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Abstract: We demonstrate the use of a compressive sampling algorithm for 
on-chip fluorescent imaging of sparse objects over an ultra-large field-of-
view (>8 cm

2
) without the need for any lenses or mechanical scanning. In 

this lensfree imaging technique, fluorescent samples placed on a chip are 
excited through a prism interface, where the pump light is filtered out by 
total internal reflection after exciting the entire sample volume. The emitted 
fluorescent light from the specimen is collected through an on-chip fiber-
optic faceplate and is delivered to a wide field-of-view opto-electronic 
sensor array for lensless recording of fluorescent spots corresponding to the 
samples. A compressive sampling based optimization algorithm is then used 
to rapidly reconstruct the sparse distribution of fluorescent sources to 
achieve ~10 µm spatial resolution over the entire active region of the 
sensor-array, i.e., over an imaging field-of-view of >8 cm

2
. Such a wide-

field lensless fluorescent imaging platform could especially be significant 
for high-throughput imaging cytometry, rare cell analysis, as well as for 
micro-array research. 

©2010 Optical Society of America 

OCIS codes: (110.2970) Image detection systems; (170.2520) Fluorescence Microscopy. 
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1. Introduction 

Compressive sampling (also known as compressive sensing) [1–3] is a recently emerging field 
that in general aims to recover a function (i.e., a signal) from many fewer 
measurements/samples than normally required according to the Shannon’s sampling theorem. 
This emerging theory has been recently applied to various fields to bring new insights to 
measurement and imaging science [4–18]. As an example, it has been used to create a single 
pixel camera that is especially valuable for imaging at different parts of the electro-magnetic 
spectrum where high-density-pixel imagers are not readily available or are highly costly  
[5–7]. Among many others, another recent achievement of this theory in photonics was the 
use of compressive decoding in holographic reconstruction of a 3D object volume [14,15]. 

In this manuscript, we introduce a new on-chip fluorescent imaging modality that utilizes 
a compressive sampling based algorithm to achieve ~10µm spatial resolution for imaging of 
sparse objects over an ultra-large field of view of >8cm

2
 without the use of any lenses or 

mechanical scanning. In this approach (see Fig. 1), fluorescent samples, positioned e.g., 
within a micro-channel, are pumped through a prism interface, where the excitation light (in 
the form of propagating waves) faces total internal reflection after exciting the entire sample 
volume. The fluorescent emission from the excited micro-objects is then collected using a 
dense fiber-optic faceplate and is delivered to a large format opto-electronic sensor array 
without the use of any lenses. This detected lensfree fluorescent image does not have any 
physical magnification and therefore has a field-of-view (FOV) that is equivalent to the 
detector active area, covering >8 cm

2
 (see Fig. 1). On the other hand, because of its lensless 

operation, the detected fluorescent spots are significantly enlarged and distorted due to free 
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space propagation, large pixel size, as well the as the faceplate operation. We demonstrate that 
these distortions can be significantly eliminated by using a digital reconstruction/decoding 
algorithm that is based on compressive sampling theory to achieve ~10µm spatial resolution 
across the entire detector active area. When compared to our earlier lensfree fluorescent 
imaging report [19],  our new results present an improvement of ~5 fold in spatial resolution 
without a trade-off in FOV, which we attribute to the use of the fiber-optic faceplate and the 
compressive sampling based numerical processing. Furthermore, with this new on-chip 
platform, we also demonstrate lensfree fluorescent imaging of vertically stacked micro-
channels, all in parallel, further increasing the throughput of fluorescent on-chip imaging. 

 

Fig. 1. (a) Schematic diagram of the lensfree on-chip fluorescent imaging platform is shown. 
Drawing is not to scale. This imaging platform has unit magnification such that the imaging 
field-of-view equals to the entire active area of the sensor array (i.e., >8 cm2). The TIR 
condition occurs at the glass-air interface at the bottom facet of the coverglass. To avoid 
detection of scattered pump photons a plastic absorption filter is used after the faceplate. 
Typical dimensions: w1 x w2 = 25mm x 35mm; p = 1.7 cm; k ~10-100 µm; f = 1-2 cm. (b) A 
microscope image of the faceplate is shown. The numerical aperture of each fiber is ~0.3. 

