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Abstract
Irreversible inhibition of cytochrome P450 enzymes can cause significant drug-drug interactions
(DDIs). Formation of metabolites is fundamental for the inactivation of P450 enzymes. Of the 19
inactivators with a known mechanism of inactivation, 10 have circulating metabolites that are known
to be on path to inactive P450. The fact that inactivation usually requires multiple metabolic steps
implies that predicting in vivo interactions may require complex models, and in vitro data generated
from each metabolite. The data reviewed here suggest that circulating metabolites are much more
important in in vivo P450 inhibition than is currently acknowledged.
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1. Introduction
Inhibitory drug-drug interactions (DDIs) are a considerable concern in drug development and
in patients undergoing polytherapy. Inhibitory drug-drug interactions can be life-threatening
by increasing the exposure to narrow therapeutic index drugs. Of the current drugs on the US
market, 129 are in vivo inhibitors of P450 enzymes, and of these inhibitors, 80% have
circulating metabolites[1]. However, the quantitative role of inhibitory metabolites in in vivo
DDIs is rarely known. Several examples of reversible P450 inhibitors, which have circulating
metabolites that are predicted to contribute to in vivo interactions do, however, exist. For
example, the CYP2C9 inhibitor sulfinpyrazone and CYP3A4 inhibitor itraconazole have
circulating metabolites that also inhibit CYP2C9 and CYP3A4, respectively. Based on plasma
concentrations and in vitro Ki values, CYP2C9 inhibition after sulfinpyrazone administration
can be attributed to the circulating sulfide metabolite that has a 15-fold lower Ki in HLMs than
the parent drug and circulates at comparable concentrations with the parent[2,3]. Three
circulating metabolites of itraconazole are predicted to contribute approximately 50% of the
total CYP3A4 inhibition in vivo[4].

In addition to reversible interactions, many clinically important pharmacokinetic drug-drug
interactions result from inhibition of metabolic clearance via mechanism-based inactivation
(MBI) of cytochrome P450 (CYPs) enzymes. By definition, MBI involves metabolism of the
inhibitor to a reactive metabolite, which modifies the P450 enzyme and results in irreversible
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loss of enzyme activity[5]. Enzymatic activity can only be restored by de novo protein
synthesis. Even though metabolites play a fundamental role in the MBI of P450's, and MBI of
P450 enzymes has been studied for multiple decades, in many instances the reactive metabolite
responsible for inhibition of the P450 enzyme is unknown. General understanding of the
biological fate of metabolites, especially reactive metabolites, has surfaced as an important
part of the drug discovery process, and increasing attention has been paid to predicting and
identifying circulating human metabolites[6-9]. Despite this increasing interest, known
circulating metabolites are often not characterized for MBI of P450 enzymes and are usually
only tested for pharmacological activity. As a result, the mechanism and extent of P450
inhibition by inhibitory metabolites is not well established. This review presents the current
knowledge of the role of metabolites in MBI of P450 enzymes, focusing on the circulating
metabolites that contribute to P450 inactivation and the complex metabolic pathways that lead
to inactive enzyme. For detailed review on the chemical and biochemical mechanisms of MBI
by the various compounds presented the reader is referred to Kalgutkar et al 2007[10]

2. Classification of mechanism-based inhibitors
From the literature, 31 in vitro mechanism-based inhibitors were indentified. A drug was
considered an MBI if any reports existed of irreversible or time-dependent P450 inhibition by
the given drug, regardless of other reports, which may have determined reversible inhibition
parameters for the same drug. Generally, MBI of P450s can be classified into two groups:
protein and/or heme alkylation and metabolic-intermediate (MI) complex formation.

The general pathways to formation of inactive P450 via metabolites are shown in Figure 1 and
a typical pathway for MI complex formation is indicated by (a). An MI complex refers to a
tight, coordinate bond between the metabolite and the reduced state of the P450 heme iron.
Although the interaction between the final ligand and the heme iron is strong, no covalent bond
is formed and the complex can be reversed under experimental conditions by the addition of
potassium ferricyanide. The MI complex is catalytically inactive. MI complexes have distinct
spectral properties and are measured by difference spectroscopy using the UV/Vis detectable
Soret peak centered on λmax of 452-457 nm[11]. MI complexes are believed to be reasonably
stable, and have been observed in microsomes prepared from animals and liver biopsy
specimens from humans treated with troleandomycin[12,13].

