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Abstract
The spatial and temporal distributions of wall shear stress (WSS) in prototype vessel geometries of
coronary segments are investigated via numerical simulation, and the potential association with
vascular disease and specifically atherosclerosis and plaque rupture is discussed. In particular,
simulation results of WSS spatio-temporal distributions are presented for pulsatile, non-Newtonian
blood flow conditions for: (a) curved pipes with different curvatures, and (b) bifurcating pipes with
different branching angles and flow division. The effects of non-Newtonian flow on WSS (compared
to Newtonian flow) are found to be small at Reynolds numbers representative of blood flow in
coronary arteries. Specific preferential sites of average low WSS (and likely atherogenesis) were
found at the outer regions of the bifurcating branches just after the bifurcation, and at the outer-entry
and inner-exit flow regions of the curved vessel segment. The drop in WSS was more dramatic at
the bifurcating vessel sites (less than 5% of the pre-bifurcation value). These sites were also near
rapid gradients of WSS changes in space and time – a fact that increases the risk of rupture of plaque
likely to develop at these sites. The time variation of the WSS spatial distributions was very rapid
around the start and end of the systolic phase of the cardiac cycle, when strong fluctuations of
intravascular pressure were also observed. These rapid and strong changes of WSS and pressure
coincide temporally with the greatest flexion and mechanical stresses induced in the vessel wall by
myocardial motion (ventricular contraction). The combination of these factors may increase the risk
of plaque rupture and thrombus formation at these sites.
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Introduction
It is widely accepted that the process of atherogenesis (i.e. the creation and development of
atherosclerotic plaques in arteries) is affected critically by hemodynamic factors and is
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specifically related to wall shear stress (WSS). Wall shear stress expresses the tangential force
per unit area that is exerted by the flowing fluid on the surface of the conduit tube:

(1a)

where dFs is the infinitesimal force exerted tangentially on the infinitesimal wall area dA, and
τw the corresponding wall shear stress.

The magnitude of wall shear stress (measured in pressure units, Pa or dyn/cm2) depends on
the gradient of the corresponding tangential velocity near the tube wall (du/dr), in other words
on how fast the flow velocity increases when moving from the tube wall towards the center of
the tube, and also on the dynamic viscosity (μ) which is a physical property of the fluid showing
how easily the fluid is sliding. Wall shear stress τw is expressed as [1–3]:

(1b)

Atherogenesis is specifically related to low levels of WSS as well as high levels of oscillating
amplitude of WSS (see, for instance, [4] and references therein). Following the initial
controversy regarding the role of wall shear stress in the process of atherogenesis, consensus
has been reached in the view that vessel locations with low levels of wall shear stress are favored
for the creation of atheromatic plaque, as proposed initially by Caro et al. [5,6]. Several
subsequent studies have validated this view [7–11], and have revealed that atherogenesis
preferentially involves the outer walls of vessel bifurcations, side branches and regions of
strong curvature in the arterial tree [8,12,13]. In these anatomically predisposed locations, the
vessel wall shear stress is significantly lower in magnitude, and is associated with directional
changes and flow separation, features absent from regions of the arterial tree that are generally
spared from atherosclerosis [12–15]. Atherosclerotic lesions are located in regions of low wall
shear stress throughout the arterial tree, e.g. at the carotid artery bifurcation [7,10,16], the
coronary arteries [8,17], the abdominal artery [18] and the thoracic aorta [19]. The importance
of WSS in plaque formation, plaque evolution and vascular disease is briefly discussed in the
following sections.

