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Abstract
The combination of information from diverse sources is a common task encountered in computational
statistics. A popular label for analyses involving the combination of results from independent studies
is meta-analysis. The goal of the methodology is to bring together results of different studies, re-
analyze the disparate results within the context of their common endpoints, synthesize where possible
into a single summary endpoint, increase the sensitivity of the analysis to detect the presence of
adverse effects, and provide a quantitative analysis of the phenomenon of interest based on the
combined data. This entry discusses some basic methods in meta-analytic calculations, and includes
commentary on how to combine or average results from multiple models applied to the same set of
data.
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A technique seen widely in computational statistics involves the combination of information
from diverse sources relating to a similar endpoint. The term meta-analysis is a popular label
for analyses involving combination of results from independent studies. The term suggests an
effort to incorporate and synthesize information from many associated sources; it was first
coined by Glass [1] in an application of combining results across multiple social science studies.
The possible goals of a meta-analysis are many and varied. They can include: consolidation of
results from independent studies, improved analytic sensitivity to detect the presence of adverse
effects, and/or construction of valid inferences on the phenomenon of interest based on the
combined data. The result is often an appropriately weighted estimate of the overall effect. For
example, it is increasingly difficult for a single, large, well-designed biomedical study to assess
definitively the effect(s) of a hazardous stimulus. Rather, many small studies may be
performed, wherein quantitative strategies that can synthesize the independent information into
a single, well-understood inference will be of great value. To do so, one must generally assume
that the different studies are considering equivalent endpoints, and that data derived from them
will provide exchangeable information when consolidated. Formally, the following
assumptions should be satisfied:

1. All studies/investigations meet basic scientific standards of quality (proper data
reporting/collecting, random sampling, avoidance of bias, appropriate ethical
considerations, fulfilling quality assurance/QA or quality control/QC guidelines,
etc.).

2. All studies provide results on the same quantitative outcome.

3. All studies operate under (essentially) the same conditions.
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4. The underlying effect is a fixed effect; i.e., it is non-stochastic and homogeneous
across all studies. (This assumption relates to the exchangeability feature mentioned
above.) The different studies are expected to exhibit the same effect, given some
intervention.

In practice, violations of some of these assumptions may be overcome by modifying the
statistical model; e.g., differences in sampling protocols among different studies—violating
Assumption 3—may be incorporated via some form of weighting to de-emphasize the
contribution of lower-quality studies.

We also make the implicit assumption that results from all relevant studies in the scientific
literature are available and accessible for the meta-analysis. Of course, studies that do not
exhibit an effect often are less likely to be published, and so this assumption may be suspect.
Failure to meet it is called the file drawer problem [2]; it is a form of publication bias [3,4]
and if present, can undesirably affect the analysis. Efforts to find solutions to this issue represent
a continuing challenge in modern computational statistics [5-7].

Combining P-Values
Perhaps the most well-known and simplest approach to combining information collects
together P-values from K ≥ 1 individual, independent studies of the same null hypothesis,
Ho, and aggregates the associated statistical inferences into a single, combined P-value. R.A.
Fisher gave a basic meta-analytic technique towards this end; a readable exposition is given in
[8]. Suppose we observe the P-values Pk, k = 1, …, K. Under Ho, each Pk is distributed as
independently uniform on the unit interval, and using this Fisher showed that the transformed
quantities −2log(Pk) are each distributed as χ2(2). Since their sum is then χ2(2K), one can
combine the independent P-values together into an aggregate statistic:

. The resulting combined P-value is then .
Report combined significance if P+ is less than some pre-determined significance level, α. This
approach often is called the inverse χ2 method, since it inverts the P-values to construct the
combined test statistic. A simple simulation can illustrate the effect: suppose 10,000 samples
of K=5 independent P-values are generated from U(0,1) and  is determined for each of
these samples. A histogram of the resulting collection of 10,000 X2 values is displayed in
Figure 1, with a χ2(10) density superimposed. Strong similarity between the distributional
forms is evident.