Protein and heme adducts to P450 enzymes are generally characterized by a covalent bond
forming between a bioactivated, electrophilic drug and a nucleophilic amino acid in the P450's
active site or the heme prosthetic group. As shown in Figure 1, pathway b, the reactive
intermediate may bind to the P450 enzymes, forming an irreversible protein adduct, or the
reactive intermediate may be released into the media and inactivated, in many instances by
reacting with glutathione. The resulting glutathione and other conjugates can often be detected
in plasma or urine. P450 protein adducts are usually measured by detection of radioactive drug
binding to the P450 or by identification of adducted peptides via mass spectroscopy. In
addition, detection of the deactivated metabolites is used as support for determining the
mechanism of inactivation.

Nine of the total 31 inhibitors (29%) were classified as irreversible inhibitors by protein
alkylation (Table 1). Protein alkylation was defined based on reports of a covalent bond forming
to an amino acid of the P450 enzymes, trapping of an electrophilic, reactive intermediate with
glutathione, or evidence of a covalent adduct to the P450 heme pyrrole nitrogen. Fourteen
inhibitors (45%) were classified as MI complex forming inhibitors (Table 2) based on reports
of time- and NADPH-dependent formation of a Soret peak between 452-456 nm. The
remaining eight drugs (26%) were classified as MBIs with an unknown mechanism of
inactivation (Table 3), based on concentration- and time-dependent inactivation assays, but
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lack of reports of a protein adduct, heme destruction, trapping of a reactive intermediate or
detection of a spectral MI complex.

Overall, 54% of the inhibitors that displayed in vitro P450 inactivation kinetics also inhibited
the same P450 enzyme in vivo, defined as at least a 1.25-fold increase in the AUC of the probe
drug. Of these in vivo inhibitors, ten were potent (>5-fold increase in the substrate AUC), eight
were moderate (2-5-fold AUC increase) and eight were weak (1.25-2-fold AUC increase) as
classified based on the FDA recommendations[14]. The mechanism of P450 inactivation did
not correlate with magnitude of clinical interactions. Six of the ten potent inhibitors, five of
the seven moderate inhibitors, and three of the eight weak inhibitors were MI complex forming
drugs. Interestingly, CYP3A4 appeared to be most susceptible to interactions via MBI. Eight
(89%) out of the nine potent inhibitors displayed potent interactions with CYP3A4 probes in
vivo. In fact, 22 of 31 (71%) MBIs were reported to inactivate CYP3A4, whereas CYP2C9 had
only two reports.

All but five of the 31 irreversible inhibitors indentified have confirmed circulating metabolites
(Tables 1-3). However, the role of the circulating metabolites in P450 inactivation is equivocal
for many of these metabolites. Based on our current classification, inactivating metabolites
were defined as such, if the metabolite was shown to inactivate the enzyme, and was on the
metabolic route to the reactive intermediate (Figure 1, pathway a, b). Based on these criteria,
nine (29%) of the inhibitors have circulating metabolites that have a confirmed role in the
inactivation of the P450 enzymes. Of these circulating metabolites, six result in MI complex
formation and three contribute to protein adduct formation. It is important to note that the
reported inactivating metabolites (Tables 1 and 2) often undergo further metabolism before
irreversible inhibition is sustained. As depicted in Figure 1, the parent drug has three possible
routes of metabolism. The first is an off path metabolite, which results from metabolism
removed from the inactivation site, however this metabolite may still undergo convergent
secondary metabolism to P450 inactivation. The two other metabolic pathways (a, b) represent
formation of metabolites that are precursors to the reactive species that leads to inactivation.
These precursor metabolites can stay on path to the inactivation of the enzyme, or can be
released into the media and circulate, and rebind to the P450 enzyme to cause inactivation

