is properly positioned for imaging, almost all the nipples will be located along or
close to the breast boundary. Our nipple search was performed within a small window of 9×9
pixels along the breast boundary, with the center of the search window located at the boundary
point.

Defining a small search region along the breast boundary would reduce the chance that jagged
breast borders from noise and artifacts would result in false positive nipple identification. We
designed a geometric convergence analysis to estimate a nipple search region where the nipple
would most likely be located. In an ideal situation, the nipple was located close to the boundary,
approximately in the middle region of the breast for CC view and in the lower region for MLO
view. As shown in Fig. 3, in the geometric convergence analysis, a floating segment containing
20% of boundary points was first placed at the middle of the breast boundary. The floating
segment separated the boundary into an upper and a lower boundary segment. Two lines were
then fitted to the boundary points in the upper and lower segments and the goodness-of-fit of
the two lines was estimated by the sum of squares of the deviations between the fitted line and
the boundary points. The convergence region was finally determined by moving the floating
segment along the boundary until the deviation of the fitted lines from the breast boundary was
minimized. The two fitted lines intersected the anterior region of the breast boundary at two
points. The boundary region between these two points was defined as the nipple search region.

D. Nipple detection
1. Nipple search along breast boundary—After automated breast boundary detection,
the breast boundary was smoothed to reduce small jagged fluctuations. From our analysis, we
observed that there were sudden and distinct gray level changes in pixels close to the nipple
for most of the mammograms with visible nipples. The direction of the breast boundary also
had a sudden and distinct change when a convex nipple shape occurred along the breast
boundary. In order to identify the location where these changes occurred, we constructed two
smoothed intensity curves corresponding to the inner and outer intensity profiles and the
curvature curve along the boundary, as defined in Eqs. (1)-(3). The curves were plotted against
boundary point Bx, where x=1, …, nB,nB represented the total number of boundary points:

Inner intensity curve:
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(1)

Outer intensity curve:

(2)

Curvature curve:

(3)

where RI, RO, and RD were pixels within a 5×5 window of the inner profile, the outer profile,
and 5 neighborhood boundary points, respectively. Each window was centered laterally at the
current boundary point Bx. nI, nO, and nD represented the number of pixels within each window.
f(k) and d(k) were the gray level of the kth pixel within the window and the curvature at the
kth boundary point, respectively. On the boundary point Bx, the first derivative, or the gradient,
was estimated as the tangent Tx to the breast boundary at Bx. The curvature at Bx was the
derivative of the gradient curve,12 which represented the direction change of the tangent at
boundary point Bx.

Figure 4 shows the nipple search scheme based on the boundary features. Nipple search was
performed taking into account three situations in which the nipple exhibited different
characteristics. First, a nipple shape was projected along the breast boundary. In the second
and third situations, a nipple intensity profile could be identified inside or outside of the breast
boundary. The details are described below.

Within the limited nipple search region, the first step was to detect if there was a sudden and
distinct change in the boundary direction, which indicated a convex nipple shape outside of
the boundary. The convex nipple could be detected by searching for the sharpest peak on the
curvature curve. The peak feature pR of every peak along the curve was calculated as the ratio
of the peak height to the peak width. The sharpest peak was identified as the maximum of the
peak features pR. If the maximum peak feature pR was larger than a predefined threshold, then
there was a convex nipple shape depicted on the boundary. The nipple location was identified
as the peak point, Nconvex, of the sharpest peak on the curvature curve. The threshold was
determined using the training data set.