One can construct alternative methods for combining P-values; for instance, from a set of
independent P-values, P1, P2, …, PK, each testing the same Ho, the quantities Φ−1(Pk) are
distributed as standard normal: Φ−1(Pk) ~ i.i.d. N(0,1), where Φ−1(·) is the inverse of the

standard normal cumulative distribution function. Then, . Dividing by
the corresponding standard deviation, , yields yet another standard normal random variable.
Thus, the quantity

can be used to make combined inferences on Ho. Due to Stouffer et al. [9], this is known as
the inverse normal method, or also Stouffer’s method. To combine the P-values into a single
aggregate, calculate from Zcalc the lower tail quantity P+ = Pr[Z ≤ Zcalc], where Z ~ N(0,1).
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Notice that this is simply P+ = Φ(Zcalc). As with the inverse χ2 method, report combined
significance if P+ is less than a pre-determined level of α.

Historically, the first successful approach to combining P-values involved neither of these two
popular methods. Instead, it employed the ordered P-values, denoted as P[1] ≤ P[2] ≤ … ≤
P[K]. Originally proposed by Tippett [10], the method took the smallest P-value, P[1], and
rejected Ho if P[1] < 1 − (1 − α)1/K. Wilkinson [11] extended Tippett’s method by using the
Lth ordered P-value: reject Ho from the combined data if P[L] < Cα,K,L, where Cα,K,L is a critical
point found using specialized tables [12]. Wilkinson’s extension is more resilient to possible
outlying effects than Tippett’s method, since it does not rest on the single lowest P-value;
however, it has been seen to exhibit generally poor power and is not often recommended for
use [13].

Fisher’s observation that a P-value under Ho is uniformly distributed can motivate a variety of
statistical manipulations to combine independent P-values. The few described above represent
only the more traditional approaches. For a discussion of some others, see Hedges and Olkin
[12] and Loughin [13].

Effect Size Estimation
While useful and simple, combined P-values have drawbacks. By their very nature, P-values
are summary measures that may overlook or fail to emphasize relevant differences among the
various independent studies [14]. To compensate for potential loss of information, one can
calculate directly the size of the effect detected by a significant P-value. For simplicity, suppose
we have a simple two-group experiment where the effect of a target stimulus on an experimental
treatment group is to be compared with a corresponding control group. For data recorded on a
continuous scale, the simplest way to index the effect of the stimulus is to take the difference
in observed mean responses between the two groups. When combining information over two
such independent studies, it is common to standardize the difference in means by scaling
inversely to its standard deviation. Championed by Cohen [15], this is known as a standardized
mean difference, which for use in meta-analysis is often called an effect size [16,17].

Formally, consider a series of independent two-sample studies. Model each observation Yijk
as the sum of an unknown group mean μi and an experimental error term εijk: Yijk = μi + εijk,
where i = C (control group), T (target group); j = 1, …, J studies, and k = 1, …, Nij replicates
per study. (The indexing can be extended to include a stratification variable, if present; see
[18].) We assume that the additive error terms are independently normally distributed, each
with mean 0, and with standard deviations, σj > 0, that may vary across studies but remain
constant between the two groups in a particular study. Under this model, each effect size is
measured via the standardized mean difference

(1)

where Y̅ij is the sample mean of the Nij observations in the jth study (i = C, T), sj is the pooled
standard deviation
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using the corresponding per-study sample standard deviations sij, and φj is a adjustment factor
to correct for bias in small samples:

We combine the individual effect sizes in (1) over the J independent studies by weighting each
effect size inversely to its estimated variance, Var[dj]: the weights are wj = 1/Var[dj]. A large-
sample approximation for these variances that operates well when the samples sizes, Nij, are
roughly equal and are at least 10 for all i and j is [12]

With these, the weighted averages are

(2)

Standard practice traditionally views a combined effect size as minimal (or ‘none’) if in
absolute value it is near zero, as ‘small’ if it is near d = 0.2, as ‘medium’ if it is near d = 0.5,
as ‘large’ if it is near d = 0.8, and as ‘very large’ if it exceeds 1.0. To assess this statistically,

we find the standard error of d̅+ as , and build a 1 − α confidence interval
on the true effect size. Simplest is the large-sample ‘Wald’ interval d̅+ ± zα/2se[d ̅+], with critical

point .