3. Role of metabolites in irreversible inhibition by protein adduct formation
The inhibitors that formed protein adducts (Table 1) were commonly oxidized to an
electrophilic species that either binds to the P450 protein or is released from the active site and
binds to other macromolecules. Hence, circulating metabolites associated with the reactive
species were rarely observed. The reactive intermediates, usually quinone imine-derivatives,
are commonly identified as glutathione adducts. For example, dasatinib, diclofenac,
nefazodone, raloxifene, and zafirlukast have identified glutathione adducts but only one of
these five drugs, nefazodone, displays in vivo inhibition of the inactivated enzyme[15-19].
Clopidogrel and ticlopidine, that both result in protein adduct formation, have similar
pharmacological actions as well as similar inactivation mechanisms. The primary reactive
metabolites identified for both clopidogrel and ticlopidine are further oxidized by CYP
enzymes before forming a protein adduct, and in each case, there is controversy on the exact
species responsible for the inactivation[20]. The remaining inhibitors in this group, efavirenz
and gemfibrozil, have unique mechanism of inactivation and are discussed in detail as case
studies. It is interesting to note that all of the protein adduct forming inhibitors that cause in
vivo interactions, also have circulating metabolites that can contribute to the P450 inactivation.

4. Role of metabolites in irreversible inhibition by MI complex formation
Of the drugs characterized as MI complex forming inhibitors, 64% contained an alkyl amine
moiety at the site of P450 metabolism. Alkyl amines are not only common moieties known to
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cause P450 inactivation, but are also important entities to the pharmacological activity of the
drugs. The formation of MI complexes from alkyl amine containing drugs is believed to occur
via a multistep process, which results in the eventual inactivation of the P450 (Figure 2). As
shown in Figure 2, there are multiple oxidative steps required to form an MI complex with the
P450 enzyme. In addition, the intermediate metabolites, such as the primary amines often have
high affinity for binding to the P450 enzymes. It is commonly believed that a primary amine
is required for MI complex formation via hydroxylation of the amine nitrogen to form the
primary hydroxylamine and further oxidation to a nitroso group that coordinates to the ferrous
state of the heme iron[21]. It is important to note that the metabolite responsible for
coordination to the heme iron has not been fully characterized and several different chemical
pathways to inactive enzyme have been proposed[22,23]. For example, Lindeke et al. examined
MI complex formation from the secondary amine, N-methylamphetamine, and proposed that
the secondary amine is N-oxygenated to the secondary hydroxylamine, and then proceeds
through further oxidative steps to coordination of the heme iron (Figure 2)[24]. Hence, the
pathway to the formation of an MI complex from alkyl amine drugs is a complex process
involving a variable number of metabolic steps.

The most remarkable feature of the alkylamine drugs is that with the exception of
troleandomycin and erythromycin, they all have characterized circulating metabolites. Most
commonly, the N-dealkylated metabolites circulate (Table 2) and their plasma concentrations
are higher than the parent drug. Based on current mechanistic understanding, it is assumed that
these N-dealkylated metabolites also contribute to P450 inactivation, although very little
evidence is available of inactivation of P450 enzymes by the primary amine metabolites of the
drugs listed in Table 2. It is interesting that despite the fact that the primary amines are believed
to be the direct precursors of MI complexes, there is no direct correlation between formation
of the primary amine by a given P450 enzyme and inactivation of that same P450 enzyme by
MI complex formation. For example, CYP2D6 has the lowest reported Km (2.1μM) [Clint =
2.9 μM-1min-1] with regards to the N-demethylation of fluoxetine to norfluoxetine, but this
CYP does not form an MI complex with fluoxetine; whereas, CYP2C19 which has a 82-fold
higher Km (172μM) [Clint= 0.23 μM-1min-1] for norfluoxetine formation undergoes rapid
inactivation by fluoxetine[25,26]. At present, it is not known why some P450 enzymes are
capable of oxidizing the parent alkyl amine drug to inhibitory metabolites but are incapable of
forming an MI complex. A plausible explanation may be the structure of the P450 active site,
given the prevalence of CYP3A4 to form MI complexes (100%), and the absence of an MI
complex formation with CYP2C9 (0%). Given CYP3A4 promiscuity to metabolize a large
number of drugs and its large active site, it may be more prone to forming and binding reactive
metabolites. However, the prevalence of reports of MI complexes with CYP3A4 may be a
result of more studies conducted with this enzyme. There may also be a concentration
dependence to the inactivation of P450 enzymes as with CYP3A4 and troleandomyocin[27].
At concentrations higher than 10μM, troleandomycin no longer displays inactivation kinetics
due to the amount of competitive primary and secondary metabolites formed that are able to
compete for the active site of CYP3A4.