This on-chip fluorescent imaging platform, being lensfree and compact, together with a 
powerful compressive sampling algorithm behind it, would especially be valuable for high-
throughput imaging of cells within micro-fluidic chips. Specifically, it would be quite 
important for cytometry applications involving e.g., rare-cell analysis in large area micro-
fluidic devices. In such rare-cell analysis applications [20–23], the target cells of interest (e.g., 
circulating tumor cells in whole blood samples) occur at extremely low concentrations which 
make their corresponding images highly sparse, providing an important connection to 
compressive sampling. Therefore, the presented fluorescent on-chip imaging technique, 
having an ultra-wide FOV of >8 cm

2
 within a lensfree compact platform, would be quite 

valuable to rapidly screen large area micro-fluidic devices to quantify the capture of specific 
cells at extreme rare statistics, providing a useful tool for high-throughput cytometry. 
Furthermore, as we demonstrate in this work, our platform also permits simultaneous imaging 
of vertically stacked micro-channels on the same chip, which is another step forward towards 
increasing the fluorescent imaging throughput. Our approach could also potentially impact 
micro-array imaging technologies by providing lensless quantification of hundreds of 
thousands of micro-spots, all in parallel, within a compact chip. 

Finally, we would like to also point out the possibility that the compressive fluorescence 
decoding approach used in this work may also be extended to lens-based fluorescent 
microscopy, and in particular to recent fluorescent super-resolution approaches including 
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PALM and STORM [24,25] to potentially reduce the number of frames that is required for 2D 
or 3D fluorescent imaging. Such a compressive decoding approach, however, would need to 
be carefully tested in terms of achievable localization accuracy and potential artifacts for 
multiple fluorescent points located within a diffraction limited spot. 

2. Lensfree fluorescent imaging on a chip and compressive sampling relationship 

To briefly go over the relationship between lensfree fluorescent imaging on a chip and 
compressive sampling theory, let us denote the fluorescent particle/cell distribution within the 

sample volume with 
1 2

[ , ,..., ]
N

c c c c= where N denotes the number of voxels. To better relate 

our model to a real imaging experiment, let us also assume that the physical grid size in c is d. 

For visualization purposes, one can think of a simple microfluidic channel such that c would 

represent the points on the active surface of the channel, where the captured cells reside 

within an imaging area of N x d
2
. For multi-layered micro-channels, however, c would 

represent a 3D discrete volume. 
For the applications that are of interest to this work, such as wide-field fluorescent 

cytometry, rare cell analysis and high-throughput micro-array imaging, one can in general 

assume that c  is sparse to start with, such that only S coefficients of c are non-zero, where 

S<<N. This assumption is further justified with our unit magnification lensless geometry since 
most cells of interest would not be over-sampled due to limited spatial resolution, restricting 

the value of S for a practical c . Therefore, the sparsity of c is the first connection to 

compressive sampling, as it is an important requirement of its underlying theory [1–3]. 

In a lensfree fluorescent imaging platform as shown in Fig. 1(a), c uniquely determines 

the intensity distribution that is impinging on the detector-array. For each non-zero element of 

c , a wave is transmitted, and after passing through different layers on the chip it incoherently 

adds up with the waves created by the other fluorescent points within the sample volume. 
Therefore, one can write the intensity distribution right above the detector plane (before being 
measured/sampled) as: 

 
1

( , ) ( , )
N

i i

i

f x y c x yψ
=

=∑   (1) 

where ( , )
i

x yψ represents the 2D wave intensity right before the detector plane that originated 

from the physical location of 
i

c . The analytical form of 
i

ψ  can be derived for any particular 

lensfree geometry such as the one presented in Fig. 1(a). However, from a practical point of 
view, it can easily be measured for each object plane by using e.g., small fluorescent particles, 
which is the approach taken in this work. 

Without the use of a faceplate in Fig. 1(a), it is straightforward to see that the functional 

form of 
i

ψ for a given object plane is space invariant. This is equivalent to say that 

( , ) ( , )
i i i

x y p x x y yψ = − − , where ( , )p x y is the incoherent point-spread function (psf) of the 

system for a given object layer, and ( , )
i i

x y denotes the physical location of 
i

c . Note that in 

this definition, ( , )p x y  has no relationship to the pixel size at the detector since Eq. (1) 

describes the intensity right before the sampling plane. The same space invariance property 
also holds with a dense fiber-optic faceplate as shown in Fig. 1(a) since there is a significant 
gap between the sample and faceplate planes, and a similar gap between the bottom surface of 
the faceplate and the detector plane. Therefore for our lensfree fluorescent imaging geometry 
of Fig. 1(a), with or without the faceplate operation, one can in general write: 

 
1

( , ) ( , )
N

i i i

i

f x y c p x x y y
=

= − −∑   (2) 

For multiple layers of fluorescent objects, a similar equation could also be written where 
the incoherent point-spread function of different layers are also included in the summation. 
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Equation (2) relates the “already” sparse fluorescent object distribution ( c ) to an optical 

intensity distribution that is yet to be sampled by the detector array. The representation basis 

provided by ( , )
i

x yψ  is surely not an orthogonal one since it is based on lensfree diffraction. 

