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Abstract
Purpose of review—β-cell death is an important pathogenic component of both type 1 and type
2 diabetes. However, the specific molecular pathways and interactions involved in this process are
not understood. Increasing evidence indicates that a type of cell stress called endoplasmic reticulum
stress (ER stress) plays an important role in β-cell death. Here we discuss a potential paradigm of
ER stress-mediated β-cell death.

Recent findings—Upon ER stress conditions, a signaling network termed the unfolded protein
response (UPR) is activated. The UPR regulates adaptive effectors to attenuate ER Stress and restore
ER homeostasis promoting cell survival. Paradoxically the UPR also regulates apoptotic effectors.
When adaptive effectors fail to attenuate ER stress, these apoptotic effectors take into effect leading
to cell death. The nature of this switch between life and death is currently under study.

Summary—Depending on the nature of the stress condition, the UPR either protects β cells or
promotes their death. The mechanisms of this switch is not well understood but involves the balance
between adaptive and apoptotic factors regulated by the UPR. Herein, we review examples of this
UPR balancing act between life and death and the potential mechanisms involved.
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Introduction
Diabetes is a group of disorders defined by hyperglycemia caused by an absolute deficiency
(type 1 diabetes) or a relative deficiency of insulin (type 2 diabetes). Insulin, a hormone secreted
from pancreatic β cells, functions in lowering blood glucose. Increasing evidence suggests that
cellular stress caused by the accumulation of unfolded and misfolded proteins in the
endoplasmic reticulum (ER), termed ER stress, is directly related to β-cell dysfunction and
death during the progression of type 1 and type 2 diabetes, and Wolfram syndrome, a genetic
form of diabetes and neurodegeneration [1–3]. To counteract ER stress, β cells activate cellular
signaling pathways termed the unfolded protein response (UPR). Depending on the nature of
the stress condition, the UPR either protects β cells or promotes their death. The mechanisms
of this switch is not well understood but involves the balance between adaptive and apoptotic
factors regulated by the UPR. Herein, we review examples of this UPR balancing act between
life and death and the potential mechanisms involved.
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Protein folding in the Endoplasmic Reticulum (ER) and ER stress
The ER is an organelle responsible for several important cellular functions including protein
and lipid biosynthesis, Ca2+ storage, and cell signaling. Proteins destined for secretion,
intracellular organelles, or the plasma membrane, fold into their proper three-dimensional
structures in the ER. Protein folding and processing enzymes, as well as the oxidized
environment within the ER are required for proteins to properly fold into their functional
conformation.

Proinsulin folding in the ER
β cells are specialized for the production and regulated secretion of insulin to control blood
glucose levels. In the presence of hyperglycemia, β cells secrete insulin from a readily available
pool. At the same time, an increase in insulin release activates proinsulin biosynthesis in the
ER of β cells [4]. Therefore, β cells have developed a highly specialized ER to handle this
protein load. Human preproinsulin, a precursor for insulin, is synthesized in the cytoplasm
containing a signal peptide sequence at its N-terminal, and then is cotranslationally translocated
into the lumen of the ER. The signal peptide of preproinsulin is cleaved in the ER to produce
proinsulin. In the lumen of the ER, proinsulin undergoes protein folding and three disulfide
bonds are formed. Properly folded proinsulin is then delivered to the Golgi apparatus and
packaged into secretory granules. The conversion of proinsulin to insulin takes place in the
secretory granules and mature insulin is released by exocytosis [5]. The frequent fluctuation
of blood glucose levels in humans requires that β cells control proinsulin folding in the ER
with exquisite sensitivity.

What is ER stress?
In order for secretory proteins to fold properly, ER homeostasis must be maintained. ER
homeostasis is defined by the dynamic balance between the ER protein load and the ER capacity
to process this load. ER homeostasis can be perturbed by pathological processes such as viral
infections, environmental toxins, inflammatory cytokines, and mutant protein expression, as
well as by physiological processes such as aging and postprandial production of proinsulin.
Disruption of ER homeostasis causes accumulation of unfolded and misfolded proteins in the
ER. This condition is referred as ER stress [6,7] (Figure 1).