If no convex nipple could be found (i.e., no peak feature larger than the threshold), then the
nipple search was performed by searching for obvious intensity changes along the inner and
outer intensity profiles separately. Two peak features of the intensity curve were used to detect
obvious intensity changes. The first peak feature pR was estimated as the ratio of the peak
height to the peak width. The second peak feature pH was the peak height normalized to the
sum of all the curve heights. If both pR and pH for a given peak were larger than the predefined
thresholds, then it was an obvious intensity peak. The thresholds were again determined using
the training data set. The most obvious intensity change was identified by the maximum pH if
more than one obvious intensity peaks were found along the intensity curve. If obvious intensity
changes were found along both the inner and outer intensity curves, the potential nipple location
Nintensity was identified at the peak point of the intensity peak with maximum pH on each curve.
If the two maximum intensity peaks located on the inner and outer intensity curves were very
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close (defined as within 1 cm in our study), then the nipple location Nintensity was identified to
be the average of these two peak points. The average location was taken as the intercept of the
breast boundary with the normal to the midpoint of the line connecting the two peak points. If
these two peak points were not close, then the nipple location Nintensity was determined as the
maximum peak on the outer intensity profile because the outer intensity profile generally was
less affected by structural noises. The nipple candidate Nconvex or Nintensity identified by this
rule-based method is referred to as Nipple 1.

Due to the image quality, artifacts, or dense area near the breast border, the computer may
identify a jagged breast boundary, which would lead to false detection of the nipple. To reduce
the false detections, the identified candidate nipple location Nconvex or Nintensity was subjected
to a confidence analysis. If there were several cosinelike peaks of similar size in the curvature
curve or the inner intensity curve, it indicated that the breast boundary was jagged or there
were dense tissues near the breast boundary, respectively. The confidence of the identified
nipple was therefore set to low. The confidence was also set to low if the candidate nipple
location Nconvex or Nintensity was null because the peak features were less than the predefined
thresholds. In this situation, the nipple could not be found by the breast-boundary-based method
described above and texture convergence analysis would be used as described next.

2. Nipple identification using texture convergence analysis—If the confidence of
the rule-based nipple detection was set to low, a flow field based convergence analysis was
initiated to estimate the nipple location based on the convergence of texture pattern of glandular
tissues or ducts towards the nipple. The fibroglandular tissues or ducts appeared as oriented
and flowlike textural pattern on the mammograms. With the assumption that there exists a
dominant orientation at each pixel within a texture pattern, an “orientation image” can be
computed from the gray level mammogram using least mean squares estimation based on Rao's
optimal solution.13 Let gx(u,v) and gy(u,v) represent the gradients at pixel (u,v) in the image.

The gradient magnitude is computed as , and the gradient orientation
is computed as θu,v=arctan(gy(u,v)/gx(u,v)). Assuming that the dominant orientation in a
N×N local neighborhood centered at pixel (i, j) is ϕ(i, j), the sum-of-squares S can be computed
as

(4)

where S is the sum of the squared gradient magnitudes projected along a direction ϕ(i, j) in this
neighborhood. ϕ(i, j) is the dominant orientation if S is the maximum. The maximum of S with
respect to ϕ(i, j) can be found by solving the equation (dS/dϕ(i, j))=0,

(5)

Thus, the dominant orientation ϕ(i, j) can be estimated as

(6)
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Dense breasts generally exhibit more textural structures than fatty breasts on the mammograms.
However, due to the presence of noise, the estimated local texture orientation may not always
be correct. A low-pass filter can be used to find the local orientation that varies slowly in the
local neighborhood. Before performing low-pass filtering, the orientation image was converted
into a continuous vector field13 defined as follows:

(7)

and

(8)

The low-pass filtering was performed by averaging of ϴx(i, j) and ϴy(i, j) in a local window

with a size of 5×5 pixels, yielding , and , respectively, as the smoothed
continuous vector field. The smoothed local orientation at (i, j) can then be computed as

(9)

Figure 5 shows an example of a computed orientation field superimposed on the original
mammogram. The nipple location was indicated by the convergence of the estimated texture
orientation. The following steps were used for the detection of the convergence of the texture
orientation:

(1) Convert the smoothed orientation image into a continuous vector field:14

(10)

(2) Identify the points of Ox in the inner profile region and then average to a 1D profile:

(11)

where nI is the number of points within the local window represented by RI. In our study,
the size of RI is 5 35. For simplicity, the index k is used to identify a point in RI, replacing
the indices (i, j).

(3) Detect the transition point of COx by searching for the maximum gradient of COx as
shown in Fig. 5(e). A large gradient of the COx indicated the convergence of the texture
orientation which led to the location of nipple. A candidate nipple location Ox (Nipple2)
was found if the maximum gradient was larger than a predefined threshold TI. The
threshold TI was determined using the training data set.