This is not limiting the applicability of compressive decoding to our work since c is assumed 

to be already sparse, independent of the representation basis. On the other hand, the fact that 

( , )
i

x yψ does not form an orthogonal basis limits the spatial resolution that can be 

compressively decoded, since for closely spaced 
i

c values, the corresponding ( , )
i

x yψ  would 

be quite similar to each other for a given detection signal to noise ratio (SNR). This is related 
to the restricted isometry property [1,2] of our system as will be discussed later on; however 
its physical implication is nothing new since it is already known that we trade off spatial 
resolution to achieve wide-field lensfree fluorescent imaging with unit magnification. 

Next, sampling of ( , )f x y  at the detector-array can be formulated as: 

 ( , ) ( , )m m mI f x y x x y y dx dyφ= ⋅ − − ⋅ ⋅∫∫   (3) 

where ( , )
m m m

x x y yφΦ = − −  represents the sampling/measurement basis; m=1:M denotes 

the m
th

 pixel of the detector-array with center coordinates of (
m

x ,
m

y ); and ( , )x yφ  represents 

the pixel function, which can be approximated to be a detection constant, K, for |x|,|y|≤W/2 
(assuming a square pixel size of W) and 0 elsewhere, |x|,|y|>W/2. In this notation, the fill-
factor of the detector-array together with the quantum efficiency etc are all lumped into K. 
Note that in this work, we have used W=9 µm and W=18 µm (through pixel binning). 

With these definitions, the lensfree fluorescent imaging problem of this manuscript can be 

summarized as such: based on M independent measurements of 
m

I , we would like to estimate 

the sparse fluorescent source distribution, c , at the sample. 

To give more insight, Eq. (3) models a hypothetical near-field sampling experiment, where 

each pixel of the CCD measures part of ( , )f x y . For an arbitrary intensity distribution 

( , )f x y  impinging on the detector array, a few pixel values (
m

I ) can surely not represent the 

entire function. However, if the sampled intensity profile at the detector plane is created by a 
sparse distribution of incoherent point sources located in the far-field, then much fewer pixels 
can potentially be used to recover the source distribution based on compressive decoding. For 
this decoding to work efficiently, each pixel should ideally detect “some” contribution from 

all the 
i

c  values, which implies the need for a relatively wide point spread function. However 

since spreading of the fluorescence also decreases the signal strength at the detector plane, the 
optimum extent of the point spread function is practically determined by the detection SNR. 

On one extreme, if the same sparse source distribution ( c ) was hypothetically placed in direct 

contact with the CCD pixels, this would not permit any compressive decoding since each 
incoherent point source can now only contribute to a single pixel value. For instance two sub-
pixel point sources that are located on the same pixel would only contribute to that particular 
pixel, which would make their separation physically impossible regardless of the 
measurement SNR. However, the same two sub-pixel point sources could be separated from 
each other through compressive decoding if they were placed some distance above the 
detector plane, such that more pixels could detect weighted contributions of their emission. 

Since we are considering non-adaptive imaging here (i.e., no a priori information about 
the possible x-y locations of the fluorescent particles/cells), we have not used a sub-set of the 

pixel values (Im) to reconstruct c . Therefore, for a single layer of object, using a unit 

magnification as in Fig. 1, we have N x d
2
 = M x W

2
. In this work, to claim a spatial 

resolution of ~10µm at the object plane, we used d = 2-3 µm, which implies N ≥ 9M for W=9 
µm. For some experiments, we have also used a pixel size of W=18µm with d=2µm, implying 
N=81M. Furthermore, for multi-layer experiments (to be reported in the next section) where 3 
different fluorescent channels were vertically stacked and simultaneously imaged in a single 
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snap-shot, we had N=27M, which all indicate compressive imaging since the number of 
measurements (M) are significantly smaller than the number of reconstructed points (N). 

As already known in compressive sampling literature, the effectiveness of the decoding 

process to estimate c  in our technique should also depend on the maximum spatial 

correlation between 
m

Φ and 
i

ψ for all possible m=1:M and i=1:N pairs. Accordingly, this 

maximum spatial correlation coefficient defines the measure of incoherence between 
sampling and representation bases, which can then be related to the probability of accurately 

reconstructing c  from M measurements [1–3]. For a given object plane, because of the shift 

invariant nature of both 
m

Φ and 
i

ψ , this coherence calculation is equivalent to calculation of 

the correlation between the pixel function ( , )x yφ  and the incoherent point-spread function 

p(x,y). The smaller the correlation between these two spatial functions is, the more accurate 
and efficient the compressive decoding process gets. Based on this, a smaller pixel size would 
further help in our lensfree on-chip scheme by reducing this maximum correlation coefficient, 

i.e., increasing incoherence between 
m

Φ and 
i

ψ . 