WSS and vascular wall remodeling
It is assumed that vascular WSS remains at an optimal range of time-averaged values of 15
dyn/cm2 ± 50% [20]. Direct measurements and fluid mechanical models of the arterial regions
susceptible to atheromatosis have revealed WSS values of the order of 4 dyn/cm2, which are
considerably lower than the values in the neighborhood of 12 dyn/cm2 found in the protected
areas [7,21]. In several experiments, WSS has been shown to actively influence vessel wall
remodeling [22–24]. Specifically, chronic increases in blood flow, and the resultant increases
in average WSS, lead to expansion of luminal radius such that the mean WSS value eventually
returns to its baseline level [22,25–27]. Conversely, decreased values of average WSS resulting
from lower flow or blood viscosity [28] induce a decrease in internal vessel radius [11,23,
27]. It has been postulated, therefore, that the natural presence of curves and branch points in
the arterial tree creates a local low WSS environment at birth which determines the localization
of the initial fatty streak [29]. The natural low WSS environment may become exacerbated by
the presence of the fatty streak, and may result in the exacerbation of the low WSS conditions
immediately downstream from the fatty streak [30]. The low WSS environment may convert
the fatty streak into a more pronounced atherosclerotic plaque, with the consequent
development of even more extensive low WSS environment downstream. This progressive
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lowering of WSS may lead to further growth of the plaque and progressive atherosclerosis may
result in a self-reinforcing manner.

Molecular mechanisms stimulated by WSS
The molecular mechanisms that mediate the flow-related physiological effects of WSS are
under intensive investigation, and exciting data are emerging on this issue. A dysfunctional
endothelium, characterized by decreased NO synthesis, facilitates several relevant
physiological processes, such as vessel wall entry and oxidation of circulating lipoproteins,
monocyte entry and internalization or inflammation, smooth cell proliferation and extracellular
matrix deposition, vasoconstriction, as well as a prothrombotic state within the vessel lumen
[31,32]. Endothelial dysfunction, traditionally recognised as the earliest manifestation of
atheromatosis, is often the result of disturbances in the physiological pattern of blood flow
which result in WSS alterations [33,34]. Atherogenesis is promoted by decreased WSS because
it is associated with a reduction in several vascular wall functions including endothelial NO
synthase (eNOS) production, vasodilatation and endothelial cell repair [35]. These are coupled
with increases in reactive oxygen species (ROS), endothelial permeability to lipoproteins,
leukocyte adhesion, apoptosis, smooth muscle cell proliferation and collagen deposition [36].
Interestingly, it has been demonstrated that WSS can even regulate gene expression, thus
modulating endothelial biology [13,36,37].

WSS and platelet aggregation
Another well known role of WSS is the activation of blood platelets which is thought to be a
major contributing factor to thrombotic disease, particularly in areas of high WSS values
[38,39]. These high WSS areas may be natural, as in the severe stenoses caused by
arteriosclerosis, or artificial, as in the cases of abnormal flow patterns produced by prosthetic
heart valves [39]. It is likely that WSS promotes platelet aggregation, at least in part, by
increasing both the number and efficiency of platelet–platelet collisions [38]. Increased
collision efficiency at higher WSS may result from the direct effects of WSS on platelets to
induce shear-dependent vWF (plasma protein von Willebrand factor) binding that results in
platelet aggregation [40–44].

Clearly, the role of WSS in the process of plaque formation and rupture (and possible
thrombosis) is multi-faceted and rather fundamental. This provides the motivation for
examining in greater detail the spatio-temporal patterns of WSS in specific (prototypical) vessel
geometries that are most commonly associated with atheromatosis in the arterial system.

The present work seeks to elaborate on the fundamental fluid mechanical aspects relevant to
atherogenesis in two typical vessel geometries, representative of segments of the arterial system
(curved and bifurcating pipes) that are often the site of atherosclerotic lesions and vulnerable
plaques (often leading to thrombosis and myocardial infarctions in the case of coronary
arteries). To this purpose, we have performed numerical simulations of pulsatile blood flow in
prototype curved and bifurcating pipes, under conditions representative of those in coronary
arteries, in order to produce reference data that can enhance our understanding of the flow-
related aspects of the process of atherogenesis and possible plaque rupture in the more complex
cases of real coronary arteries.