Due to the complex, and potentially multiple, parallel pathways to MI complex formation with
P450's, it is unlikely that the inactivation kinetics of the P450 by a tertiary amine or secondary
amine (parent drug) will correctly represent the cellular or in vivo system, in which multiple
inactivating metabolites are present and may dominate the overall in vivo inactivation. In
addition, the metabolites may be potent reversible inhibitors of the relevant P450 adding further
complexity into the characterization of inhibition. Hall et al. recently proposed the need to add
both the competitive and irreversible inhibition, when determining the extent of inhibition in
vivo with the alkyl amine drugs, erythromycin and diltiazem[28]. A semiphysiological model
was presented, which suggested that both diltiazem and its metabolite N-desmethyldiltiazem
contributed to the overall inhibitory effect after diltiazem administration in vivo[29].
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Unfortunately, sufficient data in vivo and in vitro for the metabolites is lacking to develop a
more detailed model of in vivo MI complex formation kinetics.

Four of the MI complex forming drugs are anti-HIV protease inhibitors (amprenavir, indinavir,
nelfinavir and ritonavir). Figure 3 shows the structures of these four protease inhibitors and
their primary metabolic sites. No apparent reactive metabolite(s) or intermediates that would
lead to MI complex formation have been identified in vitro for any of these drugs. As is evident
from the structures, no obvious mechanism for the MI complex formation that would agree
with the pathway in Figure 2 can be readily proposed. However, a spectroscopic detection of
a peak at ∼455 nm after incubation of HLM's and recombinant CYP3A4 with these compounds
suggested MI complex formation, and warrants further mechanistic studies with these
compounds with focus on metabolites[30].

Finally, paroxetine forms a distinctive type of MI complex with CYP2D6. Paroxetine contains
a methylenedioxyphenyl moiety, a structural alert known to exhibit MBI of P450 enzyme
[31]. P450-catalyzed metabolism of the methylenedioxyphenyl substituent results in initial
hydroxylation at the methylene carbon forming an unstable intermediate. This unstable
intermediate can partition between demethylenation yielding a cathecol metabolite or
dehydration to a carbene, which forms an MI complex with the P450 enzyme[32]. Based on
the mechanism it is unlikely that circulating metabolites play a role in CYP2D6 inactivation
by paroxetine.

5. MBIs of unknown mechanisms of inhibition
Eight (26%) of the inhibitors identified have an unknown mechanism of inactivation based on
lack of any described mechanism in the literature. These inhibitors were characterized as MBIs
based on reports of concentration- and time-dependent inactivation assays, which are not
necessarily conclusive in characterizing a drug as an MBI. Six of the eight (75%) drugs
indentified have in vivo interactions with probe drug substrates. Based on the structures of these
eight drugs, it could be hypothesized that MI complex is unlikely for all of the drugs, with the
exception of delavirdine, which contains an alkyl amine moiety.