Thus, we can conclude that the primary function of compressive sampling in this work is 
to digitally undo the effect of diffraction induced spreading formulated in Eqs. (1)–(2) through 
decoding of lensfree image pixels indicated in Eq. (3). Such a decoding process, however, can 
also be done physically rather than digitally, through the use of a lens (as in conventional 
fluorescent microscopy at the cost of reduced FOV) or through the use of a faceplate as we 
demonstrate in this work. The use of the faceplate in Fig. 1 partially decodes the diffraction 

induced spreading, which also relatively increases the correlation between ( , )x yφ  and p(x,y), 

since p(x,y) gets narrower and stronger with the faceplate. Despite this relatively increased 
coherence between the sampling and representation bases, the improvement in the detection 

SNR with the faceplate enables better measurement of p(x,y) as well as 
m

I  values, which then 

improves the accuracy of the compressive decoding process in terms of achievable spatial 
resolution. This will be further quantified in experimental results presented in the next section. 

Finally, we would like mention that the above analysis could be also done using a different 
set of measurement and representation bases without changing the end conclusions. In the 
above analysis, we did not include the diffraction process as part of the measurement, and 
therefore the measurement basis only involved the pixel sampling at the detector-array. As an 

alternative notation, we could have also used ( , ) ( , )
i i i

x y x x y yψ δ= − −  for the representation 

basis, which implies that Ψ  is an identity matrix. This is not a surprising choice since the 

object, c is already sparse and therefore the sparsifying matrix can be seen as an identity 

matrix. Based on this definition of the representation basis, the measurement basis 
m

Φ will 

now need to include both the diffraction and the pixel sampling processes. Following a similar 
derivation as in Eq. (3), the measurement basis now becomes: 

( , ) ( , )m i i m mp x x y y x x y y dx dyφΦ = − − ⋅ − − ⋅ ⋅∫∫ . As expected, the correlation behavior 

between 
m

Φ and 
i

ψ for all possible m and i pairs remains the same as before, yielding the 

same set of conclusions that we arrived using the previously discussed choice of bases. 
While it is just a matter of notation, with this new pair of bases, it is also easier to 

qualitatively relate the spatial resolution to restricted isometry property (RIP) of the system. 
RIP is a measure of the robustness of sparse signal reconstruction for N>M and S<<N [1–3]. 
For this new choice of bases, RIP holds if all the possible subsets of S columns taken from 
ΦΨ = Φ  are nearly orthogonal to each other. Assuming that the pixel size is much narrower 
than the incoherent psf of the object layer of interest, we can then approximate: 

 
2

( , ) ( , ) ( , )m m i m i m m m i m ip x x y y x x y y dx dy K W p x x y yφΦ ≈ − − ⋅ − − ⋅ ⋅ = ⋅ ⋅ − −∫∫  

Therefore for RIP to hold in this lensfree system, for any arbitrary S choices of i = 1:N, the 

sub-set of functions 2 ( , )
m m i m i

K W p x x y yΦ ≈ ⋅ ⋅ − −  should be nearly orthogonal in 
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( , )
m m

x y . If one purely relies on diffraction, this condition can be harder to satisfy for densely 

spaced ( , )
i i

x y  which practically limits the achievable spatial resolution for a given detection 

SNR. Once again, physically this is not surprising since it is already known that we trade off 
resolution to achieve wide-field lensfree fluorescent imaging on a chip. Structured surfaces 
could potentially help achieving a better resolution by randomly breaking the space invariance 
of the incoherent psf, which is not going to be covered within the context of this manuscript. 

 

Fig. 2. (a-b) Lensfree fluorescent images of 10 µm particles are compared with and without the 
faceplate. To make this comparison fair, except the faceplate, all the other dimensions in  
Fig. 1(a) are kept the same in both of these experiments. With the use of the faceplate, the 
spatial spreading of the fluorescent signatures at the CCD plane is reduced from ~180 µm 
down to ~36 µm (FWHM). This improvement is also evident in the comparison that is 
provided by the digitally zoomed regions shown in (c1-f1) and (c2-f2), which correspond to 
experiments “without the faceplate” and “with the faceplate”, respectively. The same zoomed 
images of (c2-f2) are also decoded using a compressive sampling algorithm to yield (c3-f3). As 
further quantified in Figs. 4, 5 and 6 this compressive decoding process improves the spatial 
resolution down to ~10 µm all across the field of view of the sensor. 