The paper is organized as follows. In the next section, we present the governing equations and
the numerical methodology used for the flow simulations of the present study. In the subsequent
two sections, we present our results and discuss their implications for the clinical problem of
interest (flow-related aspects of atherogenesis and possible plaque rupture in coronary arteries).
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Methods
We consider incompressible flows governed by the Navier–Stokes equations:

(2a)

(2b)

where ui is a velocity component, p is the static pressure, and ρ is the fluid density (for blood:
ρ = 1060 kg/m3), while Sij = (1/2)(∂ui/∂xj + ∂uj/∂xi) are the elements of the strain rate tensor.
The external force components fi are set equal to zero. The dynamic viscosity coefficient μ has
a constant value if the fluid is considered Newtonian, while its value depends on the flow field
for non-Newtonian fluids. In the present work, blood is modeled both as a Newtonian (with a
dynamic viscosity coefficient of 0.0035 Pa s) and a non-Newtonian fluid, in the latter case
using the widely accepted “Generalised Power Law” model [45,46] for expressing blood
viscosity in terms of the shear rate  (twice the strain rate):

(3a)

(3b)

(3c)

where, for blood and SI units, μ∞ = 0.0035, n∞ = 1.0, Δμ = 0.25, Δn = 0.45, a = 50, b = 3, c =
50, d = 4.

For a given vessel geometry, the flow structure and dynamics depend on the Reynolds number,
defined at inflow as:

(4)

where U is the time-averaged mean inflow velocity, d is the vessel diameter, and ν is the
kinematic viscosity, equal to the ratio: μ/ρ. Throughout the present work, Reynolds number Re
= 80.4 is used as a value representative of blood flow in the coronary arteries.

The system of governing Navier–Stokes equations, constrained by the selected vessel geometry
and appropriate boundary and initial conditions, was simulated for the three velocity
components ui and p using the STAR-CD [47,48] computational platform based on the finite
volume approach, according to which the prototypical vessel segments were decomposed into
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a number of finite volumes (cells). Illustrative examples of the grids for the two prototype
geometries of vessel segments are given in Fig. 1.

Two types of inflow velocity profiles were examined (a parabolic and a uniform) and the
respective results were compared. Note that the instantaneous volume flow rate divided by the
inflow cross-section gives the instantaneous mean velocity at inflow (independent of the type
of velocity profile prescribed at the inflow). The temporal pattern of this mean velocity over a
cardiac cycle was selected as the “representative waveform” based on well-accepted literature
data [49], see Fig. 2. No-slip (zero-velocity) boundary conditions were prescribed for the
velocity at the vessel walls, while Neumann velocity boundary conditions were implemented
at the outflow boundary. In the simulations, the governing equations were integrated until a
“statistical steady state” was reached – defined here as the state where a complex limit cycle
is established (complex flow pattern of period equal to one cardiac cycle, which perfectly
repeats itself). The time-dependent flow quantities presented in the following sections
correspond to this state. The presented time-averaged WSS values correspond to the average
over the cardiac cycle of the magnitudes of the instantaneous WSS vectors, which are calculated
by processing the computed instantaneous velocity fields.

Results
The computational grids generated consisted of a number of finite volumes, typically of the
order of a hundred thousand for the curved pipes, and two hundred thousand for the bifurcating
pipes. The specific numbers of cells and nodes used for the numerical grids in the five cases
of prototype vessel geometries are given in Table 1.

We have performed both spatial and temporal resolution tests for the case of curved pipe flow,
at R/r = 4, R being the curvature of the vessel center-line and r the pipe radius. (As the grid
density is higher for the bifurcating pipes, we believe that the adequacy of the resolution used
characterizes both geometry cases of the present study.) In addition to the standard (“high-
resolution”) grid of Table 1, we have performed simulations on a coarser (“low-resolution”)
grid, with a number of nodes approximately equal to half of those of the standard grid (not
presented here for brevity). Steady-flow field results were compared in terms of velocity
profiles at several pipe cross-sections, as well as wall shear stress distributions along
representative wall segments. The profiles were nearly identical, suggesting the adequacy of
the spatial resolution implemented.