In addition to the maximum gradient location, another indication of a nipple candidate is an
approximately circular cluster of pixels with high orientation field strength. Because some of
the nipples exhibited a convex shape, there would be a bright dot occupying several pixels on
the image of orientation field O as shown in Fig. 5(c). Such bright dot indicated a candidate
nipple, which we will refer to as Nipple3 in the following discussions. Note that, although the
rule-based method could detect convex nipple location by searching for the maximum
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curvature of the breast boundary as described in Sec. II D 1, the confidence of the identified
nipple might be set to low because of jagged breast boundary. In such a case, alternative nipple
locations would need to be considered.

3. Determination of the final nipple location—After rule-based nipple detection along
the boundary profile, and the convergence analysis using texture orientation field, three
candidate nipple locations were obtained, as described above. Nipple1 was found by the rule-
based method, Nipple2 was found by the change in the orientation projection Ox, and Nipple3
was found by the orientation field O. If the confidence of Nipple1 was set to high, the final
nipple location was determined by Nipple1. Otherwise, the following rules were used to
determine the final nipple location:

Situation 1: Both Nipple2 and Nipple3 could be detected by texture convergence
analysis

(1) If the distances between the three candidate nipples were all smaller than 0.5 cm (6
pixels), then the final nipple location was determined by Nipple1.

(2) If the distance between Nipple1 and Nipple2 was larger than 0.5 cm and the distance
between Nipple1 and Nipple3 was smaller than 0.5 cm, then the final nipple location was
determined by Nipple1.

(3) If the distance between Nipple1 and Nipple3 was larger than 0.5 cm and the distance
between Nipple1 and Nipple2 was smaller than 0.5 cm, then the final nipple location was
determined by Nipple1.

(4) If the distance between Nipple2 and Nipple3 was less than 0.5 cm but the distances
from Nipple1 to both Nipple2 and Nipple3 were larger than 0.5 cm, then the final nipple
location was determined by Nipple3.

(5) If the distances between every two of the three candidate nipples were larger than 0.5
cm, it indicated that the confidence of nipple detection using texture convergence analysis
was low, then the final nipple location was determined by Nipple1. However, if Nipple3
was less than 0.5 cm from the breast boundary, it indicated that Nipple3 had higher
confidence because nipple projection had a good convex shape, then Nipple3 was
determined as the final nipple location.

Situation 2: only Nipple2 could be detected by texture convergence analysis
(1) If the distance between Nipple2 and Nipple1 was smaller than 0.5 cm, then the final
nipple location was determined by Nipple1.

(2) If the distance between Nipple2 and Nipple1 was larger than 0.5 cm, then the final
nipple location was determined by Nipple2 if the maximum gradient of the 1D inner profile
COx of the smoothed continuous orientation field O was larger than another predefined
threshold T2 (T2>T1); otherwise the final nipple location was determined by Nipple1. The
threshold T2 was determined using the training data set.

Situation 3: only Nipple3 could be detected by texture convergence analysis
(1) Similar to Situation 2, if the distance between Nipple3 and Nipple1 was smaller than
0.5 cm, then the final nipple location was determined by Nipple1.

(2) If the distance between Nipple3 and Nipple1 was larger than 0.5 cm then the final
nipple location was determined by Nipple3 if Nipple3 was less than 0.5 cm from the breast
boundary; otherwise the final nipple was determined by Nipple1.