3. Experimental results and discussion 

To validate and quantify the performance of our on-chip imaging technique, we imaged 
fluorescent micro-particles (2µm and 10µm diameter, Excitation: 495nm, Emission: 505 nm) 
using the lensfree set-up of Fig. 1(a). In this set-up, we used a large format CCD (KAI-11002 
from Kodak, pixel size: 9 µm, active area: 25 mm x 35 mm) together with a fiber-optic 
faceplate where the numerical aperture of each fiber was ~0.3 with a period of ~6 µm [see 
Fig. 1(b)]. The results of these on-chip fluorescent imaging experiments are summarized in 
Figs. 2–8, which point to several important features of our platform. 

First, the comparison provided in Figs. 2(a) and 2(b) indicates that the fiber-optic faceplate 
in our imaging geometry (Fig. 1) significantly reduces the diffraction induced spreading of the 
fluorescent signatures of the objects. Specifically, based on Fig. 2 we conclude that the 
FWHM of the fluorescent signatures at the detector plane is now reduced by ~5 fold, from 
~180 µm down to ~36 µm using the faceplate (note that except the faceplate thickness, all the 
other vertical distances are kept the same in both configurations - with and without the 
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faceplate - to provide a fair comparison). This improvement is quite important as it permits a 
better detection SNR and a higher spatial resolution to be achieved, which will be further 
quantified in the next figures. 

The physical function of the faceplate used in our experiments is to collect the fluorescent 
emission from the specimen with an effective numerical aperture of ~0.3 and to guide it to the 
detector array. However, since the fluorescent emission from the objects spreads with an 
effective numerical aperture of 1 over the air gap above the faceplate, several oblique 
fluorescent rays (corresponding to higher angles than the acceptance NA of each fiber) remain 
unguided. These unguided rays (which undergo various partial reflections over multiple fiber 
cross-sections) are also detected at the sensor plane and are incoherently superimposed onto 
the fluorescent signal that is guided through the core of each fiber. However, since the 
thickness of the faceplate is relatively large (~1 cm), the contribution of these unguided 
fluorescent waves is weaker than the guided fluorescent signal. 

Therefore, the faceplate in our on-chip imaging geometry, even though significantly 
reduces the signal spreading at the detector plane as shown in Fig. 2, also brings its own 
distortion to the recorded images by creating a unique incoherent point-spread function (psf) 
at the detector plane. The exact spatial form of this 2D incoherent point-spread function is 
determined by the faceplate periodicity and lattice, numerical aperture of the individual fibers, 
the distance between the sample plane and the upper surface of the faceplate, as well as the 
distance between the exit plane of the faceplate and the detector array. Once all these 
parameters are fixed in our imaging geometry (see Fig. 1 for details), the resulting psf for a 
given object plane is easily measured using e.g., small diameter fluorescent particles that are 
imaged at a low concentration. Quite importantly, the physical gap (~50-100 µm) between the 
sample and the faceplate planes, together with the gap between the faceplate and the detector 
planes (~75-100 µm) ensure that this incoherent point spread function is space invariant all 
across our imaging FOV, which enables the use of a single point spread function for decoding 
of each object plane as already highlighted in the previous section. 

After this brief discussion on the use of the faceplate, let us now expand on the 
compressive decoding results of our imaging technique. As discussed in the previous section, 
the main function of the compressive sampling theory in our work is to recover the 
distribution of the fluorescent points that created the 2D lensless image sampled at the 
detector array. Knowing the incoherent psf of our system for each object layer, for an arbitrary 
distribution of fluorescent sources (within e.g., a single micro-channel or a stack of vertical 
channels), one can easily calculate the expected lensfree image at the detector-array. Using 
this fact, through a compressive sampling algorithm [26] we optimize the distribution of the 
fluorescent sources at the object volume based on a given 2D lensless fluorescent 
measurement. The choice of this compressive decoder [26] is highly suitable for the presented 
wide FOV fluorescent imaging platform since it is especially designed for sparse signal 
recovery from large data sets. 