The Unfolded Protein Response (UPR)
Under ER stress conditions, β cells activate a signaling network termed the unfolded protein
response (UPR). The UPR is initiated by three ER transmembrane proteins: Inositol Requiring
1 (IRE1), PKR-like ER kinase (PERK), and Activating Transcription Factor 6 (ATF6). These
three master regulators sense and interpret protein folding conditions in the ER and translate
this information across the ER membrane to regulate downstream effectors [6,7](Figure 2).
These effectors have the following three distinct functions:

1. Homeostatic Regulation

One set of effectors regulated by the UPR elicits three adaptive responses that function
to attenuate ER stress and restore ER homeostasis. These responses include the
attenuation of protein translation to reduce ER workload and prevent further
accumulation of unfolded proteins, upregulation of molecular chaperones and protein
processing enzymes to enhance the ER folding activity, and the increase in ER-
associated degradation (ERAD) components to promote clearance of unfolded
proteins. The effectors involved in these functions include eIF2α for translational
attenuation, BiP (GRP78), GRP 94 and PDI for protein folding, and Derlin-1 and
HRD1 for protein degradation [8–15].
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2. Feedback Regulation

The UPR also regulates a set of effectors that function in negative feedback loops to
provide tight control of the UPR and therefore preventing harmful hyperactivation.
One example involves an abundant ER chaperone, BiP. BiP binds to the ER luminal
domains of the UPR transducers preventing their activation. Upon ER stress, BiP is
released and the UPR transducers are activated. In turn, the UPR induces BiP
expression to aid in protein folding and also to negatively regulate the UPR master
regulators [16–18]. Another example involves PERK signaling regulation by
GADD34. PERK plays a role in the attenuation of protein translation through
eIF2α phosphorylation to reduce ER protein load. As ER homeostasis is being
restored, GADD34 expression is induced by PERK and suppresses PERK signaling
through the dephosphorylation of eIF2α restoring protein translation [19].

3. Apoptosis Regulation

Increasing evidence indicates that the UPR regulates both apoptotic and survival
effectors. These effectors include CHOP and AATF [20,21]. CHOP plays an
important role in ER stress-mediated β-cell death [22,23]. It has been shown that
CHOP overexpression decreases expression levels of Bcl-2 [24]. Bcl-2 has been
shown to inhibits Bax translocation from cytosol to mitochondria [25]. Because Bax
is involved in ER stress-mediated cell death [26,27], CHOP may execute apoptosis
by suppressing anti-apoptotic genes, Bcl-2 and enhancing pro-apoptotic component,
Bax. We have recently discovered a novel anti-apoptotic effector of the UPR,
apoptosis antagonizing transcription factor (AATF). AATF induction is regulated by
the UPR and mediates anti-apoptotic effects through transcriptional regulation of
AKT1 (Ishigaki et al, In press).

Tolerable versus Unresolvable ER stress
We propose that there are two types of ER stress conditions: tolerable and unresolvable. Under
tolerable ER stress conditions, the UPR promotes β-cell survival. In contrast, under
unresolvable ER stress conditions, the UPR induces β-cell death.

Tolerable ER stress
Cells are exposed to physiological conditions that induce tolerable ER stress. Under these ER
stress conditions, the UPR can restore ER homeostasis promoting cell survival. For instance,
when β cells are exposed to transient high glucose proinsulin mRNA translation is increased
by several fold therefore increasing the ER protein work load. β cells utilize the UPR in order
to handle this load. Several studies indicate that PERK-eIF2α signaling plays a major role in
regulating proinsulin mRNA translation under dynamic glucose conditions. Tight control of
eIF2α phosphorylation is critical to ensure proper adaptation to increases in ER protein load
and to promote β-cell survival [28–31]. In islets from Perk knockout mice, insulin biosynthesis
stimulated by high glucose is markedly enhanced as compared to that in control mice [28]. As
a consequence, Perk knockout mice develop diabetes because of ER stress-mediated β-cell
death. IRE1 is also activated under transient high glucose conditions. Acute IRE1 activation
is required for proinsulin biosynthesis and perhaps enhancing ER proinsulin folding capacity
[32]. These observations demonstrate that cells utilize the UPR in order to handle physiological
disruptions of ER homeostasis therefore promoting their survival.