Example: Manganese Toxicity
In a study of pollution risk, Ashraf and Jaffar [19] reported on metal concentrations in scalp
hair of males exposed to industrial plant emissions in Pakistan. For purposes of comparison
and control, hair concentrations were also determined from an unexposed urban population
(i = C). Of interest was whether exposed individuals (i = T) exhibited increased metal
concentrations in their scalp hair, and if so, how this can be quantified via effect size
calculations. The study was conducted for a variety of pollutants; for simplicity, we consider
a single outcome: manganese concentration (mg/kg, dry weight) in scalp hair. Among six
ostensibly homogenous male cohorts (the ‘studies’), the sample sizes, observed mean
concentrations, and sample variances were found as given in Table 1. (Note in the table that
the sample sizes are all large enough with these data to validate use of the large-sample
approximation for d̅+.) Observed differences in the mean scalp concentrations range from about
1 to over 4 mg/kg across the 6 cohorts. In addition, sample variances differed by less than a
factor of 2 for all cohorts except the first and, perhaps more importantly, the variances were
not consistently higher in one group compared to the other across the six cohorts.

The per-cohort effect sizes, dj, based on these data can be computed as d1 = 0.558, d2 = 0.785,
d3 = 0.763, d4 = 0.544, d5 = 1.080, and d6 = 0.625. That is, for all cohorts the exposure effect
leads to increased manganese concentrations in the T-group relative to the C-group (since all
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djs are positive), ranging from an increase of 0.558 standard deviations for cohort 1 to an
increase of over one standard deviation for cohort 5. To determine a combined effect size, we
calculate the inverse-variance weights as w1 = 8.154, w2 = 7.133, w3 = 10.482, w4 = 10.595,
w5 = 7.082, and w6 = 8.581.

From these values, one finds using (2) that

For a 95% confidence interval, calculate

with which we find . Overall, a ‘medium-
to-large’ combined effect size is indicated with these data: on average, an exposed male has
scalp hair manganese concentrations between 0.44 and 0.98 standard deviations larger than an
unexposed male.

Assessing homogeneity
The assumption that the underlying effect is fixed and homogeneous (Assumption 4 from
above) is critical if pooling effect size calculations are desired. To evaluate homogeneity across

studies, the statistic  can be used [20], where as above, wj = 1/Var
[dj]. Under the null hypothesis of homogeneity across all studies, Qcalc ~ χ2(J−1). Here again,
this is a large-sample approximation that operates well when the samples sizes, Nij, are all
roughly equal and are at least 10. For smaller sample sizes the test can lose sensitivity to detect
departures from homogeneity, and caution is advised.

Reject homogeneity across studies if the P-value P[χ2(J−1) ≥ Qcalc] is smaller than some pre-
determined significance level, α. If study homogeneity is rejected, combination of the effects
sizes via (2) is contraindicated since the djs may no longer estimate a homogeneous quantity.
Hardy and Thompson [21] give additional details on use of Qcalc and other tools for assessing
homogeneity in a meta-analysis; also see [4] and [22].

Applied to the Manganese Toxicity data in the example above, we find

. The corresponding P-value for testing the null
hypothesis of homogeneity among cohorts is P[χ2(5) ≥ 1.58] = 0.90, and we conclude that no
significant heterogeneity exists for this endpoint among the different cohorts. The calculation
and reporting of a combined effect size here is validated.