The numerical time step used in the simulations was 0.0018112 s, corresponding to 400 time
steps per cardiac cycle. We have also performed simulations with a time-step value twice as
high (200 time steps per cardiac cycle) which have demonstrated the adequacy of temporal
resolution used.

Curved pipes
We performed simulations of curved pipe flows at three values of normalized curvature: R/r
= 2, 4, and 10, where R is the radius of the center-line of the curved pipe (i.e. the locus of the
centers of pipe cross-sections) and r is the pipe radius. In all three cases, the vessel diameter
was d = 0.0044 m, while the normalized entry length (length of the straight pipe portion before
the curvature) was 4.55 times the pipe diameter (d = 2r), while the normalized outflow length
(length of the straight pipe portion after the curvature) was 3.64 times the pipe diameter. The
left panel of Fig. 1 shows the geometry details of the grid mesh close to the inflow, for R/r =
2. The entry length was chosen as to be sufficient for the flow to develop before the curved
region, and thus be independent of the shape of the inflow profile. This independence has been
verified by implementing both parabolic and uniform velocity profiles at inflow (see below)
for both steady and pulsatile conditions. In the following, we will normalize the computed
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WSS values with a reference value, equal to the WSS of fully developed steady flow at the
same Reynolds number. For the conditions of the present study, this reference value is equal
to 0.38 Pa (3.8 dyn/cm2).

We start with simulations of Newtonian flow in curved pipes with three different values of
normalized curvature. It is known that, for steady flows in curved pipes, the fluid elements at
inflow are decelerated in the outer flow region (close to the outer wall), while they are
accelerated in the inner flow region; the inverse is true for fluid elements approaching the end
of the curved region [50]. Wall shear stress (WSS) is expected to drop in regions where the
flow is decelerating, and rise in regions of accelerating flow. This provides the qualitative
means for a first verification of the obtained simulation results.

The resulting distributions of computed normalized WSS along the outside and the inside vessel
walls, at mid-segment positions, are shown in Fig. 3 for R/r = 2 at the eight time points of the
cardiac cycle indicated in Fig. 2 by the letters a through h. The results indicate a region of low
WSS during the long diastolic phase (h-a-b) at the start of the curved portion on the outside
wall, and at the end of the curved portion on the inside wall, while regions of high WSS are
shown at the conjugate areas (i.e. at the end of the curved portion on the outside wall, and at
the start of the curved portion on the inside wall). Also indicated are big changes during the
rapid transition from the systolic to the diastolic phase (e-f-g-h), with very low WSS values
observed along the entire vessel segment at time point f that represents the cusp of the systolic–
diastolic transition. In Fig. 3 we show the results for both flat and parabolic inflow velocity
profiles, and demonstrate that the WSS distributions become identical after an entry length of
about 3.5 pipe diameters.

The time course of the computed WSS at six control points at the start, middle and end of the
curved portion is shown in Fig. 4 for the three curvatures: R/r = 2, 4, and 10. These results
indicate low WSS levels at the start and end of systole, as well as rapid changes at those time
points. The different time evolution of WSS at the six points considered is consistent with the
results shown in Fig. 3. These observations regarding the spatial distribution of WSS are
common for all three curvatures, although the time variations become milder at increasing R/
r values (less curved vessels).

The time-averaged values of WSS for curvature R/r = 2, 4 and 10 and flat inflow profile are
compared with the results under steady-flow conditions in Fig. 5, and shown to be nearly
identical. A comparison with the corresponding results for parabolic inflow profile (not shown
for brevity) indicates that WSS distributions become identical approximately 3.5 diameters
downstream of the inflow. In all cases, the regions of low and high WSS are the same (at the
start and end of the curved portion), but the respective WSS deviations from the normalized
reference value of 1 are smaller at higher R/r values (see Fig. 5). This illustrates that the regions
of low WSS (usually associated with atherogenesis) are constricted for high values of non-
dimensional vessel curvature or, conversely, they are expanded in strongly curved vessels.