Unresolvable ER stress and induction of apoptosis by the UPR
When the UPR fails to restore ER homeostasis and attenuate ER stress, UPR activation induces
apoptosis. This unresolvable ER stress can be caused by genetic mutations as well as
environmental factors. One example is observed in Wolfram syndrome. Wolfram syndrome is
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a rare autosomal recessive disorder characterized by childhood onset of diabetes mellitus,
followed by optic atrophy, deafness and death from neurodegeneration in the third or fourth
decades [33–35]. Postmortem studies reveal a non-autoimmune-linked selective loss of β cells
[36]. Mutations in the WFS1 gene are responsible for this syndrome [37–39]. The WFS1
protein is localized to the ER and highly expressed in β cells [40,41] [42]. WFS1 has been
shown to be important for mitigating ER stress, and when suppressed, causes unresolvable ER
stress in β cells, leading to β-cell death [42–44].

Unresolvable ER stress caused by genetic mutations is also observed in permanent neonatal
diabetes. Neonatal diabetes is a rare disorder defined as insulin-requiring hyperglycemia within
the first month of life and is typically associated with slowed intrauterine growth. Permanent
neonatal diabetes can be caused by several types of mutations. It has recently been shown that
mutations in the human insulin gene primarily occurring in critical regions of proinsulin folding
can cause this disorder [45]. These mutations presumably lead to improper folding of
proinsulin, causing unresolvable ER stress and ultimately leads to β-cell apoptosis. A mouse
model of this disease, the Akita mouse, has a dominant cysteine96-to-tyrosine missense
mutation in the Ins2 gene [46,47]. This mutation leads to disruption of disulfide bond formation
between the A and B chain of proinsulin, causing insulin to misfold and accumulate in the ER
of the β cell [46]. This accumulation of misfolded insulin leads to unresolvable ER stress, β-
cell apoptosis, and consequently diabetes [22].

Unresolvable ER stress can be also caused by environmental factors. Several studies
demonstrate that chronic exposure to long chain free fatty acids (FFAs) or cytokines induce
β-cell apoptosis [48–52]. Treatment of β cell lines with the free fatty acid palmitate or the
cytokines interleukin-1β and interferon-γ induce unresolvable ER stress and UPR activation
contributing to β-cell death. The underlying mechanisms are currently under study.

Binary Switch that regulates life and death
The UPR regulates both adaptive and apoptotic effectors. The balance between these effectors
depends on the nature of the ER stress whether it is tolerable or unresolvable as discussed
above. Thus, the UPR acts as a binary switch between life and death (Figure 3). What are the
mechanisms of this switch? Although our understanding of this switch is far from complete,
there are several important clues to elucidate these mechanisms.

Regulation of Survival and Death Factors by IRE1
Upon sensing ER stress, IRE1 undergoes oligomerization and trans-autophosphorylation
activating its endoribonuclease domain. Activated IRE1 cleaves an intron from the mRNA
encoding X-box binding protein 1 (XBP1) [53–55]. The spliced variant of XBP1 mRNA
encodes a transcriptional activator for several UPR genes including chaperones, protein folding
catalysts, and ERAD components [56,57]. Apart from homeostatic functions, IRE1 also
regulates apoptotic effectors. In the presence of unresolvable ER stress, IRE1 activates JNK
through ASK1 and elicits apoptosis [58,59]. This pathway has been shown to block the function
of the anti-apoptotic Bcl-2 by phosphorylating it, thus causing apoptosis in β cells [60,61].
IRE1 is also involved in the decay of mRNAs encoding ER homeostatic proteins, including
PDI, and BiP [62–65]. Thus, IRE1 could be one of the major determinants of the switch between
life and death.

