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Research

Recreational Water Quality 
Criteria
Ambient water quality criteria. Viral, 
bacterial, and protozoan pathogens are 
responsible for infectious disease outbreaks 
among recreators at coastal and inland sur-
face waters (Yoder et al. 2008). To protect the 
public from recreational waterborne illness, 
the U.S. Environmental Protection Agency 
(EPA) established ambient water quality crite-
ria (AWQC; U.S. EPA 1986). The epidemio-
logic studies on which the current AWQC are 
based suggest that at freshwater beaches, the 
rate of acute gastrointestinal illness attribut-
able to swimming should be about 8 cases 
per 1,000 swimmers when monthly geo-
metric mean (GM) density (concentration) 
of Escherichia coli is < 126 colony-forming 
units (CFU)/100 mL), or if the monthly GM 
density of enterococci is < 33 CFU/100 mL 
(EPA 1984). For marine waters, the gastro-
intestinal illness rate should be about 19 per 
1,000 swimmers when monthly GM entero-
cocci densities do not exceed 35 CFU/100 mL 
(U.S. EPA 1983). Additionally, single-sample 
maximum values were established to aid in 
day-to-day beach management. For freshwater 
beaches, these maxima are 235 CFU/100 mL 
for E. coli or 61 CFU/100 mL for enterococci; 
for marine beaches, the single sample maxi-
mum for enterococci is 104 CFU/100 mL. 

Nonetheless, final implementation guide-
lines for the 1986 AWQC were never issued, 
and prior to the passage of the Beaches 
Environmental Assessment and Coastal 
Health Act (BEACH Act 2000), only 11 states 
applied the criteria to their marine or Great 
Lakes recreational waters [herein referred to 
collectively as coastal waters (CWs)] (U.S. 
EPA 2006).

Indicators and their limitations. Fecal 
indicator bacteria (FIB), such as enterococci 
and E. coli, are measured because they are 
thought to indicate the presence of fecal 
matter, and potentially pathogens, in sur-
face waters. Compared with the pathogens 
that cause recreational waterborne infections, 
FIB are easier to detect and enumerate using 
well-established and inexpensive methods. 
Epidemiologic studies support the use of FIB 
as predictors of illness rates among swimmers 
(Wade et al. 2003).

Culture techniques for FIB require a min-
imum of 18–24 hr to perform. Thus, beach 
managers evaluate information that is, at best, 
1 day old when deciding to issue swimming 
bans or advisories. By the time FIB results 
become available, the microbial water qual-
ity may have changed substantially (Boehm 
2007; Hou et al. 2006; Whitman et al. 2004). 
Illness rates at beaches that are impacted by 
human sewage are related to FIB, which are 

measured by culture (U.S. EPA 1983, 1984) 
or by rapid molecular methods (Wade et al. 
2006, 2008), but at beaches without point 
sources of human fecal pollution, this may 
not be true (Calderon et al. 1991; Colford 
et al. 2007). If the environmental sources and 
persistence of FIB were similar to those of 
pathogens, FIB should be good predictors 
of human illness. However, FIB may per-
sist or even regrow in soil, plants, sand, and 
sediments (Byappanahalli and Fujioka 2004; 
Byappanahalli et al. 2006; Davies et al. 1995; 
Desmarais et al. 2002)—environments that, 
without a suitable host organism, do not sup-
port the replication of human viral or proto-
zoan pathogens. Boehm et al. (2009) recently 
reviewed these and other limitations of FIB as 
indicators.

Inland water recreation, risk, and regu-
lation. Inland flowing (riverine) waters are 
surface waters with a net directional current 
and are confined by banks and stream beds. 
Lacustrine waters are freshwater bodies gener-
ally confined to a basin (lakes). According to 
the U.S. EPA ATTAINS database (2009), 
the United States has > 3.5 million miles of 
inland flowing waters and more than 41 mil-
lion acres of inland waters (IWs).