Next, we examine the effect of non-Newtonian flow on the computed normalized WSS
distributions. Results are shown in Fig. 6 for the outside wall mid-segments, in the case R/r =
2. It is evident that the effect of non-Newtonian flow (as defined by the widely accepted
“Generalized Power Law” viscosity model) is negligible, except when the WSS values drop
very close to zero in the Newtonian case (at time instant f) and given small (but clearly non-
zero) values in the non-Newtonian case. The same observations were made for the distributions
along inside wall mid-segments, as well as for the other two curvatures (results not shown in
the interest of space). The good agreement between the Newtonian and non-Newtonian flow
models can be explained as a result of the no-slip boundary condition imposed on the vessel
wall that gives rise to substantial shear stress at the wall. For this reason, the effect of non-
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Newtonian flow is expected to be far more pronounced in the regions of low shear stress away
from the vessel wall (i.e. in the bulk-flow region near the center-line of the vessel).

In order to characterise the temporal variation of WSS over the cardiac cycle and its dependence
on the curvature, we present in Table 2 the minimum and maximum absolute values of
normalized WSS at four out of the six control points shown in Fig. 4, as well as the max/min
ratio, the max – min difference, and the normalized difference (max – min)/max. An interesting
observation here is that more pronounced relative variations are observed at points a and d,
which are characterized by low time-averaged WSS values.

To examine the spatial dependence of this temporal variation of normalized WSS for curved
pipes, we compute the spatial distribution of oscillatory shear index (OSI), which is a sensitive
measure of the time variation of the direction of the wall shear stress vector. OSI is defined as
[51–53]:

(5)

where  is the WSS vector, and 〈〉 denotes time-average.

OSI is a dimensionless parameter that accounts for the degree of deviation of WSS from the
antegrade flow direction. Small OSI values (close to 0) indicate small variations of WSS vector
during the cardiac cycle. Conversely, OSI values close to 0.5 indicate that WSS vector is subject
to large variations, and can be very small or change direction at parts of the cardiac cycle,
which means that at those time instances flow is stopped or reversed. In the same context, the
spatial distribution of the root-mean-square (RMS) value of normalized WSS variation over
the cardiac cycle is also computed. The results for R/r = 2 are shown in Fig. 7 for the OSI and
RMS distributions (the computed distributions for R/r = 4 and 10, not presented for brevity,
are qualitatively similar, but the variations are smoother, and characterized by less pronounced
maxima). It is evident that the RMS distributions (Fig. 7b) track closely the spatial pattern of
the time-averaged normalized WSS (compare with Fig. 5), while the OSI patterns (Fig. 7a)
exhibit in general the reverse trends (i.e. rising when the RMS values decline and vice-versa).

Finally, Fig. 8 presents the computed pressure traces for R/r = 2 and 10, at the six points
identified in Fig. 4. Evidently, the computed pressures are characterized by sharp variations
during the systolic phase, as well as by a sudden increase during diastole.

Bifurcating pipes
We performed simulations of pulsatile blood flow in bifurcating pipes with two different
bifurcation angles: 50° and 80°. In both cases, the normalized entry length (before the
bifurcation) was 4.55 times the vessel diameter, while the same value was also prescribed for
the outlet length. The diameter, d = 0.0044 m, was the same for all three pipes of the bifurcating
segment (stem and two branches). The inflow velocity profile was always uniform. In order to
examine the effect of “flow volume division” on the computed WSS distributions, three
different splits of flow volume rates in the two downstream branches (1/1, 3/1, 7/1) were
imposed in the simulations. These different divisions of flow volume rates are deemed to
emulate the different splits caused in real bifurcating arteries by different types of lesions/
stenoses at the branches or respective downstream vessel trees. The computational meshes
were created with a total number of cells equal to approximately 220,000 for the 50° bifurcation
angle and 182,000 for the 80° bifurcation angle, as indicated in Table 1. An illustration of the
geometry and details of the mesh for the 80° bifurcation angle is shown in the right panel of
Fig. 1. Illustrations of the patterns of steady-flow fields (in terms of velocity vectors) in the
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bifurcating segments for the aforementioned three divisions of volume flow rate are shown in
Fig. 9.