Zhou et al. Page 8

Med Phys. Author manuscript; available in PMC 2010 July 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



III. RESULTS
A. Breast boundary tracking

Our breast boundary tracking method was evaluated quantitatively in a previous study.15 In
this study, we applied the program to 744 mammograms. A qualitative performance evaluation
of the tracked boundary was performed. Each of the computer tracked breast boundary was
rated in three major categories and the “true” boundary was judged visually by an experienced
medical physicist. If the boundary was very close to the true boundary it was rated as 0. Borders
with a large section of local deviations were rated as 1− and 1+, where + and − indicated if the
tracked boundary was outside or inside of the true boundary, respectively. Very poorly tracked
borders or total failures were rated as 2− or 2+. Figure 6 shows typical examples of tracked
breast boundary rating. The boundary shown in Fig. 6(a) is very closed to the true boundary
and rated as 0. The upper section of the boundary was tracked outside the true boundary as
shown in Fig. 6(b), which was rated as 1+. The lower section of the boundary was tracked into
the breast region as shown in Fig. 6(c), which was rated as 1−. Figure 6 (d) showed a very
poorly tracked boundary that was rated as 2−. Figure 6(e) showed an example of failure in the
lower part of the boundary tracking that tracked along the edge of the x-ray field and was rated
as 2+. Of the 744 mammograms, 89.78% (668/744) of the tracked breast boundaries were rated
as 0, 9.81% (73/744) were rated as 1+ or 1−, and 0.67% (5/744) were rated as 2− or 2+. The
results showed that the boundaries in most of the mammograms in the data set were tracked
very well. Although the boundaries which were rated as 1− and 1+ had local deviations, they
were reasonably good to be used for nipple identification as discussed in Sec. IV.

B. Nipple identification
Because the diameters of nipples are larger than 1 cm for most patients, we chose the criterion
of correct detection to be a distance of within 1 cm from the computer detected nipple location
to the gold standard for evaluating the performance of the computerized nipple identification
method. Table I shows the results for computer detected nipple location with an error within
1 cm of the gold standard. For the visible nipple images, the computer identified 89.37%
(269/301) of the nipple location within 1 cm (mean =0.34 cm) of the gold standard for the
training set, and 92.28% (275/298, mean=0.30 cm) of the nipple location within 1 cm of the
gold standard for the test data set. For the invisible nipple images, the computer detected
69.74% (53/76, mean=0.24 cm) of the nipple location within 1 cm of the gold standard for the
training data set, and 53.62% (37/69, mean=0.21 cm) of the nipple locations within 1 cm of
the gold standard for the test set. The overall performance achieved by the computer in nipple
detection including all images with visible or invisible nipple was 85.41% (322/377) and
85.01% (312/367) for the training and test data set, respectively.

To investigate the usefulness of the texture convergence analysis for nipple identification, we
computed the nipple detection results without convergence analysis, in other words, by relying
only on Nipple1 location identified by the rule-based method. This results in a simpler detection
system, because none of the conditions in Sec. II D 3 are applied. In this situation, 82.39%
(248/301) of the visible nipples and 65.79% (50/76) of the invisible nipples in the training data
set, and 89.93% (268/298) of the visible nipples and 47.83% (33/69) of the invisible nipples
in the test data set could be identified within 1 cm of the gold standard by using the rule-based
nipple identification method. The mean errors under these conditions were 0.30 cm, 0.23 cm,
0.28 cm, and 0.18 cm, respectively. For all of the images including visible and invisible nipples,
79.05% (298/377) and 82.02% (301/367) of the nipple locations were identified within 1 cm
of the gold standard. The images with errors larger than 1 cm were mainly caused by noise or
artifacts along the breast boundary. Figures 7 and 8 show the histograms of the errors for our
computerized nipple detection program for visible and invisible nipples, respectively. Figures
9 and 10 show the cumulative percentage of images of which the identified nipple was within
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a certain distance from the gold standard for visible and invisible nipples, respectively. The
computer performances at any detection error threshold can be obtained from these plots.