Regulation of Survival and Death Factors by PERK
PERK has been shown to protect β cells from ER stress-mediated cell death through the
attenuation of protein translation [28,66]. In addition, we have recently found that PERK
upregulates a novel anti-apoptotic effector, apoptosis antagonizing transcription factor (AATF)
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and mediates survival in part through the transcriptional regulation of AKT1 (Ishigaki, S., et
al, In press). In contrast, PERK also regulates expression of CHOP which is an important
effector of ER stress-mediated β-cell death [20–23,67]. Thus, PERK could be another
important determinant of the switch between life and death.

Potential mechanisms of the UPR binary switch between life and death
Perhaps under tolerable ER stress conditions, feedback regulators such as BiP and Gadd34 turn
off UPR pathways to tip the balance in favor of survival effectors. However under unresolvable
ER stress conditions, the UPR master regulators are hyperactivated bypassing negative
regulation therefore tipping the balance towards apoptosis effectors.

Switching may also involve regulation of the effectors themselves at the transcriptional and
post-transcriptional levels. It has been shown that survival is favored during mild and tolerable
ER stress as a consequence of the intrinsic instabilities of mRNAs and proteins that promote
apoptosis compared to those that facilitate protein folding and adaptation. As a consequence,
the expression of apoptotic proteins is short-lived as cells adapt to stress [68]. This observation
indicates that post-transcriptional mechanisms regulating the ratio between survival and
apoptotic effectors are important for controlling life and death of β cells.

Conclusion
Analysis of ER stress-mediated β-cell death as the balancing act between survival and apoptotic
effectors of the UPR allows new insight into the mechanisms of β-cell death during the
progression of diabetes. The complete understanding of the switching process between life and
death will enable us to predict when apoptotic effectors outweigh survival effectors and prevent
β cell death. Systems approaches using genomics including SNP analysis, transcriptomics, and
proteomics are necessary to the complete understanding. To verify our concept and develop a
novel therapeutic modality, we also need to incorporate experimental and clinical data into our
binary switch model. Furthermore, studying this switch between life and death will have a
direct impact on future therapies for diabetes.
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Figure 1. ER stress
In order for proteins to fold properly within the ER, ER homeostasis must be maintained. ER
homeostasis is defined by the dynamic balance between the ER protein load and the ER capacity
to process this load. ER homeostasis can be perturbed by physiological and pathological
stimuli. Disruption of ER homeostasis causes accumulation of unfolded and misfolded proteins
in the ER. This condition is referred as ER stress.
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Figure 2. The Unfolded Protein Response
Upon ER stress, a signaling network termed the unfolded protein response (UPR) is activated.
The UPR is initiated by three master regulators: IRE1, PERK, and ATF6. Together these
transducers regulate three types of effectors with the following functions: homeostatic
regulation to attenuate ER stress(a), feedback regulation to turn off the UPR when ER
homeostasis is restored (b), and apoptotic regulation balancing both survival and death
effectors (c).
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Figure 3. Binary switch between life and death
The UPR regulates both adaptive/survival and apoptotic effectors. Under tolerable ER stress
conditions, the expression and activation of adaptive effectors outweigh the induction of
apoptotic effectors therefore promoting cell survival. However under unresolvable ER stress
conditions in which ER homeostasis cannot be restored, expression and activation of apoptotic
effectors outweigh adaptive effectors leading to cell death. Thus the UPR acts as a binary switch
between life and death. The underlying mechanisms of this switch are not well understood but
may involve hyperactivation of the UPR sensors, dysregulation of UPR negative feedback
loops, and differential regulation of adaptive/survival and apoptotic effectors at both
transcriptional and post-transcriptional levels.
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