The results of the computed normalized WSS values are presented in Figs. 10–12 as spatial
distributions along the four relevant wall segments (left-outside, right-outside, left-inside and
right-inside mid-segments, respectively) for the case of 80° bifurcation angle at the eight time
points of the cardiac cycle indicated in Fig. 2, for the three different flow volume divisions:
1/1 (50%–50%), 3/1 (75%–25%), 7/1 (87.5%–12.5%). It is evident that low WSS values during
the “long residence” diastolic phase (h-a-b) appear immediately after the bifurcation on the
left- and right-outside walls. For the same walls, rapid and dramatic changes are observed
during the brief transition from systole to diastole (e-f-g-h), and very low WSS values along
the entire length of these walls at the “cusp” point f of transition from the systolic to diastolic
phase. The aforementioned drops in WSS on the two outside walls after the bifurcation are
accompanied by a significant increase of WSS at the conjugate (opposite) regions on the two
inner walls after the bifurcation. This existence of low WSS regions, also observed in the case
of curved pipes, is associated with the fact that the flow is generating low-velocity regions in
the outer regions of bifurcating vessels or in the outer/inner region of the entry/exit of curved
vessels; the low-velocity regions are also characterized by flow recirculation (back-flow) in
the case of bifurcating pipes. The results shown in Figs. 10 and 11 contain all three cases of
flow volume division, and it is evident that lower WSS values occur at the branch that receives
less volume flow rate. This observation (that the WSS values drop considerably when more
flow volume is diverted towards the other branch) may prove clinically important in those cases
where lesions/stenoses in a branch (or in its respective downstream vessels) reduce the flow
volume through it, and cause further reduction in the WSS that may accelerate the process of
atheromatosis in this branch, leading to an unstable and catastrophic condition.

In Fig. 12, we compare the WSS distributions along the left-outside and right-inside wall mid-
segments at the eight time instants for the two cases of bifurcation angles (80° and 50°), when
the flow volume is equally divided between the two branches. The results indicate that small
differences exist for the outer wall, while considerable differences are observed for the inner
wall, with the WSS values for the 50° bifurcation being consistently lower in the early portion
of the inner wall (up to a distance equal to 1.5 times the vessel diameter). This could be
attributed to the fact that, at larger values of the bifurcation angle, larger recirculation zones
are created in the outer region, and the flow is forced to accelerate along the region close to
the inner wall. The time-averaged WSS distributions along these two wall regions over the
cardiac cycle exhibit the same effects (not shown in the interest of space). We should note that
the observations regarding the distributions of WSS are also valid in steady-flow conditions,
and that the steady-flow values are very close to the time-averages of the instantaneous
distributions of pulsatile flow, as in the cases of curved pipes presented earlier.

Finally, we note that the spatial distribution patterns of the computed RMS values of the WSS
(quantifying the extent of temporal variations of WSS at each point of the vessel wall) along
the four wall regions for the three flow volume divisions are similar to the distribution patterns
of the time-averaged WSS values, as was also observed for the curved vessels. We also mention
that the WSS distributions corresponding to Newtonian and non-Newtonian flows are very
similar, and comparisons are not shown in the interest of space.

Discussion
The motivation of the present computational study has been to elucidate our understanding of
the spatio-temporal variation of wall shear stress (WSS) in simulated pulsatile flow through
two prototypical geometries of blood vessel segments (curved and bifurcating pipes), and its
relation to the process of atherogenesis and possible plaque rupture. This is viewed as one of
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the first steps in a long effort to identify preferred locations of vulnerable plaques in coronary
arteries and high-risk coronary segments for myocardial infarction. The distribution of WSS
in coronary arteries has been investigated in various numerical studies either in models of the
coronary vessels [30,54–57] or in patient specific coronary vessel geometries [27,46,57–66].
The purpose of the present study has been to examine in more detail the spatio-temporal
variations of WSS in prototype geometries, and their relation to fundamental geometric
features. Given the complexity of temporal variations, the present results of flow in simpler
geometries may serve as reference data for interpreting existing and future results of the more
complex flows in real arteries.