The 1986 AWQC were based almost 
entirely on epidemiologic studies conducted 
at coastal beaches, with a small portion of 
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The U.S. Environmental Protection Agency (EPA) has committed to issuing in 2012 new or 
revised criteria designed to protect the health of those who use surface waters for recreation. For 
this purpose, the U.S. EPA has been conducting epidemiologic studies to establish relationships 
between microbial measures of water quality and adverse health outcomes among swimmers. New 
methods for testing water quality that would provide same-day results will likely be elements of 
the new criteria. Although the epidemiologic studies upon which the criteria will be based were 
conducted at Great Lakes and marine beaches, the new water quality criteria may be extended to 
inland waters (IWs). Similarities and important differences between coastal waters (CWs) and IWs 
that should be considered when developing criteria for IWs were the focus of an expert workshop. 
Here, we summarize the state of knowledge and research needed to base IWs microbial criteria on 
sound science. Two key differences between CWs and IWs are the sources of indicator bacteria, 
which may modify the relationship between indicator microbes and health risk, and the relation-
ship between indicators and pathogens, which also may vary within IWs. Monitoring using rapid 
molecular methods will require the standardization and simplification of analytical methods, as 
well as greater clarity about their interpretation. Research needs for the short term and longer term 
are described.
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data coming from Keystone Lake, Oklahoma 
(U.S. EPA 1983, 1984). None of the support-
ing data were collected at rivers. Additionally, 
European IW recreation research is limited by 
the use of unique settings (Fewtrell et al. 1992; 
Lee et al. 1997), limited groups of participants 
(van Asperen et al. 1998), limited water qual-
ity measures (Ferley et al. 1989), and abbrevi-
ated reporting of illness rates (Fewtrell et al. 
1994). European trials of randomized expo-
sure to IWs have been conducted as part of 
the Epibathe study (European Commission 
2010; Wiedenmann et al. 2006). However, 
the exposure, three head immersions over a 
10-min period, is different from actual swim-
ming; thus, extrapolating findings to other 
contexts is difficult.

The BEACH Act (2000) mandated that 
the 1986 criteria be applied to all U.S. marine 
and Great Lakes CWs, but the mandate was 
not extended to IWs. This Act also required 
that the U.S. EPA conduct epidemiologic 
studies at beaches to develop information for 
issuing new or revised criteria. As a result, the 
National Epidemiological and Environmental 
Assessment of Recreational Water (NEEAR) 
study (Wade 2006, 2008) has been con-
ducted at marine and Great Lakes beaches. 
To address the BEACH Act requirement 
that the U.S. EPA develop more timely indi-
cators of water quality, the NEEAR study 
used quantitative polymerase chain reaction 
(qPCR) tests for FIB that could produce 
same-day results.

In 2006, the U.S. EPA was sued by the 
Natural Resources Defense Council (NRDC) 
and others for failing to meet BEACH Act 
research and regulatory deadlines for recre-
ational waters. In August 2008, the U.S. EPA 
entered into a consent decree (NRDC/EPA 
2008), which mandated that new or revised 
criteria be issued by 15 October 2012. The 
consent decree required that the U.S. EPA 
“[e]valuate the applicability of NEEAR Great 
Lakes data to inland water.” Thus, a policy 
imperative exists to consider establishing IW 
AWQC, but the epidemiologic knowledge 
base for criteria development is very limited. 
Extending AWQC derived from studies con-
ducted at coastal sites to IWs involves major 
assumptions: a) similar densities of FIB reflect 
a similar health risk in inland and coastal set-
tings, presumably because they reflect a simi-
lar risk of exposure to pathogens of similar 
infectivity and virulence; b) hydrogeochemi-
cal differences among inland lakes, rivers, and 
CWs would be assumed to have nondiffer-
ential impacts on the transport and fate of 
indicators and pathogens; and c) the criteria 
derived from the studies conducted at sewage-
impacted coastal beaches would be assumed 
to protect against illness in inland settings, 
where the dominant pollutant sources may be 
wildlife and/or agricultural animals.