6. Case Studies
6.1 Irreversible Inhibition by P450 protein adduct

6.1A—Efavirenz (Figure 4) is metabolized mainly by CYP2B6 to two metabolites: 8-
hydroxyefavirenz (major) and 8,14-dihydroxyefavirenz (minor)[33], and is an example of a
drug that has a circulating metabolite that appears to be responsible for protein adduct
formation. Efavirenz and both metabolites contain an ethynyl group, which is a known alert
for P450 mechanism-based inactivation, particularly with the CYP2B family of enzymes[34].
Both efavirenz and its major metabolite 8-hydroxyefavirenz inhibit CYP2B6 but the
inactivation of CYP2B6 by 8- hydroxyefavirenz was markedly different from the inactivation
by efavirenz[35]. A comparison of the kinact/KI-ratio (efavirenz =0.0013; 8-hydroxyefavirenz
=0.0094) shows that the metabolite is a more efficient inactivator than the parent compound.
Interestingly, the metabolism of efavirenz and 8-hydroxylefavirenz by CYP2B6 leads to
inhibition by two distinct mechanism although the reactive species responsible for the
inactivation are not yet known. Efavirenz was a potent apparent reversible inhibitor (time- and
concentration-dependent inactivation yet reversible by dialysis), whereas the 8-
hydroxylefavirenz was an irreversible inhibitor (not reversible by dialysis). Based on this in
vitro data, it appears that for in vitro to in vivo extrapolation of CYP2B6 inactivation after
efavirenz administration, 8-hydroxyefavirenz rather than efavirenz should be modeled.
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6.1B—Gemfibrozil (Figure 4) is known to be a more potent in vitro inhibitor of CYP2C9 than
CYP2C8[36-38]. However, in vivo, gemfibrozil is an inhibitor of CYP2C8 but not of CYP2C9
[39]. An important step in providing a potential explanation of this in vitro to in vivo
discrepancy was provided by demonstrating that gemfibrozil 1-O-β-glucuronide, the
circulating metabolite of gemfibrozil, is a more potent inhibitor than gemfibrozil of CYP2C8
[40]. The mechanism of inactivation was recently characterized to occur via formation of a
heme adduct[41]. It is important to note that the MBI of CYP2C8 was not observed with the
parent drug in microsomes and phase II metabolites are not routinely tested for MBI, suggesting
that testing for MBI in hepatocytes may be advantageous[42]. Oxidation of phase II metabolites
by P450 enzymes appears rare; however, some examples include the oxidation of sulfate
conjugates of testosterone, dehydroepiandrosterone, and estrogens[43-45] and oxidation of the
acyl glucuronide of diclofenac by CYP2C8[46]. Gemfibrozil 1-O-β-glucuronide is the first
report of a phase II metabolite that irreversibly inhibits CYP2C8 but this type of inhibition
may be more widespread than currently acknowledged and true incidence may not be
appreciated, especially given that phase II metabolites are rarely evaluated.

6.1C—Nefazodone (Figure 4) is known to have incidences of idiosyncratic hepatotoxicity,
and the reactive intermediates may be responsible for liver injury[47-49]. Nefazodone has both
on path and off path metabolites that circulate and two circulating metabolites are known to
inactivate CYP3A4[50,51]. Nefazodone is oxidized by P450 enzymes to the major circulating
metabolite, hydroxynefazodone, which is then further oxidized by CYP3A4 to an electrophilic
quinonoid intermediate. The structure of this reactive intermediate was inferred through the
characterization of the corresponding glutathione conjugate. A second circulating metabolite,
para-hydroxyl-m-CPP (mCPP), which is formed mainly by CYP2D6, can also be activated to
quinone-imine by CYP3A4 and may play a role in the inactivation of CYP3A4[17]. It is
interesting that P450 inactivation by nefazodone may involve different pathways in single
enzyme systems and in more complex matrices due to the involvement of different P450's in
the formation of the intermediates. Due to the multi-enzyme involvement in inactivation and
the presence of two distinct inactivating metabolites, in vitro to in vivo extrapolation of
CYP3A4 inactivation by nefazodone is expected to require complex models.

6.2 Irreversible Inhibition of P450 by MI complex formation
6.2A—Verapamil (Figure 5) has two major metabolites formed by CYP3A4 via N-
dealkylation: N-desalkylverapamil (D-617) and norverapamil[52,53]. Verapamil and these two
major metabolites form MI complexes with CYP3A4[54]. Based on the ratio of kinact to KI,
the inactivation potency was norverapamil > verapamil > D-617. Although the plasma
concentration of D-617 is comparable to verapamil and norverapamil, and D-617 is a secondary
amine, the potency of inactivation is weak and D-617 probably does not contribute to the in
vivo inactivation. However, the steady-state levels of norverapamil reach that of verapamil and
incorporating the inactivation kinetics of the secondary amine metabolite improved the in
vivo predictions[55].