C. Observer variability for identifying invisible nipples
For the nipples that could not be positively identified, i.e., the invisible nipples, an estimated
location was given by the radiologists based on visual assessment. The average of estimated
nipple locations of two radiologists was used as the “gold standard” to reduce the subjective
bias between radiologists. For the training set, if Radiologist 1's first reading, second reading,
and the average of these two readings were compared to Radiologist 2's reading, the percentage
of images with an agreement within 1 cm between the two estimated nipple locations was 84%
(64/76), 79% (60/76), and 83% (63/76), respectively. If Radiologist 1's two readings were
compared, the percentage of images with an agreement within 1 cm was 87% (66/76). However,
if Radiologist 1's first reading, second reading, the average of these two readings, and
Radiologist 2's reading were compared to the averaged “gold standard,” the percentage of
images with an agreement within 1 cm was 92% (70/76), 91% (69/76), 93% (71/76), and 99%
(75/76), respectively. For the test set under the same conditions, the percentage of images with
an agreement within 1 cm was 80% (55/69), 78% (54/69), and 78% (54/69) for the interobserver
comparisons, 77% (53/69) for the intraobserver comparison, and 84% (58/69), 90% (62/69),
93% (64/69), and 96% (66/69) if the two radiologists' readings were compared to the averaged
“gold standard.” Figure 11 shows the histogram of intraobserver variation in marking the nipple
locations by Radiologist 1 for the invisible nipple images in the training and test set.

IV. DISCUSSION
In this study, the resolution of the digitized mammograms was reduced to 800 μm×800 μm for
identification of the nipple locations both by the radiologists and by the computer. This low
resolution was chosen in order to increase the computational efficiency. To verify that this
resolution was sufficient for nipple identification, we performed a limited observer study to
evaluate the dependence of the nipple visibility on pixel size. Eight full resolution images (50
μm×50 μm) with invisible nipple (classified at 800 μm×800 μm resolution) and one with a very
subtle nipple profile were used. The images were subsampled to 100 μm, 200 μm, 400 μm, 600
μm, and 800 μm pixel size. One experienced MQSA radiologist who provided the gold standard
described above was asked to visually inspect the nipple location on images of pixel size from
800 μm down to 100 μm individually. The windowing and zooming functions were used in the
process of inspection. The observer study indicated that, if a nipple was not visible in a lower
resolution image, for example, 800 μm, the nipple still could not be identified confidently by
the radiologist on higher resolution images up to 100 μm. This result may be attributed to the
fact that the size of the nipple is generally much larger than 800 μ×800 μm. The visibility of
the nipple is not limited by the resolution of the image at this pixel size. Most of the invisible
nipples were caused by their nearly flat profiles, by the noise along the breast boundary, or by
masking of the nipple behind dense tissue due to improper positioning. The smoothing with a
box filter reduces the noise which may actually improve the visibility of objects that are not
resolution-limited. The visibility of the nipples therefore was not improved by using higher
resolution images.

The nipple identification method in this study assumes that most nipples are projected within
1 cm of the breast boundary on the mammogram. In our data set, based on radiologist's marking
of nipple locations, we rejected 5 mammograms in which the nipple was located far away from
the breast boundary due to skin folds or improperly positioned breast for imaging. The cases
that contained a big breast exceeding the film area so that no nipple was projected on the
mammograms were also rejected. Two experienced radiologists provided the gold standard by
visually identifying the nipple location using a computer interface to display and adjust the
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contrast and brightness of the image. The nipple locations were marked by the radiologists at
the center of the projected nipple image regardless of the size of the nipples which may vary
from invisible to a diameter of larger than 1 cm. This means that the error of the computer
detected nipple location from the gold standard mark would be larger for larger nipples because
our computer method identified the nipple by searching along the breast boundary and the
detected nipple location was marked at the breast boundary. For the nipples that could not be
positively identified, the nipple location was given by radiologists' subjective visual estimation.
From the comparison of inter- and intraobserver variability as described in the Results, it can
be seen that Radiologist 2 had slightly higher agreement with the gold standard because most
of the estimated nipple locations by Radiologist 2 were located between Radiologist 1's two
readings. It can also be seen that the agreement between the two radiologists' readings and the
“gold standard” was higher for the training set than that for the test set. This is in agreement
with the performance achieved by our computer program in detecting nipple locations within
1 cm of the gold standard on the invisible nipple images, which was also higher for the training
set (69.74%) than for the test set (53.62%). These results demonstrate that there were large
variations in estimating the nipple locations for these diffi-cult cases even by experienced
radiologists.