To assess these assumptions, and more 
broadly, the state of the science that could 
support the application of coastal-derived cri-
teria to IWs, a 3-day workshop of 31 national 
and international experts was convened in 
February 2009 by the Water Environment 
Research Foundation (WERF) with support 
from the U.S. EPA. Workshop participants 
identified critical knowledge gaps and outlined 
research needs that could be met by December 
2010 (the deadline for completing research 
that will be reviewed in the development 
of the 2012 criteria) or between 2010 and 
2015 (for consideration in future AWQC). 
A detailed report of workshop proceedings is 
available online (Water Environment Research 
Foundation 2009). In this meeting report the 
chairs of the working groups and the editor 
of the WERF report have summarized work-
shop highlights and added updates based on 
subsequent discussions.

CWs and IWs: Superficial 
Similarities
General principles of hydrology, microbiology, 
and public health should apply across all water 
recreation settings. Surface waters, regardless 
of matrix and geologic setting, are governed by 
the same ecologic, hydrologic, and geographic 
principles. Likewise, ingesting a specific quan-
tity of a given viable pathogen in any surface 
water should produce similar health risks. 
Consistent with this notion, health risks associ-
ated with water recreation have been identified 
at Great Lakes (U.S. EPA 1984; Wade et al. 
2006, 2008) and U.S. marine settings (Colford 
et al. 2007; U.S. EPA 1983) and with IWs 
in Europe (Ferley et al. 1989; Wiedenmann 
et al. 2006). If monitoring of FIB at inland 
recreational waters was mandated, testing that 
is currently conducted for other regulatory 
purposes could, with sufficient resources, be 
expanded. Thus, at first glance, it seems that 
recreational criteria derived from CW studies 
could be applied to and implemented for IW. 
There are, however, important differences to 
consider between IWs and CWs.

Important Differences between 
CWs and IWs
Several critical differences exist between CWs 
and IWs, which can be understood primar-
ily as a function of the scale of water body of 
interest. Scale here refers to the volume, sur-
face area, related landscape, and the flow (for 
flowing waters). Scale can influence water-
shed interactions, runoff, dilution, currents, 
wave height, turbulence, resuspension, and 
source complexity.

Differences in pathogen source. The ulti-
mate determinants of health risks are thought 
to be dependent on the dose and virulence of 
pathogens ingested by recreators, not whether 
the waters are categorized as coastal or inland. 

IWs are generally dominated by more rural 
areas and agricultural land use and are thus 
more likely to be affected by wildlife and 
livestock than are coastal watersheds. Warm-
blooded animals have the potential to carry 
a variety of human pathogenic bacteria and 
protozoa and may pose human health risks 
(Dorner et al. 2004). For example, Leptospira 
in the urine of infected wildlife or livestock 
can contaminate surface waters and infect 
humans via skin breaks or by ingestion. U.S. 
outbreaks of leptospirosis have occurred in 
the context of IW limited- and full-contact 
recreation (Jackson et al. 1993; Morgan et al. 
2002; Yoder et al. 2008). A recent U.S. EPA 
review identified several recreational outbreaks 
tentatively linked to wildlife and livestock 
sources, although definitive confirmations of 
animal sources have been lacking (U.S. EPA 
2009). With limited dilution in inland set-
tings, bathers themselves can become sources 
of fecal pathogens. Sporadic mild illness 
(Calderon et  al. 1991) and, more conclu-
sively, numerous outbreaks of severe disease 
including E. coli 0157:H7 (Bruce et al. 2003; 
Keene et al. 1994; Yoder et al. 2008) have 
been linked to other bathers at IWs.