To be more specific, our reconstruction/decoding process can be formulized as an l1-
regularized least squares problem (LSP) [26],  such that: 

 det 2 1
ˆ=argmin convc I M c cβ− ⋅ + ⋅  (4) 

where β > 0 is a regularization parameter (typically between 1 and 10); Idet is the detected raw 

fluorescent image at the sensor-array (in a vector form); 
conv

M  represents the 2D convolution 

matrix based on the incoherent point spread function of the system; c  is the fluorescent 

source distribution that creates the lensfree image at the detector plane; and 
1/
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∑ represents the lp norm of vector x . For multiple micro-channels that are 

vertically stacked (see e.g., Figs. 7, 8), there is a separate 
conv

M  for each source layer. The 

compressive decoder used in this work [26] is based on truncated Newton interior-point 
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method and rapidly provides a sparse solution ( ĉ ) for Eq. (4) especially for large-scale data 

sets using a non-negativity constraint, which is surely satisfied for fluorescent imaging in 
general. 

 

Fig. 3. (a1) shows a digitally zoomed lensfree fluorescent image of 10µm particles that is 
obtained without the use of a faceplate. (a2) illustrates the output of the compressive decoder 
for the same image in (a1). (a3) shows the same region of interest imaged this time using a 
faceplate as shown in Fig. 1(a). The compressive decoder output of image (a3) is shown in 
(a4). The same story is repeated in (b1) through (b4) for a different region of interest. The 
arrows in these images specifically point to regions where the improvement due to the faceplate 
becomes apparent to better resolve closely spaced fluorescent particles. 

The experimental results that illustrate and quantify the performance of this compressive 
decoding and reconstruction process are summarized in Figs. 2–8. Specifically,  
Figs. 2(c3)–2(f3) demonstrate the compressive decoding results of the raw lensfree images 
acquired with a faceplate. Note that the same compressive sampling algorithm also performs 
very well even without the use of a faceplate to resolve rather closely spaced fluorescent 
particles from each other as highlighted in Fig. 3. However, Fig. 3 also compares the 
performance of the faceplate for decoding of the same field-of-view, which clearly illustrates 
the superior performance of faceplate based decoded images in terms of resolving closely 
spaced fluorescent particles without any reconstruction artifacts or ambiguities (e.g., refer to 
the arrows in Fig. 3). 

#125358 - $15.00 USD Received 12 Mar 2010; revised 25 Apr 2010; accepted 3 May 2010; published 5 May 2010
(C) 2010 OSA 10 May 2010 / Vol. 18, No. 10 / OPTICS EXPRESS   10518



 

Fig. 4. (Top Row) shows raw lensfree fluorescent images of different pairs of 10 µm diameter 
particles imaged using the set-up of Fig. 1. As the particles get closer to each other, their 
signatures in the raw lensfree image become indistinguishable to the bare eye. The inset images 
in the top row (bottom right corner of each image) illustrate transmission microscope images of 
the same particles from which the center-to-center distance (g) in each case is calculated only 
for comparison purposes. (Middle Row) illustrates the results of the compressive decoding 
process for each lensfree image of the top row. gCS refers to the center-to-center distance of the 
resolved fluorescent particles in each image, where CS denotes “compressive sampling”. Even 
for g = 10µm case (far right column), we can clearly resolve the fluorescent particles from each 
other with gCS = 9µm. The pixel size in the decoded image is 3µm, whereas the raw lensfree 
image has been sampled with a pixel size of W = 9µm at the detector array, i.e., N = 9M. The 
reason that the reconstructed points for gCS = 9µm case do not touch each other (unlike the 
microscope image shown in the inset) is that the incoherent point-spread function of the system 
has been estimated using 10µm diameter fluorescent particles. Refer to Figs. 5, 6 for imaging 
of 2µm diameter fluorescent particles. The computation times of these decoded images vary 
between 0.1 min to 0.5 min on an Intel Centrino Duo Core, 1GHz PC. (Bottom Row) illustrates 
the deconvolution results of the Lucy-Richardson algorithm for the same set of lensfree images 
shown in the top row. gLR refers to the center-to-center distance of the resolved fluorescent 
particles in each image, where LR denotes “Lucy-Richardson”. The number of iterations [19] 
in these deconvolution results ranged between 200 and 400, matching with the overall 
computation time of the CS results for each image. These results indicate that the LR algorithm 
can resolve particles with g~18 µm, whereas the CS decoder can clearly resolve particles with 
g~10 µm. 

We further quantified the spatial resolution of this compressive decoding process by 
resolving several closely packed fluorescent micro-particles from each other. Figures 4, 5 and 
6 summarize our experimental results which clearly demonstrate resolving two fluorescent 
particles that are separated by g~10µm (center to center). Figure 4 and Fig. 5 are obtained 
using 10µm and 2µm diameter fluorescent particles, respectively; and the pixel size in the 
decoded images is 3µm and 2µm, which implies N = 9M and N~20M for Fig. 4 and Fig. 5, 
respectively. In Fig. 6, we further reduced M by pixel binning at the detector-array such that 
the pixel size became W = 18µm. This implies N = 81M, which still permitted reconstruction 
of 2µm particles that were separated by g~12µm (center to center) as shown in Fig. 6. Note 
that even if the detector array was to directly sample these fluorescent objects in their near-
field (hypothetically), the spatial resolution would not be equivalent to ~10µm due to the large 
pixel size (W = 9µm or 18µm). The computation times of these decoded images are fairly 
small ranging between 0.1min to 0.5min using an Intel Centrino Duo Core, 1GHz PC. 

