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Purine nucleoside phosphorylase (PNP) catalyzes the syn-
thesis and phosphorolysis of purine nucleosides, intercon-
verting nucleosides with their corresponding purine base
and ribose-1-phosphate. While PNP plays significant roles
in human and pathogen physiology, we are interested in
developing PNP as a catalyst for the formation of nucleo-
side analog drugs of clinical relevance. Towards this aim,
we describe the engineering of human PNP to accept
20,30-dideoxyinosine (ddI, Videxw) as a substrate for phos-
phorolysis using a combination of site-directed mutagen-
esis and directed evolution. In human PNP, we identified
a single amino acid, Tyr-88, as a likely modulator of
ribose selectivity. RosettaLigand was employed to calcu-
late binding energies for substrate and substrate analog
transition state complexes for single mutants of PNP
where Tyr-88 was replaced with another amino acid. In
parallel, these mutants were generated by site-directed
mutagenesis, expressed and purified. A tyrosine to
phenylalanine mutant (Y88F) was predicted by Rosetta to
improve PNP catalytic activity with respect to ddI.
Kinetic characterization of this mutant determined a 9-
fold improvement in kcat and greater than 2-fold
reduction in KM. Subsequently, we used directed evol-
ution to select for improved variants of PNP-Y88F in
Escherichia coli cell extracts resulting in an additional
3-fold improvement over the progenitor strain. The engin-
eered PNP may form the basis for catalysts and pathways
for the biosynthesis of ddI.
Keywords: directed evolution/enzyme design/nucleoside
analog/purine nucleoside phosphorylase/Rosetta

Introduction

Nucleoside analog drugs are primary therapeutics in the
treatment of viral infections including HIV (Clerq, 2009) and
hepatitis (Soriano et al., 2009). Indeed, it has recently been
reported that of the 25 drugs currently approved in the USA
for the treatment of HIV, 8 are nucleoside analogs (Clerq,
2009). Nucleoside analogs are also currently in advanced
stage clinical trials for the treatment of various cancers
including leukemia (Li et al., 2008). The broad efficacy of
these compounds contrasts with their price. The cost of the
manufacturing of the active ingredients of some of these

drugs comprise up to 55–99% of the final therapeutic price
(Pinheiro et al., 2006), a fact which has spurred the continu-
ing development of new methods for the synthesis of nucleo-
side analogs.

We are interested in developing biocatalytic alternatives
for the synthesis of nucleoside analogs. Correspondingly, we
have targeted 20,30-dideoxyinosine (ddI, Didanosine,
Videxw), a reverse transcriptase class nucleoside analog used
in the treatment of HIV, as an attractive target for directed
biosynthesis. Dideoxyinosine is representative of the broader
class of dideoxynucleoside drugs and is a close analog of the
primary metabolite inosine. Both de novo biosynthesis and
purine salvage pathways for inosine have been extensively
characterized in biochemical and structural studies (Pugmire
and Ealick, 2002; Schramm, 2005). As a large fraction of
nucleoside analogs are variants of 2030-dideoxynucleosides,
methods developed for ddI may have broader application
(Clerq, 2009).

Enzymes with new or improved functions are increasingly
generated from existing enzymes or scaffolds by a 2-fold
strategy consisting of (i) rational mutational active site remo-
deling, to modify binding specificity for a desired reaction or
substrate, followed by (ii) optimization of global protein
function by more stochastic methods such as directed evol-
ution. Prerequisites to the first stage are the identification of
a progenitor enzyme or scaffold with a suitable starting
activity and acquisition of some knowledge of the active site
geometry from structural data or homology models. If a suit-
able enzyme is identified, first or second shell interacting
active site residues are selected for mutation and functional
assessment (Voigt et al., 2001; Reetz et al., 2005; Jackel
et al., 2008). As even the most prudently selected active site
mutations may result in unexpected catalytic consequences,
the complete complement of amino acids at targeted active
site residues is often generated by saturation mutagenesis
(Bernhardt et al., 2007).

To focus these efforts, it would be desirable to identify a
subset of potentially beneficial mutations, particularly in
cases in which permutations of several active site residues
may be required. Many computational protein design strat-
egies have been developed to engineer alternative ligand
specificity into proteins and generate enzyme variants with
improved activity on non-cognate substrates (Damborsky and
Brezovsky, 2009). Recently, methods incorporated in the
Rosetta program have been developed to estimate relative
ligand–protein interaction energies with conformational
flexibility. RosettaLigand employs a Monte Carlo-based
search algorithm with protein side chains replaced by resi-
dues from a rotamer library (Meiler and Baker, 2006; Davis
and Baker, 2009). It is easily combined with RosettaDesign
(Kuhlman et al., 2003) allowing for redesign of binding
pockets (Murphy et al., 2009). Indeed, the Rosetta framework
has been successfully applied to the design of enzymes cata-
lyzing both natural (retro-aldol (Jiang et al., 2008)) and non-
natural (Kemp elimination (Rothlisberger et al., 2008))
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reactions in the context of novel protein scaffolds
(Zanghellini et al., 2006). The protocol identifies critical
interactions between transition state models and catalytic
residues. Subsequently, adjacent amino acids are placed in
the binding site to optimize stability of the catalytic residues
and specificity for the ligand. The initial computational
designs displayed low catalytic activity and were further
improved through directed evolution and screening.