The presented results show the regions of low WSS in these two prototypical geometries of
vessel segments and the pattern of temporal variations during the cardiac cycle. While regions
of low WSS have been previously correlated to atherogenesis, the specific spatial distribution
of WSS and its pattern of changes along the vessel walls for various anatomical/functional
parameters (the degree of curvature in curved segments, and the angle of bifurcation and the
flow volume division in bifurcating segments) have been explored herein in detail.

The catastrophic effect of coronary plaque rupture has been associated with a variety of
mechanical and hemodynamic forces acting on coronary plaques. These include: (1) wall shear
stress [67,68], (2) circumferential wall stress – the tensile stress induced on the vessel wall by
the transmural blood pressure [69,70], (3) surges and drops in intraluminal blood pressure
[71,72], (4) mechanical shear stress – the shearing stress exerted between adjacent layers of
the vessel wall induced by the circumferential elongation due to circumferential stresses [73,
74], (5) arterial wall collapse due to a drop in static pressure within the throat of the stenosis
(Bernoulli's principle) [75,76], (6) circumferential bending which causes deformation and
bending of plaques [77], (8) longitudinal flexion due to the participation of coronary arteries
to cardiac motion [78] and (9) fatigue failure which is an incremental failure progression under
influence of repetitive biomechanical stresses [79,80]. The results of the current study provide
evidence that supports the association of mechanical and hemodynamic force and plaque
rupture. We have presented the detailed temporal pattern of WSS variations during the cardiac
cycle at key locations of the vessel segments, and its possible implications for cap thinning and
plaque rupture. For instance, it is evident that very low WSS values occur at the start and end
of systole, as well as that rapid and dramatic changes of WSS values occur during the transition
from the systolic to the diastolic phase. These sharp temporal changes of WSS may raise the
risk of plaque rupture during and right after systole, especially when combined with the
mechanical stresses induced by significant flexion of curved or bifurcating vessel segments
due to the myocardial motion during systolic ventricular contraction. Another factor
contributing to the higher risk of plaque rupture during (or near) the systolic phase is the rapid
and significant changes in intravascular pressure, as demonstrated in Fig. 8.

The presented results have demonstrated the minimal effects of non-Newtonian flow conditions
(relative to Newtonian) on the spatio-temporal WSS distributions, which is due to the no-slip
boundary condition at the vessel wall and the resulting high shear rates in the near-wall regions;
these non-Newtonian effects can be significant near the center-line of the vessel.

The time-averaged WSS values over the cardiac cycle are shown to be very close to the WSS
values under steady-flow conditions – a fact that can be utilized in practice to expedite the
computation of WSS spatial distributions in arbitrary vessel geometries (by simulating steady
instead of pulsatile flow conditions) when minimal information on flow statistics is looked for.