The nipple detection method in this study depends primarily on nipple search along the breast
boundary. At this stage, successful identification of the nipple depends on whether the breast
boundary is tracked correctly. In the 744 mammograms used in our study, 110 nipples failed
to be detected within 1 cm of the gold standard, of which 14.5% (16/110) of the boundary was
rated as 1+ or 1−, and 1.8% (2/110) was rated as 2+ or 2−. In the 744 mammograms, the
boundaries were rated as 1+ or 1− in 73 mammograms, 78.1% (57/73) of these nipples could
be identified within 1 cm of the gold standard. For the 5 mammograms with worst boundary
tracking (rated as 2+ or 2−), 60% (3/5) of the nipples still could be identified within 1 cm of
the gold standard. Without using texture convergence analysis, 68.5% (50/73) and 60% (3/5)
of these nipples were detected within 1 cm of the gold standard, respectively. It indicates that
the nipple detection in 7 of the images with boundary rated as 1+ or 1− failed at the stage of
rule-based detection but was successful at the stage of texture convergence analysis for the
mammograms. However, 2 mammograms with boundary rated as 2+ or 2− could not be
correctly identified either by the rule-based method or by the texture convergence method.

There were large variations in the projected nipple images on the mammograms. For the nipples
that were projected outside the breast boundary, the nipple should exhibit higher gray levels
than the background pixels outside the boundary. For these convex nipples, the tracked breast
boundary could depict a nipple shape. The shape depicted on the boundary was unique if no
noise, such as fingerprint or artifacts on the film, affected the boundary tracking. In such
cases,searching for the nipple shape along the boundary could find a reliable nipple location.
However, some of the convex nipples had very poor signal-to-noise ratio due to scattered
radiation. These mammograms often also had noisy boundary. Both factors could lead to false
detection and thus large errors from the gold standard. For the situation when the nipple was
projected inside the breast boundary, the detection was complicated by noise. Most of such
noise was due to dense tissue structures near the breast boundary. Detecting the gray level
changes along the breast boundary could potentially find the true nipple location. However,
the false positives were higher in images of dense breasts with prominent structured noise.

For the cases that had low confidence in the detected nipple location by the rule-based method,
the computer performed a texture convergence analysis based on the texture orientation of the
dense glandular tissues or ducts near the nipple region. The texture feature analysis was found
to be useful for improving the accuracy of nipple identification in this study. With our
algorithm, 46.18% (139/301) of the visible nipples and 77.63% (59/76) of the invisible nipples
in the training data set, and 72.73% (144/298) of the visible nipples and 89.86% (62/69) of the
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invisible nipples in the test data set could not be identified with high confidence by the rule-
based method and the texture feature analysis was invoked. For these cases that had low
confidence in the detection of nipple location by the rule-based method, 84.89% (118/139) of
the visible nipples and 64.00% (38/59) of the invisible nipples in the training data set, and
85.42% (123/144) of the visible nipples and 55.00% (34/62) of the invisible nipples in the test
data set could be identified within 1 cm of the gold standard by using the rule-based method
in combination with texture convergence analysis. We applied a paired t-test to the detection
errors on the subset of images for which the texture convergence analysis was used. The results
indicated that the improvement in the accuracy was statistically significant for the visible nipple
images in the training set (p,0.002) and the invisible nipple images in the test set (p,0.005), and
did not achieve statistical significance for the visible nipple images in the test set (p.0.87) and
the invisible nipple images in the training set (p.0.68).

In our study, the training and test sets were randomly selected from patient files. The results
showed that, for the visible nipples, the algorithm performance achieved a higher accuracy
(i.e., percentage of the detected nipples within 1 cm of the gold standard) in the test set (92.28%)
than in the training set (89.37%). On the other hand, for the invisible nipples, the detection
accuracy was higher in the training set (69.74%) than in the test set (53.62%). The different
trends in the two nipple groups are most likely caused by sampling bias such that the visible
nipple images in the test set were by chance somewhat easier to detect than those in the training
set. To estimate the statistical significance of the difference in the algorithm performances
between the training set and the test set, the bootstrap method was used to resample the training
set 100 times and similarly for the test set. The mean and the standard deviation of the detection
accuracy were then estimated from the bootstrap samples for the training set and for the test
set. Using these estimated values, the unpaired t-test showed that the differences in the
performance of our nipple detection method between the training set and the test set were
statistically significant (p,0.0001) for both the visible and the invisible nipple groups. The
estimated mean and standard deviation of the detection accuracy estimated from the resampled
training and test sets and the corresponding p-values of the unpaired t-test are shown in Table
II.