6.2B—Fluoxetine (Figure 5), is a substrate and inhibitor of multiple CYP enzymes. The major
route of fluoxetine metabolism is by N-demethylation to norfluoxetine by CYP2D6 and other
P450 isoforms, including CYP3A4 and CYP2C9[56,57]. Fluoxetine also undergoes
CYP2C19-mediated O-dealkylation to a p-trifluoromethylphenol metabolite[58]. Fluoxetine
and norfluoxetine have been shown to be reversible inhibitors of CYP2D6[59,60], CYP2C19
[61,62], CYP3A4[63] and CYP2C9[64]. In all cases of CYP inhibition, norfluoxetine was a
more potent competitive inhibitor than the parent compound fluoxetine. However, fewer
studies have been conducted on the MBI potential of fluoxetine and norfluoxetine. Mayhew
et al.[65] showed fluoxetine to be an MBI of CYP3A4 and McGinnity et al.[26] demonstrated
time- and concentration-dependent inhibition of CYP3A4 and CYP2C19 in multiple in vitro
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systems, including hepatocytes. Recently, Stresser et al.[66] reported that norfluoxetine
exhibited an 11-fold shift in IC50 value when tested in human liver microsomes with the
CYP2C19 probe (S)-mephenytoin, suggesting that conversion of fluoxetine to norfluoxetine
represents a metabolic pathway leading to time-dependent inhibition. As mentioned
previously, it is important to point out that not all the enzymes that form norfluoxetine are
inactivated by fluoxetine. CYP2D6 and CYP2C9 both form norfluoxetine efficiently, but do
not undergo MBI by fluoxetine. More so, fluoxetine is an MBI of CYP2C19 but CYP2C19
has a relatively high Km (172 ± 25 μM) for the formation of norfluoxetine[25]. It is possible
that norfluoxetine formed by CYP2D6 and CYP2C9 is released and then inactivates other
enzymes such as CYP3A4 and CYP2C19, again emphasizing the importance of testing for
MBI in multiple CYP systems. Given that the route to inactivation is a multi-step process and
metabolites are released into circulation, it is not clear which alkyl amine metabolites are
important in making accurate predictions of in vivo inhibition. For example, CYP3A4 is clearly
inactivated in vitro by fluoxetine but there is no in vivo interaction with CYP3A4 probes[67,
68]. In contrast, in vitro inactivation of CYP2C19 is associated with moderate inhibition of
CYP2C19 in vivo[69].

6.2C—Amiodarone (Figure 5) is a tertiary amine that interacts in vivo with a number of drugs
metabolized by CYP1A2, CYP2C9, CYP2D6 and CYP3A4 but the in vitro inactivation profile
for amiodarone is not fully established[70-72]. Amiodarone is known to form an MI complex
in rodents, which is consistent with tertiary amine metabolism to the nitrosoalkane reactive
intermediate (Figure 2, [73]). The identity CYP isozymes inactivated by MI complex formation
is unclear as the major circulating metabolite of amiodarone, N-desethylamiodarone,
inactivates different isozymes than the parent drug. Ohyama, K et al.[74] report a kinact value
of 0.06 min-1 and a KI value of 13.4μM for CYP3A4 and amiodarone but no inactivation of
CYP3A4 by N-desethylamiodarone. In contrast, both N-desethylamiodarone and amiodarone
were recently shown to be time- and concentration- dependent inactivators of CYP3A4[75].
N-desethylamiodarone, but not amiodarone, is consistently reported as an MBI of CYP2D6
highlighting the importance of studying metabolites separately for MBI[74,75]. Interestingly,
CYP2D6 is capable of N-dealkylation reaction with an in vitro intrinsic clearance to the
secondary amine of 106.8 μM/min/nmol CYP[74]. Although, CYP2D6 is very efficient in
forming N-desethylamiodarone, the inhibitory metabolite, MBI of CYP2D6 by the parent drug
is not observed.