Another intriguing observation, from the clinical point of view, is the significant and self-
reinforcing effect of uneven flow volume division in a bifurcating vessel. Specifically, the
presence of a lesion/stenosis in one of the branches (or in its subsidiary downstream vessels)
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will cause a reduction of volume flow rate through this branch, and an increase in the other
branch, that will reduce the WSS in the lesioned branch, and promote further atheromatosis.
This self-reinforcing process can lead to an unstable and potentially catastrophic situation of
severe stenosis and vascular occlusion.
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Figure 1.
Illustrative examples of the two prototype geometries of vessel segments and the grid meshes
used for the numerical simulation of blood flow: curved vessel (left) and bifurcating vessel
(right).
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Figure 2.
The temporal pattern of flow velocity over one cardiac cycle that is used in the simulations
(from Berne and Levy [49]). Eight pivotal time instants are marked by the letters a through
h.
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Figure 3.
Normalized WSS distributions at eight pivotal time instants during the cardiac cycle (see Fig.
2) along the outside and inside wall mid-segments of the curved vessel (R/r = 2) for flat and
parabolic inlet velocity profiles (Newtonian flow model).
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Figure 4.
Temporal profiles of the normalized WSS during the cardiac cycle at six control points of the
curved vessel marked in (a), for three degrees of curvature: (b) R/r = 2, (c) R/r = 4, (d) R/r =
10 (Newtonian flow model).
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Figure 5.
Normalized WSS distributions along the outside and inside curved vessel wall mid-segments,
for steady flow and pulsatile flow (time-averaged results) using a flat inlet velocity profile: (a)
R/r = 2, (b) R/r = 4, (c) R/r = 10 (Newtonian flow model).
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Figure 6.
Normalized WSS distributions at eight pivotal time instants during the cardiac cycle (see Fig.
2) along the outside wall mid-segment of the curved vessel (R/r = 2) for flat inlet velocity
profile, using Newtonian and non-Newtonian flow models.
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Figure 7.
(a) Oscillatory shear index (OSI) and (b) WSS root-mean-square (RMS) distribution along the
outside and inside curved vessel (R/r = 2) wall mid-segments for flat inlet velocity profile
(Newtonian flow model).
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Figure 8.
Time-history of intravascular pressure (with respect to a reference value at inflow) in curved
pipe flow at two values of non-dimensional curvature, at the six control points shown in Fig.
5 (Newtonian flow model).
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Figure 9.
Illustration of the steady-flow fields (velocity vector plots) in the bifurcating segment with 80°
angle for three different divisions of volume flow rate (50%–50%, 75%–25%, 87.5%–12.5%)
(Newtonian flow model).
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Figure 10.
Normalized WSS distributions at eight pivotal time instants during the cardiac cycle (see Fig.
2) along the left-outside and right-outside wall mid-segments of the bifurcating vessel with
80° angle for three different divisions of volume flow rate (50%–50%, 75%–25%, 87.5%–
12.5%) (Newtonian flow model).
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Figure 11.
Normalized WSS distributions at eight pivotal time instants during the cardiac cycle (see Fig.
2) along the left-inside and right-inside wall mid-segments of the bifurcating vessel with 80°
angle for three different divisions of volume flow rate (50%–50%, 75%–25%, 87.5%–12.5%)
(Newtonian flow model).
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Figure 12.
Comparison of the normalized WSS distributions at eight pivotal time instants during the
cardiac cycle (see Fig. 2) along the left-outside and the right-inside wall mid-segments of
bifurcating vessels with 50° and 80° bifurcation angles. The flow rate is divided equally in the
two branches (Newtonian flow model).
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Table 1

Number of cells and nodes used for discretizing the geometries studied.

Geometry Cells Nodes

Curved pipe R/r = 2 65,000 69,000

R/r = 4 73,000 77,000

R/r = 10 100,000 106,000

Bifurcating pipe Angle = 50° 220,000 228,000

Angle = 80° 182,000 192,000
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Table 2

WSS simulation results in curved pipes, at four control points marked in Fig. 4 (a through d ).

R/r R/r R/r

WSS location 2.0 4.0 10

Outer τa min 0.009 0.015 0.054

τa max 1.662 2.228 2.734

τamax/τamin 185.119 145.845 50.261

τamax – τamin 1.653 2.213 2.680

(τamax – τamin)/τamax 0.995 0.993 0.980

τc min 0.172 0.093 0.035

τc max 5.785 4.018 3.424

τcmax/τcmin 33.544 42.989 99.222

τcmax – τcmin 5.612 3.924 3.390

(τcmax – τcmin)/τcmax 0.970 0.977 0.990

Inner τb min 0.153 0.081 0.264

τb max 4.536 0.665 3.302

τbmax/τbmin 29.724 8.166 12.487

τbmax – τbmin 4.384 0.583 3.038

(τbmax – τbmin)/τbmax 0.966 0.878 0.920

τd min 0.035 0.241 0.016

τd max 2.642 2.889 3.001

τdmax/τdmin 75.477 11.995 188.725

τdmax – τdmin 2.607 2.648 2.985

(τdmax – τdmin)/τdmax 0.987 0.917 0.995
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