Herein, we describe the identification of human purine
nucleoside phosphorylase (hPNP) as an engineering candi-
date for nucleoside analog biocatalysis. hPNP catalyzes the
reversible synthesis or phosphorolysis of 6-oxopurine
(deoxy)nucleosides (Fig. 1). Previous biochemical and struc-
tural characterization of this enzyme and its transition state
permitted the identification of a single first shell active site
residue, Tyr-88 (Y88), as a potential modulator of ribose
substrate selectivity (Stoeckler et al., 1980; Erion et al.,
1997). Additionally, computational design of the hPNP
binding site in the presence of inosine and ddI suggested
Y88 as critical for differentiation of the two substrates. This
result demonstrates that the computational method is gener-
ally applicable to focus experimental studies on specific sites
and selected mutants thereby reducing experimental effort
and accelerating research. RosettaLigand was used to predict
changes in transition state binding free energy upon mutation
of this position to all genetically encoded amino acids except
glycine and proline. Mutation to phenylalanine was consist-
ently predicted to increase catalytic activity with respect to
ddI. Experimental testing finds Y88F is 23.6-fold more
active for ddI and 2.9-fold less active for inosine. Systematic
experimental analysis of all Y88X single mutants finds good
agreement of Rosetta predictions with experimental data for
all but negatively charged amino acids.

The present study differs from previous enzyme designs in
that Rosetta is tested in a limiting setup where scaffold,
binding mode and even a single site of mutation are predeter-
mined. Thereby success hinges on accurate prediction of
binding free energy changes for mutations at the Y88 site.
The results demonstrate Rosetta’s general ability to identify
favorable mutations in enzyme catalytic sites. They enabled
a customization of the Rosetta energy function to improve
correlation between predicted and experimentally determined
transition state binding affinities to R ¼ 0.65. However, these
results point also to inaccuracies in handling electrostatics, in
particular for charged amino acids, where further improve-
ment of the Rosetta energy function is needed.

The Y88F variant then became the starting point for a
directed evolution study. A high-throughput assay was devel-
oped and combined with error-prone PCR (epPCR) to gener-
ate and test libraries of PNP mutants. Three rounds of
mutation and selection resulted in an enzyme with a modest
3-fold improvement in turnover compared with Y88F in
in vitro assays.

To the best of our knowledge, this study comprises the
first engineering of a nucleoside phosphorylase for the bio-
synthesis of an unnatural dideoxynucleoside. This work
demonstrates that a combination approach of targeted active
site mutation and directed evolution may find future
application in nucleoside analog biosynthetic pathway
engineering.

Materials and methods

Transition state model
Transition state models for docking and calculation of
binding energies incorporate critical characteristics of the
mechanism and transition state.

The binding modes of substrates (PDB code: 1m73, 1a9s,
1rct, 1v2h, 1pwy, 1rfg), substrate analogs (PDB code: 1a9t,
1v41, 1v3q, 1v45, 1rt9) and transition state analog inhibitors
(PDB code: 1pf7, 1rsz, 1rr6, 1b8o) crystallized with human
and bovine PNP were studied for their resemblance to the
experimentally derived transition state (Lewandowicz and
Schramm, 2004). Coordinates of ligands with characteristics
matching the known transition state were used as internal
coordinates of the transition state model. Phosphate coordi-
nates are derived from ribose-1-phosphate crystallized in
bovine PNP (PDB code: 1a9t) as OP is oriented appropriately
for nucleophilic attack. The P–OP bond in this structure is
�0.22 Å longer than the other P–O bonds recapitulating the
known bond lengthening of �0.23 Å as the reaction coordi-
nate progresses (Deng et al., 2004). The purine of
DADME-Immucilin-H (PDB code: 1rsz) is the aromatic base
for both inosine and ddI transition state models (Ringia
et al., 2006). Separate coordinates for the sugar residues of
inosine and ddI transition states were taken from
Immucilin-H (PDB code: 1pf7) and ddI (PDB code: 1v3q),
respectively. The ring shape in ddI is flatter than that of
nucleosides with hydroxyls at the 20 or 30 positions. Internal
coordinates of the Immucilin-H sugar moiety were used for
the inosine transition state model to best replicate the pos-
ition of the 50-OH over the 40-O. The O50 –C50 –C40 –C30

dihedral of Immucilin-H in 1pf7 is 62.728. For ddI, the
50-OH of the dideoxyribose moiety was rotated manually to

Fig. 1. A depiction of interactions in the hPNP binding site. Mutations for
rational design are limited to Y88 (bold) which hydrogen bonds to inosine at
the 30-OH.
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match that of Immucilin-H. The ddI transition state model
has an O50 –C50 –C40 –C30 dihedral angle of 65.418. The
sugar moiety was aligned with the average C30, C40 and C50

position from the aligned structures and a point directly
between N9 of the purine and OP of the phosphate which put
the anomeric carbon 2.56 Å from N9 and 2.66 Å from OP,
both of which are shorter than the known value of 3 Å calcu-
lated from kinetic isotope effect (Lewandowicz and
Schramm, 2004).

Computational mutation and docking
Trimeric hPNP coordinates were obtained from the Protein
Data Bank (PDB code: 1rct, 1pf7, 1rr6, 1v3q) and relaxed
using a combination of Monte Carlo rotamer replacement
and gradient-based minimization (Qian et al., 2007) to gener-
ate an ensemble of 10 energy minimized models for each
parent structure. Inosine and ddI transition state models were
placed in the binding site of the minimized backbone ensem-
ble for the ensemble derived from 1pf7 for docking and
design.

Residues in the hPNP binding site involved in substrate
selectivity of inosine over ddI were identified by redesigning
the binding pocket around each transition state model.
Correspondingly, 23 residues with C-a or C-b atoms within
eight angstroms of the ligand and C-a/C-b vectors oriented
toward the binding site were allowed to mutate (Fig. 2 and
Supplementary data, Fig. S1A). To facilitate an unbiased
design process, the amino acid identity for all 23 residues
was converted to alanine. The position of inosine and ddI
transition state models was optimized during design of these
23 residues along with concurrent repacking of additional
side chains in the vicinity of the binding site. Three iterative
rounds of design were performed to pare down the list of
mutable residues. Residues that Rosetta filled with the wild-
type amino acid were converted back to the wild-type iden-
tity after each round along with residues that lack interaction
with substrate transition state models. After completion of
this procedure, the Rosetta-suggested mutations for the
remaining six sites were compared for inosine and ddI in
order to identify sites for differentiation.