The importance of sediment in IWs. Small 
lakes and streams are closely associated with 
watershed factors such as soils, runoff charac-
teristics, shoreline processes, and meteorologi-
cal events. Turbulent flow in IWs may lead 
to resuspension of sediment-associated FIB. 
Numerous studies have found that E.  coli 
and enterococci can persist and potentially 
regrow in sediments and soils (Byappanahalli 
and Fujioka 2004; Byappanahalli et al. 2006; 
Davies et al. 1995; Desmarais et al. 2002). 
Regrowth of FIB is suspected to occur at the 
water/sediment boundary (Wheeler Alm et al. 
2003; Yamahara et al. 2009). The effect of 
sediment resuspension on FIB in IWs could 
be amplified at the boundary layer, which, 
compared with CW settings, is larger in rela-
tion to the volume of surface water. An area 
of consensus among workshop participants is 
that soil and sediments, which are thought to 
contain proportionally fewer pathogens than 
fecal sources, should make larger contribu-
tions to indicator densities in surface water 
samples in IWs than in CW.

Differences in hydrogeology that change 
indicator densities. The scale of each IW is 
determined by climatic conditions, geology, 
and ecology for that watershed. The sites for 
land-based contamination of IW are many, 
because waterborne pollutants enter IW from 
multiple sites as it flows downstream. Because 
the volumes of water in many IW sites are 
relatively small and land-based pollutants 
are often close to these sites, the dilution of 
pollutants is more limited in streams than 
in coastal settings (Olyphant et al. 2003). 
Parameters such as flow and turbulence vary 
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substantially within the category of IWs and 
could account for more variability in FIB lev-
els in IWs than in CWs.

The decoupling of indicator and pathogen 
densities in IWs. Human pathogenic viruses 
and protozoan parasites reproduce in the cells 
of their hosts, whereas as noted above, sedi-
ments can provide favorable conditions for 
the persistence and re-growth of FIB. A con-
cern among workshop participants was that 
a decoupling (meaning a significantly weaker 
association) of indicators and pathogens may 
occur in IWs. The basis for this concern is the 
combination of the known growth of FIB in 
sediments and the influence that sediment 
is thought to have on IW FIB. This decou-
pling is likely to result in different indicator- 
pathogen relationships at coastal and inland 
systems, as well as differences across IWs 
with varying hydrologic characteristics. As a 
result of this decoupling, FIB may overesti-
mate pathogen densities and expected illness 
rates among IW recreators. In part because 
of this putative decoupling, the application 
of coastal-derived FIB criteria to inland set-
tings should result in rates of sporadic illness 
(although not necessarily outbreaks of severe 
illness) that are at least as protective in IW as 
they are in CW.

Challenges at Both 
CWs and IWs
Rapid testing methods. Recent epidemiologic 
studies have used quantitative real time poly-
merase chain reaction (qPCR) measurements 
of enterococci (Colford et  al. 2007; Wade 
et al. 2006, 2008), and this method may be 
endorsed in the new 2012 AWQC. Currently, 
qPCR and other rapid methods of measur-
ing FIB are in various stages of development 
(Griffith et al. 2009; Noble and Weisberg 
2005). If the necessary monitoring protocols 
and communications systems were in place, 
these methods could provide same-day water 
quality information in IWs.

One broad concern with the qPCR 
approach is method performance, mean-
ing the precision, accuracy, sensitivity, and 
interlaboratory variability. A second concern 
is the interpretation of qPCR output to esti-
mate health risks. In epidemiologic studies, 
enterococci qPCR results are being directly 
calibrated against rates of illness. That calibra-
tion is being performed at coastal beaches 
impacted by treated human sewage. Humic 
and fulvic acids found in sediment (CWs and 
IWs) can inhibit PCR analyses (Rutjes et al. 
2006; Tsai and Olson 1992). Because of the 
importance of sediment in determining sur-
face water quality in IWs, sediment may result 
in more inhibition than occurs in CW. The 
qPCR methods detect viable, nonviable, and 
cell-free DNA of FIB, whereas conventional 
methods detect culturable microbes only. The 

distribution of these components of the qPCR 
signal (Nocker et al. 2007) could be different 
in IW compared with CW, particularly at 
sites impacted by treated wastewater. IW pol-
lutant sources and sediments may result in 
qPCR-illness rate relationships that are differ-
ent from those described (Wade et al. 2006, 
2008) in CW.