Amiodarone also inactivates CYP2C8 and CYP2C9 (Polasek, PM et al. 2004, Mori, K. et al.)
and CYP2C8 plays a significant role in amiodarone deethylation[70,75,76]. However, spectral
studies did not detect MI complex formation or heme loss with CYP2C8 and the exact
mechanism by which amiodarone inactivates CYP2C8 remains unclear[76]. N-
desethylamiodarone may play a role in CYP2C8 inactivation, as the inhibition by N-
desethylamiodarone increased by 42% between co- and pre-incubated samples[76]. CYP2C9
has similar time- and concentration-dependent inactivation by both amiodarone and N-
desethylamiodarone. It is likely that N-desethlyamiodarone is essential for CYP2C9
inactivation as a correlation was found between the ΔINR/ warfarin dose and plasma
concentration of N-desethylamiodarone but not with amiodarone concentration[77]. This again
emphasizes the critical role of the metabolites in CYP inactivation and suggests that accounting
of the metabolites is important for quantitative understanding and predictions of in vivo CYP
inactivation.

7. Conclusions
Given the limited number of predictive models for complex DDIs involving parent drugs and
their metabolites, it is difficult to fully evaluate the importance of inhibitory metabolites. Many
drugs that display in vitro MBI kinetics, do not display significant in vivo DDIs. In fact only
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9 of the 31 inhibitors (29%) are potent inhibitors in vivo. On the other hand, drugs such as
mibefradil, a potent MBI of CYP3A4, was withdrawn from the market as a result of unpredicted
CYP inhibition, most likely due to interactions caused by a metabolite[78]. From the available
data for the compounds reviewed here, it appears that circulating metabolites are much more
important in in vivo CYP inactivation than is currently acknowledged. The data suggests that
CYP inactivation by circulating primary and secondary metabolites needs to be characterized
for accurate predictions as well as for better mechanistic understanding of in vivo MBI. Due
to the multi-enzyme involvement of CYP inactivation, testing for MBI in complex enzyme
systems such as hepatocytes, may help in the overall understanding of the inhibition and
significantly improve in vitro to in vivo predictions.
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Figure 1.
Pathways to irreversible inhibition of P450 enzymes. Pathways a and b indicate the two
metabolic routes to inactivate P450 (red boxes) by MI complex formation (green boxes) or by
protein alkylation (blue boxes). The off path metabolites (purple box) are not directly involved
in the inactivation of the P450 enzymes. Circulating metabolites (pathway a and b) are able to
rebind to the P450 enzymes and are further metabolized to inactivate the P450 enzymes. The
deactivated metabolites (pathway b) are dead end products and often detected in vitro.
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Figure 2.
Proposed route of alkyl amine metabolism to MI complex. Solid arrows indicate P450
metabolic reactions indentified in HLMs, dashed arrows are proposed metabolic reactions on
route to MI complex formation but have not been verified. Blue compounds are known
circulating metabolites, green compounds have been shown to form MI complexes but are not
known circulating metabolites, the black colored compound is the proposed proximal species
to MI complex formation, the red colored compound is the inactivated P450 enzyme. The
pathways were adapted from references [21,22,24]
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Figure 3.
Structures of anti-HIV protease inhibitors that irreversibly inhibit CYP3A4 via an MI complex
formation. The arrows indicate sites of metabolism for known circulating metabolites (Table
2).
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Figure 4.
Structures of three drugs that form protein adducts with P450 enzymes. Circles indicate the
site of metabolism that leads to inactivation, the arrows indicate site of metabolism for off path
circulating metabolites (Table 1). *indicates the site of glucuronidation to form the inactivating
glucoronide metabolite.
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Figure 5.
Structures of three drugs that result in MI complex formation with P450 enzymes. Circles
indicate the site of metabolism that leads to inactivation, the arrows indicate site of metabolism
for off path circulating metabolites (Table 2).
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