Upon biochemical and computational confirmation of Y88
as a likely modulator of substrate selectivity, the identity of
Y88 was altered to each possible amino acid (excluding Pro
and Gly). All side chains in the active site were optimized
using a backbone-dependent rotamer library (Dunbrack and
Karplus, 1993; Bower et al., 1997), while all other amino
acids were held in their minimized conformation.
High-resolution docking of transition state models and
optimization of side chain interactions was achieved through
Monte Carlo minimization of side chain rotamers and
intense sampling of the ligand orientation.

Energies for the unbound and bound forms of the enzyme
were calculated using the Rosetta energy function. The func-
tion is a linear combination of weighted scores including a
Lennard-Jones attractive and repulsive potential, an
orientation-dependent hydrogen-bonding potential, Coulomb
electrostatics and an implicit solvation model. Binding
energy is calculated as DDGbinding ¼ DGTS_bound2 DGunbound

(Kortemme and Baker, 2002; Morozov et al., 2005;
Kaufmann et al., 2009). Weights for individual parameters of
the energy function were established using multiple linear
regression. The correlation to the experimental activation

energy (DG‡
TS ¼ 2RT ln(kcat/KM)) (Fersht, 1974) of each

mutant with each substrate was optimized in a leave-one-out
(LOO) cross-validation scheme. For each substrate/mutant/
backbone combination, the scores of the top 10 models were
averaged to minimize noise in the predicted binding free
energy (Popov et al., 2007).

Cloning, production and purification of hPNP and
site-directed mutants
Expression vector pCRT7/NT-TOPO-PNP, containing wild-
type hPNP, was generously provided by Prof. Vern Schramm
(Lewandowicz and Schramm, 2004) and NdeI/HindIII
restriction sites were added to facilitate cloning into pET28a
(forward primer: 50-CATATGGAGAACGG-ATACACCTAT
GAAGATTATAAG-30, reverse primer: 50-AAGCTTCAAGT
GGCTTTGTCAG-GGAGTG-30). Site-directed mutations
were generated using the Quikchange-II system (Stratagene,
La Jolla, CA, USA) (forward primer: 50-GCAGGTTCCACA
TGXXXGAAGGGTACCCACTCTGG-30, reverse primer:
50-CCAGAGTGGGTACCCTTCXXXCATGTGGAACCTGC-30,
where XXX was the variable codon). Mutations were verified
via DNA sequencing.

Individual PNP mutants were over-expressed as
N-terminal hexahistidine tagged constructs in Escherichia
coli BL21(DE3). Strains harboring mutant PNP constructs

Fig. 2. To identify positions which modulate substrate selectivity, amino
acids oriented into the hPNP binding site were optimized with
RosettaDesign for inosine and ddI transition state models. (A) C-a and C-b
atoms of designed residues are shown as balls and sticks. The transition state
analog Immucilin-H and sulfate are depicted (PDB code 1pf7). The position
and identity of residues undergoing design in the final round are labeled. (B)
Predicted ddI binding energy (DDG) and differential binding energies
(DDDG) for mutants suggested by Rosetta during the final round of design.
Y88 mutations are expected to increase affinity to ddI while maintaining
tight binding to the transition state.
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were grown with shaking in 500 ml of LB broth with 50 mg/
ml kanamycin at 378C. At OD600 � 0.6 cultures were
induced with 1 mM isopropyl-b-D-1-thiogalactopyranoside
and allowed to incubate for an additional 6–10 h. Cells were
harvested by centrifugation and cell pellets were frozen at
2808C until immediately before purification. Cells were
resuspended in Binding Buffer (50 mM Na2HPO4, 300 mM
NaCl, 10 mM Imidazole, pH 8), disrupted by passage
through a French Pressure cell and centrifuged to remove cel-
lular debris. The soluble proteins were purified in a single
step via Ni-affinity chromatography using a HisTrap FF
column on an AKTA FPLC (GE Healthcare Life Sciences).
Proteins were eluted using a linear gradient from 100%
Binding Buffer to 100% Elution Buffer (50 mM Na2HPO4,
300 mM NaCl, 500 mM Imidazole, pH 8). The sample was
desalted and stored in exchange buffer (100 mM Tris–HCl,
0.1 mM EDTA, 0.1 mM DTT, pH 7.5) at 2808C (Deng
et al., 2004). All enzyme concentrations were determined via
l280 measurements and extinction coefficients were estimated
using Accelrys DSGene 1.5.

Biochemical assays of PNP
PNP assays were performed in the phosphorolysis direction
by continuously monitoring the formation of hypoxanthine
(Degroot et al., 1985). A catalytic excess of xanthine oxidase
was used in a tandem assay converting hypoxanthine to uric
acid with concomitant reduction of iodonitrotetrazolium
(INT) chloride to form a formazan chromophore (lmax ¼
546 nm). Assay Mix buffer contained 50 mM potassium
phosphate saturated with O2, 50 mM HEPES, 0.075% Triton
X-100, 1 mM INT and xanthine oxidase from buttermilk
(Sigma). Substrates were dissolved in Assay Mix at concen-
tration ranges of 20–200 mM or 100–1000 mM inosine and
250–2500 mM or 750–7500 mM ddI (Fluka and 3B Medical
Systems, Inc.) depending on preliminary substrate concen-
tration response curves. For each mutant, the concentration
of enzymes diluted in Assay Mix were adjusted to produce
rates within the dynamic range of the assay and ,15% con-
sumption of substrate was observed over time course
measurements. Correspondingly, PNP concentration ranges
of 0.006–2 mM for measuring inosine rates and 0.02–10 mM
for measuring ddI rates were used with substrate ranges span-
ning the KM region, wherever possible. The assays were per-
formed as follows: 100 ml of substrate dissolved in Assay
Mix was transferred into wells of a flat-bottomed 96-well
plate, equilibrated at 258C, followed by addition of 100 ml of
assay mix containing PNP. The rate of hypoxanthine for-
mation was observed by monitoring tandem formazan for-
mation by its unique absorbance at 546 nm over 5 min. A
hypoxanthine standard curve was performed in parallel with
each concentration series to convert absorbance numbers into
molar turnover values.