Although the performance of our nipple detection method is reasonable, further improvement
in its accuracy is needed. One possible method may be first determining whether the breast
contains very dense tissues, especially in the region posterior to the nipple, and weight the
confidence of the texture convergence analysis accordingly. We will pursue this and other
methods to improve the accuracy in future studies.

V. CONCLUSION
Accurate identification of nipple location on mammograms is challenging because of the
variations in image quality and in the nipple projections, especially for the nipples that are
nearly invisible on the mammograms. In this work, we developed a two-stage computerized
nipple identification method to detect or estimate the nipple location. The results demonstrate
that the visible nipples can be accurately detected by our computerized image analysis method.
The nipple location can be reasonably estimated even if it is invisible. Automatic nipple
identification will provide the foundation for multiple image analysis in CAD.
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Fig. 1.
Estimation of “gold standard” for invisible nipple images.

Zhou et al. Page 14

Med Phys. Author manuscript; available in PMC 2010 July 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
(a) A mammogram from our image database; (b) the image superimposed with the detected
breast boundary.
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Fig. 3.
Defining a limited nipple search region by geometric convergence analysis.
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Fig. 4.
Schematic of the automated nipple search method.
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Fig. 5.
An example of texture orientation field convergence analysis. (a) Original image superimposed
with the detected breast boundary, (b) texture orientation field, (c) continuous orientation field
O, (d) cosine component of continuous field Ox, (e) profile of Ox identified along the breast
boundary.
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Fig. 6.
Typical examples of tracked breast boundary rating: (a) rating as 0; (b) rating as 1+; (c) rating
as 1−; (d) rating as 2−; (e) rating as 2+.

Zhou et al. Page 19

Med Phys. Author manuscript; available in PMC 2010 July 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Histogram of computer detection error (Euclidean distance from the detected nipple location
to the “gold standard”) for the mammograms in the visible nipple class.
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Fig. 8.
Histogram of computer detection error (Euclidean distance from the detected nipple location
to the “gold standard”) for the mammograms in the invisible nipple class.
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Fig. 9.
The cumulative percentage of identified nipples with a computer detection error (Euclidean
distance from the detected nipple location to the “gold standard”) less than or equal to a certain
distance for the visible nipple mammograms.
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Fig. 10.
The cumulative percentage of identified nipples with a computer detection error (Euclidean
distance from the detected nipple location to the “gold standard”) less than or equal to a certain
distance for the invisible nipple mammograms.
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Fig. 11.
Histogram of the intraobserver variations in marking the nipple locations by Radiologist 1 for
the invisible nipple class.
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Table I

Performance of the automated nipple detection program. The nipple detection accuracy is quantified as the
percentage of images in which the detected nipple location is within 1 cm to the gold standard.

Number of
images

Rule-based
method

Rule-based method
with texture analysis

Training
set

Visible 301 82.39% (248/301) 89.37% (269/301)

Invisible 76 65.79% (50/76) 69.74% (53/76)

All 377 79.05% (298/377) 85.41% (322/377)

Test set Visible 298 89.93% (268/298) 92.28% (275/298)

Invisible 69 47.83% (33/69) 53.62% (37/69)

All 367 82.02% (301/367) 85.01% (312/367)

Med Phys. Author manuscript; available in PMC 2010 July 7.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhou et al. Page 26

Table II

The unpaired t-test result which was used to estimate the statistical significance of the difference in the algorithm
performances between the training set and the test set. The mean and standard deviation of the detection accuracy
were estimated from the resample training and test data set using the bootstrap method.

Mean
Standard
deviation

p-value of
unpaired t-test

Visible nipples Training set 89.34% 1.87%

Test set 92.36% 1.58% <0.0001

Invisible nipples Training set 69.99% 5.06%

Test set 54.09% 6.09% <0.0001
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