#125358 - $15.00 USD Received 12 Mar 2010; revised 25 Apr 2010; accepted 3 May 2010; published 5 May 2010
(C) 2010 OSA 10 May 2010 / Vol. 18, No. 10 / OPTICS EXPRESS   10519



 

Fig. 5. Same as Fig. 4 except for 2µm diameter fluorescent particles. The raw lensfree images 
are decoded to resolve closely spaced particles from each other. The inset images (bottom right 
corner of each decoded image) illustrate regular transmission microscope images of the same 
particles from which the center-to-center distance (g) in each case is calculated for comparison 
purposes. The bottom row illustrates resolving 2µm particles that are separated by g ~12µm 
and 8µm. The pixel size in the raw lensfree fluorescent images is W = 9µm, whereas the pixel 
size of the decoded images is 2µm, i.e., N~20M. The point-spread function of the system has 
been estimated using 2 µm diameter fluorescent particles imaged at a low concentration. 

 

Fig. 6. Same as Fig. 5 (2µm fluorescent particles) except with a pixel size of W = 18µm at the 
detector-array, such that 4 pixels of the CCD are now binned together. Similar to Fig. 5, the 
raw lensfree images are decoded to resolve closely spaced fluorescent particles from each 
other. The pixel size of the decoded images is still 2µm, same as in Fig. 5, which this time 
implies N = 81M. Because of a significant reduction in M when compared to Fig. 5, the 
performance of the compressive decoding is relatively degraded, which is especially visible for 
reconstruction of g = 8µm case (bottom right corner). Regardless, even with N = 81M, we have 
achieved decoding of sub-pixel objects as shown in e.g., g = 12 µm case. 

Another important dimension of the presented lensfree approach is its ability to 
reconstruct the distribution of fluorescent micro-objects located at multiple micro-channels 
that are stacked vertically. This enables to decode the 2D lensfree fluorescent image at the 
detector-array into a 3D distribution through compressive sampling, which is especially 
important to further increase the throughput of fluorescent on-chip imaging. A proof of 
concept demonstration of this capability is presented in Figs. 7 and 8 where the fluorescent 
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micro-particles (10µm diameter) located at two and three different micro-channels, 
respectively, were imaged and decoded all in parallel. In these two experiments the 
fluorescent channels were vertically separated by 50 and 100 µm, respectively. In Fig. 7 the 
comparison of the decoding results with and without the faceplate is also provided for the 
same sample volume, which illustrates the superior performance of the faceplate case for 
resolving overlapping fluorescent signatures from each other. 

 

Fig. 7. (a) Lensfree fluorescent imaging of 2 layers that are vertically separated by ~50µm is 
illustrated. (b1) and (d1) show two different digitally cropped regions of the large FOV that are 
imaged without the use of a faceplate (see Fig. 1). The compressive decoding results of these 2 
raw lensfree images for each vertical channel are illustrated in (b2-b3) and (d2-d3), 
respectively. The same regions are also imaged using the faceplate as shown in (c1) and (e1). 
The compressive decoding results of these 2 raw lensfree images for each vertical channel are 
also illustrated in (c2-c3) and (e2-e3), respectively. 

In general, lensfree on-chip imaging (both transmission [14,15,27,28] and fluorescent 
[19]) can be thought as an effective compressive sampling encoder. Recent results on 
“compressive holography” provide an important proof of this for lensfree holographic 
imaging where a 2D array of pixels at the detector-array was used to reconstruct a 3D volume 
of voxels without ambiguities [14,15]. Therefore one of the main contributions of these recent 
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results was to use compressive sampling theory to handle the ill-posed problem of 3D image 
reconstruction from lensfree in-line holograms. This important contribution remains true 
regardless of the physical magnification embedded in the lensless imaging system. However, 
the effectiveness of compressive sampling and the encoding process at the detector array even 
further increases if there is no physical magnification in the lensless system, such that the 
detection process now becomes either under- or critically-sampled (as in lensfree holography 
with unit fringe magnification [27]) or highly ambiguous due to significant spatial overlap and 
distortion at the detector plane (as in lensfree fluorescent imaging of this work). Therefore, as 
further discussed in the previous section, the primary function of the compressive decoding 
process in our work is to remove this spatial ambiguity and distortion due to lensfree and 
magnification-free operation of our wide-field fluorescent imaging platform. 