hPNP library generation
Mutant libraries were generated via epPCR using MutazymeII
(Stratagene, Inc.) with forward primer, 50-GCAGCAGCCAT
CATCATCATC-30 and reverse primer, 50-GGATCTCAGT
GGTGGTGGTGG-30 flanking the PNP coding region of
pET28a-hPNP template constructs. To ensure efficient restric-
tion digestion prior to ligation into pET28a, primers were
designed to generate PCR product with overhangs 45 bp
upstream and downstream of NdeI and HindIII restriction

sites. pET28a-hPNP plasmid preparations were used as the
template for directed evolution and subsequent rounds of
directed evolution used plasmid preparations from the previous
round as template. The rate of mutation was adjusted by (i)
varying template concentration in PCR reactions and (ii)
the number of rounds of PCR. The mutation rate was titrated
so that ca. 30% of PNP mutant subcloned into pET28a
demonstrated ,5% activity (assay described below).
Correspondingly, template concentrations were varied from
0.03 to 20 ng/ml with 20–30 cycles. The desired mutation rate
was obtained with 20 ng/ml and 20 cycles. DNA sequencing
of 10 random mutants at the 30% dead rate indicated a
mutation rate of �1.5–2 base pairs per kb.

PCR products were gel purified to remove template,
digested with NdeI/HindIII and gel purified again prior to lig-
ation into correspondingly restricted pET28a. Transformation
of ligation reactions into E.coli BL21(DE3) cells was per-
formed using Promega T4 DNA ligase with 17 ng insert and
100 ng vector per 10 ml for 180 min. A random sampling of
clones indicated all contained PNP insert.

Screening and selection of improved hPNP mutants
Individual transformants were picked into 300 ml round bot-
tomed 96-well plates containing 75 ml LB medium with
50 mg/ml kanamycin and grown to confluence (24 h at 378C
with shaking at 220 rpm). Glycerol stocks of the library were
generated by plate replication in LB medium prior to cells
being collected by centrifugation at 3000 rpm. Supernatant
was removed by inversion and the resulting pellets were
frozen and stored at 2808C until ready for assay. Directly
prior to assay, frozen cell pellets were thawed and resus-
pended in 200 ml of a lysis mixture containing 50 mM phos-
phate buffer, 0.5 mg/ml egg white lysozyme (Sigma), 20 mg/ml
deoxyribonuclease I (Sigma) and 0.1–0.125 mg/ml xanthine
oxidase (to consume endogenous hypoxanthine) followed by
a single freeze/thaw cycle from 280 to 378C (Hsu et al.,
2005). Following centrifugation, 25 ml of cell-free extract
from each well was transferred into 384-well flat-bottom
plates and assayed by the addition of 50 ml of buffer contain-
ing 50 mM phosphate, pH 7, 50 mM HEPES, pH 7, 125 mM
ddI, 0.0375% Triton X-100, 2 mM INT and 0.4–0.6 mg/ml
xanthine oxidase. The reactions were followed continuously
at 546 nm for 60 s. Hits from the primary screen were repli-
cated from glycerol stocks (1–5 per plate) and re-assayed
with wild-type PNP containing cells as a benchmark to elim-
inate false positives.

Plasmid preps from the best candidates were retransformed
by electroporation and 1 ml of an overnight culture from the
fresh transformants was used to inoculate 50 ml of LB broth
and grown to OD600 � 0.6–0.8 before the addition of 1 mM
isopropyl-b-D-1-thiogalactopyranoside. After 3 h of incu-
bation at 378C, 2 ml aliquots were pelleted by centrifugation
at 13 000 rpm and frozen at 2808C. Pellets were lysed using
BugBuster protein extraction reagent (Novagen Inc.) and the
resulting cell-free extract was diluted in Assay Mix to titrate
the specific activity within the dynamic range of the kinetic
assay as described above. Upon addition of substrate
(125 mM ddI or 20 mM inosine), hypoxanthine release was
measured continuously over 60 s. Turnover rates were calcu-
lated and normalized to the cell density (OD600) at the time
of harvest to yield a per-cell turnover rate for each PNP
mutant. The kinetic parameters for selected mutant PNPs
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with high per-cell turnover rates (2–3 per round) were estab-
lished as described above. Of the mutants characterized in
each round, those with the most favorable kinetic parameters
for ddI were selected as the source of template DNA for the
next round of epPCR and screening.

Results

Design rationale
Based on the analysis of ribose binding interactions in bac-
terial (Bennett et al., 2003) and mammalian (Fedorov et al.,
2001; de Azevedo et al., 2003; Canduri et al., 2004) PNP
structures (Pugmire and Ealick, 2002), human PNP (hPNP)
was selected as a starting point for the development of
dideoxynucleoside phosphorylase catalytic activity.
Throughout the reaction coordinate of hPNP, the purine ring
is positioned via hydrogen-bonding interactions with
Asn-243 and Glu-201. The nucleophilic phosphate is posi-
tioned by a complex network of hydrogen-bonding inter-
actions (Fig. 1) and activated for addition to C10 by a His-86/
Glu-89 diad. Notably, there appear to be relatively fewer sig-
nificant ribose binding interactions, namely His-257 contact-
ing O50 and Y88, which forms a hydrogen bond with O30.
The O30-hydroxyl is also implicated in coordinating to the
phosphate ligand and has been suggested to play a role in
optimizing the geometry of the transition state (Erion et al.,
1997). This analysis proposes Y88 as a primary contributor
to substrate selectivity in the ribose binding region as side
chain contacts between the ligand and substituted sugar
atoms are limited to this residue.