Informative Weighting
Taken broadly, an ‘effect size’ can be any valid quantification of the effect, change, or impact
under study [16], not just the difference in sample means employed above. Thus, e.g., we might
use estimated coefficients from a regression analysis, correlation coefficients, potency
estimators from a bioassay, etc. For any such measure of effect, the approach used in (2)
corresponds to a more general, weighted averaging strategy to produce a combined estimator.
Equation (2) uses ‘informative’ weights based on inverse variances. Generalizing this
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approach, suppose an effect of interest is measured by some unknown parameter ξ, with
estimators ξ̂k found from a series of independent, homogeneous studies, k = 1, …, K. Assume
that a set of weights, wk, can be derived such that larger values of wk indicate greater
information/value/assurance in the quality of ξ̂k. A combined estimator of ξ is then

(3)

with standard error . If the ξ̂ks are distributed as approximately normal,
then an approximate 1 − α ‘Wald’ interval on the common value of ξ is ξ̅±zα/2se[ξ̅]. Indeed,
even if the ξ̂ks are not close to normal, for large K the averaging effect in (3) may still imbue
approximate normality to ξ̅, and hence the Wald interval may still be approximately valid. For
cases where approximate normality is difficult to achieve, use of bootstrap resampling methods
can be useful in constructing confidence limits on ξ [23].

A common relationship often employed in these settings relates the information in a statistical
quantity inversely to the variance [24]. Thus, given values for the variances, Var[ξ̂k], of the
individual estimators in (3), an ‘informative’ choice for the weights is the reciprocal (or
‘inverse’) variances: wk = 1/Var[ξ̂k]. This corresponds to the approach we applied in Equation
(2). More generally, inverse-variance weighting is a popular technique for combining
independent, homogeneous information into a single summary measure. It was described in
early reports by Birge [25] and Cochran [20]; also see Hall [26].

Discussion: Combining information across models versus across studies
Another area where the effort to combine information is computationally interesting occurs
when information is combined across models for a given study, rather than across studies for
a given model. That is, we wish to describe an underlying phenomenon observed in a single
set of data by combining the results of competing models for the phenomenon. Here again, a
type of informative weighting finds popular application. Suppose we have a set of K models,
M1, …, MK, each of which provides information on a specific, unknown parameter θ. Given
only a single available data set, we can calculate a point estimator for θ, such as the maximum
likelihood estimator (MLE) θ̂k, based on fitting the kth model. Then, by defining weights,
wk, that describe the information in or quality of model Mk’s contribution for estimating θ, we

can employ the weighted estimator . For the weights, Buckland, et al. [27] suggest

(4)

where Ik = −2log(Lk) + qk is an information criterion (IC) measure that gauges the amount of
information each model provides for estimating θ, Lk is the value of the statistical likelihood
evaluated under model Mk at that model’s MLE, and qk is an adjustment term that accounts
for differential parameterizations across models. This latter quantity is chosen prior to
sampling; if qk is twice the number of parameters in model Mk, Ik will correspond to the popular
Akaike Information Criterion (AIC) [28]. Alternatively, if qk is equal to the number of
parameters in model Mk times the natural log of the sample size, Ik will correspond to Schwarz’
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Bayesian Information Criterion (BIC) [29]. Other information-based choices for Ik and hence
wk are also possible [30].

Notice that the definition for wk in (4) automatically forces Σwk = 1, which is a natural
restriction. Since differences in ICs are typically meaningful, some authors replace Ik in (4)
with the differences Ik − mink=1,…,K{ Ik }. Of course, this produces the same set of weights
once normalized to sum to 1.

Uses of this sort of weighted model averaging [31,32] has seen rapid development in the early
21st century; examples include optimization of weights for multiple linear regression analyses
[33], use of model averaging to estimates risks of arsenic exposures leading to lung cancer
[34], and model averaging software with quantal data [35].
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Figure 1.

Histogram of  based on K=5 random P-values sampled 10,000 times.
Also superimposed is the p.d.f. of χ2(10).
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