 

Fig. 8. Same as in Fig. 7, except for 3 fluorescent layers that are vertically separated by ~100 
µm from each other. Two different regions are imaged using a faceplate, and the raw lensfree 
images are then decoded to reveal the distribution of the fluorescent particles at each layer. In 
the raw lensfree images, the fluorescent signatures from the 3rd layer are rather faint and need 
careful examination to see them with the bare eye, whereas the decoder output for the 3rd layer 
faithfully resolves their location. Such a computational strength would be quite significant to 
further increase the throughput in e.g., imaging cytometry experiments. 

Finally, we would like to also provide a quantitative comparison of the presented 
compressive sampling based reconstruction approach over some of the existing deconvolution 
methods that could potentially be used for the same purpose. One such numerical recipe is the 
Lucy-Richardson algorithm [29–31] which relies on the knowledge of the incoherent point 
spread function to iteratively converge to the maximum-likelihood estimation of the 
fluorescence source distribution based on the detected image. This algorithm is not restricted 
to sparse objects only and has been shown to be quite effective converging within typically a 
few hundred iterations to the source distribution [19]. A comparison of the performance of 
this algorithm against compressive sampling based reconstruction is demonstrated in Fig. 4 
(bottom row), which clearly indicates the advantages of the compressive decoding approach 
especially in terms of spatial resolution. Figure 4 demonstrates that, for the same set of 
lensless fluorescent measurements, the compressive decoder achieves ~10µm resolution, 
while the Lucy-Richardson deconvolution algorithm achieves ~20µm. This behavior is 
intuitively expected since the Lucy-Richardson algorithm does not use the sparsity of the 
object as an optimization constraint. Besides resolution, another important difference between 
the two approaches is that unlike compressive sampling which can easily perform multi-layer 
reconstruction for sparse objects as illustrated in Figs. 7–8, the Lucy Richardson algorithm 
would need to be significantly modified to handle 3D reconstruction. On the other hand, 
conventional deconvolution algorithms that do not rely on a sparsity constraint (such as the 
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Lucy Richardson algorithm) could potentially better handle highly dense fluorescent samples, 
where the sparsity condition of the object is no longer satisfied. 

Before we conclude, we would like to also point out that the compressive decoding results 
of this work (in particular Figs. 4–8) could also be extended to conventional lens-based 
fluorescent microscopy, and in particular to recent fluorescent super-resolution approaches 
including PALM and STORM [24,25]. A significant benefit of the use of a compressive 
decoder in such super-resolution approaches would be to reduce the number of frames that is 
required for 2D and 3D fluorescent imaging. It is a known fact that these super-resolution 
techniques work based on localization accuracy and they have to reject a frame if two 
fluorophores within a point-spread function width emit at the same time. Some of these 
normally rejected fluorescent frames could potentially be decoded using compressive 
sampling approaches to significantly reduce the imaging time of fluorescent imaging in these 
super-resolution approaches. Potentially, such a compressive decoding approach, together 
with the computational power of next-generation graphics processing units (GPUs), may in 
the near-future lead to “real-time” super-resolution fluorescent microscopy. 

4. Conclusions 

While conventional fluorescent microscopy is already quite powerful, there is still a 
significant need for high-throughput and compact fluorescent imagers that can potentially be 
used with large format micro-fluidic devices to perform rapid imaging/screening of e.g., rare 
cell events or DNA/protein micro-arrays. Towards this end, here we have introduced an on-
chip fluorescent imaging modality that achieves a spatial resolution of ~10µm without the use 
of any lenses over an ultra-large field of view of >8 cm

2
 based on the compressive sampling 

theory. In this lensfree fluorescent imaging technique, the samples of interest are positioned 
onto a chip and are pumped through a prism interface, where the excitation beam is filtered 
out by total internal reflection occurring at the bottom facet of the sample holder. The 
fluorescent emission from the sample volume is then collected using a fiber-optic faceplate 
which delivers the fluorescent signal onto the detector plane through a unique incoherent point 
spread function. The detected 2D lensless fluorescent image is rapidly processed using a 
compressive sampling algorithm to reconstruct the sparse fluorescent source distribution at the 
sample volume covering >8 cm

2
 FOV. Such a wide-field and compact fluorescent imaging 

platform could especially be very important for high-throughput cytometry, rare cell analysis 
as well as for micro-array research. 
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