To demonstrate the applicability of the method for the
identification of specificity encoding sites, the RosettaDesign
algorithm was used to identify amino acids in the binding
site that maintain tight binding upon mutation but display a
differential mutation profile in the presence of inosine and
ddI. Using this approach, 23 amino acids were identified pos-
sessing C-a or C-b atoms within eight angstroms of the tran-
sition state analog Immucilin-H (PDB code: 1pf7) and
pointing toward the binding site (Fig. 2A). Each of these
amino acids was allowed to mutate to any other amino acid
in the presence of ddI or inosine transition state analogs. The
frequency of each amino acid in each position was evaluated
using the publicly available WebLogo server (Crooks et al.,
2004). Residues populated by Rosetta with the wild-type
identity are not expected to affect a change in substrate
binding characteristics. Similarly, residues designed by
Rosetta to interact with neighboring amino acids, or residues
turned toward solvent would not be expected to alter the sub-
strate activity profile. In this analysis, 17 residues were
reverted to their wild-type identity after two rounds of itera-
tive refinement (Supplementary data, Fig. S1B–D). Five of
the six remaining residues (F159, Y88, A116, F200, M219
and V245) interacted with the sugar moiety of the transition
state models. The obtained mutation profiles were similar
suggesting that minimal differentiation between the two
ligands may be achieved. Suggested mutations for Y88 indi-
cated that tyrosine is ideal for this location; secondary
predictions, however, differ significantly for inosine and ddI
(H and N, respectively) indicating the potential for modulat-
ing the substrate selectivity and specificity by mutating this
position.

Next, step-wise analysis of all proposed single mutants
was performed. All six positions were mutated sequentially
to all amino acids proposed by Rosetta. Affinity for the ddI
transition state model as well as preference for the ddI tran-
sition state model above the inosine transition state model
were subsequently computed (Fig. 2B). Y88 remained as the
only position that fulfills criteria for both tight binding to
transition state models and displays a differential mutation
profile.

Binding energy calculations
An initial gradient-based energy minimization (Qian et al.,
2007) of the experimental protein structure was carried out
in the absence of substrate to obtain an unbiased starting
conformation of the protein that occupies a minimum in the
energy landscape. The lowest energy structure had a C-alpha
rmsd of 0.64 Å from the experimental coordinates (PDB
code: 1pf7). The average C-alpha rmsd of the 10 lowest
energy minimized structures was �0.86 Å.

Transition state models for inosine and ddI were con-
structed based on experimental and crystallographic data (see
Materials and Methods section). Docking of the transition
state models allows for the calculation of transition state
binding energies. For this purpose, the transition state
models were placed into the minimized protein structures
and Y88 was mutated in silico through replacement of the
wild-type side chain. The position and orientation of the
transition state model was optimized together with the con-
formations of residues near the binding site using the
RosettaLigand energy function (Meiler and Baker, 2006;
Davis and Baker, 2009).

Using this protocol, a first round of seven single mutants
was initially characterized: Y88F/A/C/I/L/W/K. These mutants
were selected for predicted high ddI activity (Y88F/L), a range
in predicted activity and variety in the side chain character.
In a second round of experiments, all Y88X mutants were
generated, purified and characterized to comprehensively
analyze RosettaLigand’s ability to rank individual mutations
(Table I). Mutants predicted to form tight complexes with
the ddI transition state model include Y88F, Y88L and
Y88M as well as the negatively charged amino acid
mutations Y88D and Y88E (Fig. 3A).

In wild-type hPNP, the phosphorolysis of inosine is three
orders of magnitude more efficient than that of ddI. The
values of KM and kcat reported here are similar to those pre-
viously reported for inosine (Stoeckler et al., 1980; Erion
et al., 1997). Each single mutant had decreased kcat and
increased KM values for inosine. Positively charged Y88K
and Y88R mutants were not sufficiently active for kinetic
characterization at enzyme concentrations more than 500
times those used for the wild-type enzyme; accordingly, they
were not included in the in silico analyses. In line with the
in silico prediction, the Y88F mutant displayed the second
highest catalytic activity.

Six mutants demonstrated a higher catalytic efficiency for
ddI than the wild-type enzyme. A similar profile for tolera-
tion of mutations was seen with ddI as with inosine;
however, it appears that almost any mutation allows for some
improvement in the catalytic efficiency ratio relative to wild-
type hPNP. As predicted, in silico Y88F, Y88L and Y88M
displayed the highest catalytic activities. Of these,
hPNP-Y88F displayed the highest overall kcat/KM and the
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highest turnover rate. Y88D/E mutants did not show the pre-
dicted high activity. We expect that the addition of a nega-
tive charge to the binding site disrupts the sensitive
arrangements of partial charges in the catalytic site, an effect
that is not considered by RosettaLigand as it solely optimizes
binding affinity and has no means to directly assess catalytic
competence of an active site from a mechanistic perspective.

With a comprehensive data set in hand, we set out to test
which fraction of the differences in experimental and pre-
dicted transition state binding free energies can be attributed
to inaccurate weighting of the energy terms in RosettaLigand
and which part must be attributed to inaccuracies in the
RosettaLigand energy function and structural models used.
Weights were developed for individual components of the
Rosetta energy function using multi-linear regression to opti-
mize the correlation of predicted binding energies to exper-
imental binding energies. Transition state binding energies
were calculated from experimental data as DDG‡

TS ¼ 2RT
ln(kcat/KM)(Fersht, 1974) while predicted binding energies
were calculated as DDG ¼ Swi

. [si(bound) 2 si(unbound)],
where wi is the weight applied to a particular score si

(Kortemme and Baker, 2002; Morozov et al., 2005;
Kaufmann et al., 2009). Using a LOO cross-validation analy-
sis, weights are generated without the use of one data point
and then binding energy predictions made for the data point
left out.

The greatest correlation between experimental and pre-
dicted DDG’s was found with a weight set involving a com-
bination of the Lennard-Jones attractive and repulsive terms,
a solvation term and a Generalized Borne solvation term
which aids in differentiation of electrostatic properties
(Table II). The correlation between independently predicted
binding energies and those found experimentally has an
R-value of 0.65 and the average unsigned error of the pre-
dicted binding energies is 5.3 kJ/mol (Fig. 3B).

Directed evolution
To further optimize the hPNP-Y88F mutant for turnover of
ddI, we developed and implemented a 96-well plate assay
method for screening epPCR-generated mutant libraries.
Diverse libraries were generated using an error-prone poly-
merase (Mutazyme, Stratagene, Inc.) to amplify hPNP with
Y88F hPNP cloned into pET28a serving as the template

Fig. 3. Plots of experimental binding energies versus binding energies using
(A) the Protein:Ligand weight set and (B) a customized weight set. ,
inosine; , ddI. REU are Rosetta Energy Units. Error bars indicate standard
deviation of top 10 transition state bound models. Numerical values of
predicted binding energies are available in Supplementary data, Table S1.

Table I. Kinetic characteristics for hPNP-Y88Xa

Variant kcat (s21) KM (mM) Kcat/KM (s21 M21)

Inosine ddI Inosine ddI Inosine (�102) ddI

Wild type 43.9+0.6 0.9+0.01 48+2 1030+20 9210+140 875+8
Y88F 28.3+0.7 10.5+0.1 73+4 450+10 3890+110 23 140+230
Y88H 8.6+0.2 2.5+0.1 74+3 675+20 1160+23 3670+60
Y88W 5.6+0.1 0.09+0.01 500+25 980+40 113+3 91+2
Y88A 17.6+0.4 2.8+0.05 80+3 1670+50 2190+51 1670+22
Y88V 2.4+0.1 0.6+0.01 1200+60 4410+160 19.6+0.7 144+3
Y88L 15.9+0.3 6.1+0.05 94+4 391+8 1690+34 15 670+130
Y88I 1.3+0.1 0.5+0.02 1420+55 4670+270 9.4+0.3 115+4
Y88M 12.8+0.1 5.2+0.1 345+7 645+20 371+3 8090+90
Y88C 5.5+0.2 2.5+0.1 170+10 810+30 321+13 3070+60
Y88S 8.8+0.1 2.7+0.1 430+10 4060+110 203+3 652+10
Y88T 2.3+0.1 0.4+0.01 1200+70 8160+280 19+1 44+1
Y88N 9.7+0.2 1.5+0.1 845+25 9530+540 114+2 153+6
Y88Q 1.4+0.1 0.15+0.01 855+50 860+25 17+0.6 177+2
Y88D 0.8+0.1 0.02+0.001 2600+120 12 700+500 2.9+0.1 1.8+0.5
Y88E 0.7+0.1 0.01+0.001 4860+ 410 14 900+1200 1.4+0.1 0.9+0.1
Y88K ND ND ND ND ND ND
Y88R 0.01+0.001 ND 370+20 ND 0.0184+0.0005 ND

aAssay conditions: 50 mM phosphate buffer, pH 7, 50 mM HEPES, pH 7, 0.075% Triton X-100, 1 mM INT, xanthine oxidase. Inosine: 20–200 or 100–
1000 mM. ddI: 250–2500 or 750–7500 mM. Enzymes were assayed at concentrations which ensure steady state conditions.
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DNA. Primers were designed to be .45 bp upstream and
downstream of restriction sites (NdeI and HindIII) in order to
ensure efficient restriction of PCR products prior to ligation
reactions. The rate of mutation was adjusted by varying the
amount of template and number of PCR cycles such that the
dead rate (colonies with ,5% activity) was approximately
30–40%. Library sizes of 1000–2000 colonies had an
average mutation rate of 1.5–2 mutations per kb, as estab-
lished by sequencing 10 randomly selected clones.

Subsequent to transformation into electrocompetent E.coli
BL21(DE3), single colonies were transferred into 96-well
round bottom plates. The plates were incubated with shaking
for 24 h and grown to confluence. Cells were harvested by
centrifugation and lysed by addition of lysozyme and a
single freeze/thaw cycle (Hsu et al., 2005). Upon removal of
insoluble debris by centrifugation, cell-free extracts were
transferred to 384-well flat-bottom plates to assay phos-
phorylase activity via a modified hypoxanthine formation
assay. The assay is based on a continuous colorimetric assay
for the conversion of hypoxanthine to uric acid via xanthine
oxidase which is coupled to the reduction of INT chloride to
a purple formazan dye (lmax ¼ 546 nm) (Degroot et al.,
1985). Reactions were initiated by the addition of 125 mM
ddI (�1/4 of KM) and the amount of enzyme was titrated to
assure linearity of the reaction during the measurement
window (�60 s). To test the reproducibility of the screening
methodology, a single sequence library containing
hPNP-Y88F was assayed. Under final assay conditions, the
single sequence library had a coefficient of variance of
11.6% within each plate. Top hits from each plate were col-
lected and re-screened from glycerol stocks of the error-
prone library to eliminate false positives.

Over three rounds of directed evolution the turnover rate
of enzyme in E.coli extracts steadily increased, albeit mod-
estly (Fig. 4). The first round mutant, hPNP-19E2, has an
increased normalized turnover rate for ddI with a concomi-
tant decrease in turnover of inosine. Subsequent rounds pro-
vided a further increase in turnover of ddI but also an
increase in inosine turnover. Catalytic constants, however, do
not consistently improve for ddI throughout the directed
evolution process (Table III). The first round mutant hit
(hPNP-19E2) has a kcat and KM of 5.8 s21 and 230 mM
which is a decrease in turnover rate but a significant
improvement in KM over the template. Kinetic parameters of
hits from ensuing rounds of selection (hPNP-30F2 and
hPNP-46D6) do not improve despite a regular increase in
turnover in cell-free extracts.

In addition to improving the turnover and kinetic charac-
teristics of the mutant enzymes, we observed a marked
improvement in substrate selectivity for ddI. Each mutant has
an improved specificity ratio (wild-type efficiency/mutant
efficiency) though none of the variants are selective for ddI
over inosine. Wild-type hPNP possesses a specificity ratio
for inosine of .1000:1, whereas selected hPNP mutants
attained a specificity ratio of 15:1 subsequent to the directed
evolution process. The final clone, hPNP-46D6, contained
five amino acid mutations (G4E, Y88F, M170T, Q172L,
T177A) with the gene containing a sixth silent mutation
(Table III).

Discussion

We describe a two-step process of structure-based rational
design coupled with directed evolution to engineer the func-
tion of hPNP for an unnatural nucleoside substrate. Based on
the analysis of previously reported structures and activity
profiles in addition to computational design studies, we
selected a single active site residue, Y88, as a likely hotspot
for improvements in sugar analog binding and created a com-
prehensive library of substitutions at this position.
RosettaLigand was used to estimate the binding energies of
inosine and ddI transition state models to in silico models of
these mutations.

The present experiment evaluates Rosetta in a scenario
likely to occur in enzyme design—assessing the change of
enzyme specificity for a different but related ligand.
Simultaneously, this study evaluates a scenario in which
options for computational design were limited to a single
active site residue, Y88. The accuracy of the Rosetta algor-
ithm needs to be sufficiently high to discriminate improved
substrate/transition state binding properties for a single active
site ensemble (hPNP). By comparing Rosetta calculated
binding energies to energies derived from experimentally
measured kinetic parameters for every possible mutation, we
were able to assess the ability of Rosetta to rank substitutions
at Y88. RosettaLigand ranked the Y88F mutant in the top
three for transition state stabilization. However,
RosettaLigand generally underestimated energies of mutants
with improved catalytic function and overestimated energies
of mutants with decreased function; this trend was particu-
larly evident in the case of wild-type hPNP which was pre-
dicted to process ddI with greater efficiency than inosine.
Phenomena outside the scope of the method may contribute

Table II. Comparison of established weights

Score PNP:nucleoside Protein:ligand Protein:protein Standard

Attractive 1+0.05 1 1 1
Repulsive 0.33+0.02 0.75 0.16 0.91
Solvation 0.56+0.04 0.63 0.73 0.65
GBSol 0.37+0.04 – – –
Hydrogen
bonding

– 1.5 1.11 1.74

Pair Elec. – 0.63 – 0.34
Rotamer
probability

– 0.4 0.64 0.4

Phi-psi
probability

– 0.4 – 0.51 Fig. 4. Turnover of ddI increases throughout the directed evolution process.
Turnover rates are normalized to cell density. Inosine, grey; ddI, white.
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to errors in the prediction of protein variant binding energies.
For example, wt-PNP crystallized with ddI has an ordered
water molecule in the binding pocket which forms a hydro-
gen bond with Y88 and is situated proximal to the position
of the 30-hydroxyl in inosine-bound structures. The presence
of this water molecule was not evaluated in the Rosetta cal-
culations and might be one source of error. We speculate that
the removal of the hydrogen bond acceptor by mutation to
phenylalanine may be a significant source of improvement.
Additionally, mutation to b-branch amino acids Y88V/I/T
reduced the function of the enzyme relative to structurally
similar counterparts, such as Y88L/S. Rosetta models pre-
dicted these mutants to have a destabilizing effect in the
enzyme, evident by an increase in the total energy score
caused by clashing between the C-b-methyl substituent and
Pro-198, which resides on an adjacent loop involved in
purine binding. This destabilization is not revealed by
binding energy calculations as the residue–residue clash is
present in both bound and unbound structures. This has been
previously noted in the design of protein:protein interfaces
(Sammond et al., 2007) and is confirmed experimentally in
this work. The empirical and computational data sets result-
ing from this experiment permitted the optimization of
Rosetta parameters resulting in appreciable correlation with
R ¼ 0.65 (Fig. 3B). Reweighting of the scoring function cor-
rects the gross mis-identification of charged amino acids as
catalytically advantageous and aligns inosine and ddI with
respect to one another. This reweighting, while advantageous
in terms of correlating global substrate preference, decreases
the quality of ranking mutants with a particular substrate.
Conversely, the unchanged RosettaLigand score function
properly identifies the wt and Y88F varieties as most cataly-
tically active for Inosine and ddI (Fig. 3A).

Predicted binding energies were correlated to experimental
data by the transition state binding energy (DG‡

TS ¼ 2RT
ln(kcat/KM)). By performing the design and docking studies
with the transition state models, mutants with greater pre-
dicted binding energy should possess a higher turnover rate.
However, RosettaLigand does not directly evaluate the
mechanistic aspects of turnover, a situation that is also evi-
denced when predicting binding for mutants with charged
residues. Therefore, one might argue that predicted transition
state binding energies correlate more accurately with KM,
where DG‡

TS ¼ RT ln(KM). However, at least in the present
studies, this analysis yields somewhat reduced correlation
coefficients for inosine and ddI, where R ¼ 0.236 and 0.284,
respectively, using binding energies established with the
RosettaLigand weight set and excluding charged residues.

These values are 0.362 and 0.438 when correlating predicted
binding energies to kcat/KM. All terms in the RosettaLigand
energy function were applied in the generation of
enzyme:substrate ensembles but the attractive and repulsive,
solvation and generalized Borne solvation terms were most
critical for the final evaluation of binding energy. There are
several notable differences in the weights developed here
with those reported for use in protein:protein binding, the
RosettaLigand weights used during docking and the standard
weight set. Relative to the Lennard-Jones attractive weight,
the weight for the Lennard-Jones repulsive score is twice as
large as that used in protein docking but much lower than
the original ligand docking and standard weights. The weight
for solvation is also slightly decreased compared with typical
Rosetta weights. Of note is the absence of a hydrogen-
bonding term from the evaluation; while this term was used
during the docking portion of the experiment, its inclusion in
the final weight set does not improve the correlation to
experiment. It is not surprising that the weights of electro-
static terms were increased considering the number and role
of charged and polar residues in binding and catalysis. The
best point mutant, hPNP-Y88F, was subjected to directed
evolution by epPCR and in vitro selection for improved
phosphorolysis in cell-free extracts. Three rounds of directed
evolution resulted in a mutant with six mutations (Fig. 5)
and a ddI turnover rate 36 times that of wild-type. The

Table III. Table of characteristics for directed evolution

Round Variant Acquired mutation Codon change kcat (s21) KM (mM) kcat/KM (M21 s21)

Inosine ddI Inosine ddI Inosine (�102) ddI

Wild type – – 43.9+0.6 0.90+0.01 48+2 1030+20 9210+140 875+8
Rational Y88F Y88F TAT!TTT 28.3+0.8 10.5+0.1 73+4 450+10 3890+110 23 140+230
DE-1 19E2 M170T ATG!ACG 9.6+0.2 5.8+0.1 26+1 230+15 3710+70 25 160+620
DE-2 30F2 G4E GGA!GAA 14.5+0.3 6.1+0.1 37+2 247+10 3970+90 24 650+330

Q172L CAG!CTG
C206C TGT!TGC

DE-3 46D6 T177A ACC!GCC 14.7+0.7 4.5+0.1 33+4 235+11 4390+280 19 240+320

Fig. 5. Mutations in the final variant, hPNP-46D6, are mapped onto the
wild-type structure (PDB code: 1rct). Mutations are colored by lineage:
cyan, rational; blue, DE-1; yellow, DE-2; red, DE-3.
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acquired M170T mutation in hPNP-19E2 provides significant
improvement in binding affinity with a subsequent decrease
in turnover rate despite its location �25 Å from the reaction
center. Successive rounds of directed evolution identified
Q172L and T177A mutations which occur on the same helix
as M170T and may counteract any destabilizing effects of
the first mutation. Based on its location, the G4E mutant
may re-orient and stabilize the recombinant hexahistidine tag
which is not removed prior to screening or characterization.
Acquired mutations may improve expression efficiency or
RNA stability as evidenced by the considerable increase in
turnover of enzyme in E.coli extracts despite nominal
improvements in catalytic efficiency.

Directed evolution strategies that target residues in the first
and second shell of the binding site (i.e. CASTing (Fazelinia
et al., 2007)) have found success in modifying or broadening
the substrate specificity of enzymes. It is possible that
additional mutations in the vicinity of Y88F may further
improve the turnover of ddI as mutations closer to the active
site are frequently observed to have greater effect on sub-
strate selectivity (Morley and Kazlauskas, 2005). It is not
surprising, however, that mutations in the first or second
shell of the binding site were not identified in this work con-
sidering the moderate library sizes employed.

Conclusions

The process outlined herein was applied to improve the cata-
lytic properties of hPNP for an alternate substrate, dideoxyi-
nosine. The Rosetta method proved capable of identifying
mutations which are likely to improve catalysis in a test case
made particularly difficult by constraint to a single amino
acid substitution and high substrate similarity. In this
environment, charged residues had a major impact on com-
putational and experimental results. Addition of an electro-
static term allowed for moderate improvement in the results.
The makeup of the scoring function highlights the character-
istics of this particular test and points to the broad scope of
applications available for the Rosetta algorithm. Many other
nucleoside analogs contain functionality on the sugar moiety
providing a handle for successful design.

Directed evolution using whole-gene epPCR and an
in vitro selection scheme allowed for the identification of
residues distant to the binding site which improve the
binding affinity of the phosphorylase for ddI. Individual
rounds resulted in modest improvements in kinetic par-
ameters and/or turnover. The robustness of the in vitro
tandem enzymatic assay is demonstrated by its ability to dis-
criminate incremental improvements in activities. The final
mutant (hPNP-46D6) has a catalytic efficiency 22 times
greater than the wild type and the specificity ratio was
shifted to 15:1 from a starting point of 1000:1. On a per-cell
basis turnover was 36-fold improved, the additional improve-
ment likely originating from increased protein production. As
these improvements were products of small libraries, we feel
it is likely that further rounds of directed evolution can
improve the catalytic properties of the enzyme and identify
residues in other regions of the protein that may enhance cat-
alysis of ddI or further shift the selectivity.

In principle, catalysts for the phosphorolysis and formation
of a variety of nucleoside analogs can be accessed using the
methods described herein. Indeed, we have tested

hPNP-46D6 for the biocatalytic generation of ddI as a com-
ponent of tandem reactions and found it to be kinetically
competent in the synthesis direction (to be presented in a
forthcoming publication). Several nucleoside analogs with
ribose substitution at 20 and 30 positions are of significant
clinical importance as are nucleoside analogs with nucleo-
base substitutions (Li et al., 2008; Clerq, 2009; Soriano
et al., 2009). Of note, relatively few biotransformation-based
approaches have been described for biocatalysis of dideoxy-
nucleosides and other analogs (Shirae et al., 1989; Rogert
et al., 2002; Komatsu et al., 2003; Kaminski et al., 2008;
Medici et al., 2008). Ongoing experiments in our laboratories
endeavor to generate optimized enzymes and pathways
capable of generating ribose precursors for PNP variants.
Engineered pathways for nucleoside analogs have potential
to provide economical alternatives to chemical synthesis of
these valuable pharmaceuticals.

Supplementary data

Supplementary data are available at PEDS online.
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