Predictive modeling: opportunities and 
uncertainties in CWs and IWs. Modeling 
approaches offer alternatives to epidemiologic 
studies or extensive microbial monitoring. 
Simple regression modeling of FIB densities 
use real-time information such as meteorolog-
ical and physical parameters, such as turbid-
ity, to produce a timely and, in the long-run, 
a lower-cost alternative to microbiological 
monitoring (Boehm et al. 2007; Frick et al. 
2008; Olyphant and Whitman 2004). 
Regression models are used to issue beach 
notification at three Great Lakes locations 
and on the Schuylkill River (Philly RiverCast 
2009). Mechanistic models, which make use 
of microbial loading, dilution, decay, trans-
port, and other parameters to predict loca-
tion-specific densities of FIB (Boehm et al. 
2005; Steets and Holden 2003), are probably 
best used for evaluating management practices 
in watersheds. These approaches model FIB 
levels; it is unknown whether they predict 
pathogen presence or illness rates.

The above approaches predict water qual-
ity, whereas quantitative microbial risk assess-
ment (QMRA) is used to predict health risks 
in populations (Haas et al. 1999). The inputs 
to QMRA models include readily obtainable 
demographic and water quality data. Health 
risks are predicted using estimates of pathogen 
densities, water exposure, and dose response 
(number of units of pathogens ingested as a 
predictor of illness probability). Conversely, a 
desired water quality target can be modeled to 
meet a health risk target. QMRA allows eval-
uations of relative risks across a range of site-
specific contamination scenarios. Few studies 
have directly compared QMRA projections 
with epidemiologic observations (Ashbolt 
et al. 1997), although the NEEAR study site 
in Boqueron, Puerto Rico (http://www.epa.
gov/NHEERL/neear/) will prospectively col-
lect information needed to compare modeled 
(QMRA) and observed risk. Predictive mod-
els of water quality and QMRA can be only as 
accurate as their inputs; some input data, such 
as dose response, remain limited. Sensitivity 
analyses can evaluate sources of uncertainty 
in model estimates to allow prioritization of 
additional data collection (such as spatiotem-
poral variability in indicators and pathogens).

Policy and implementation challenges. To 
protect the public from waterborne illness at 
IWs, criteria will have to be established based 
on a targeted level of risk. In the absence of 
stakeholder input, such a targeted risk could 

not yet be considered an acceptable risk. The 
unadjusted rate of illness attributable to swim-
ming at Great Lakes point source–impacted 
bathing beaches appears to be about 20–25 
cases of gastrointestinal illness per 1,000 swim-
mers (Wade et al. 2008). In addition to the 
rate of illness, the severity of illness attributable 
to water recreation is also an important con-
sideration in characterizing risk. The U.S. epi-
demiologic studies (set in CW) have described 
rates of gastrointestinal illness, generally 
thought to be mild and self-limited. By con-
trast, reported disease outbreaks in IWs have 
included rare but potentially life-threatening 
infections, likely due to limited dilution and 
proximity to fecal sources (including other 
bathers). Once elements of acceptable risk, 
rate, and severity have been defined, specific 
values of FIB can be evaluated with a goal of 
keeping risk below those levels.

AWQC developed to protect recreational 
water users are applied to other Clean Water 
Act (CWA) programs, such as the listing of 
impaired waters and discharge limits (under 
Section 303d of the CWA). A better under-
standing of wastewater treatment effects on 
the components of the qPCR signal (viable 
bacteria, nonviable bacteria, and cell-free 
DNA) will help define the value of qPCR 
monitoring for these other CWA purposes. 
Translation factors or a refinement of qPCR 
assays to identify viable cells (Nocker et al. 
2007) may be needed to determine, for exam-
ple, if treated wastewater effluent met dis-
charge standards. The costs of implementing 
qPCR requirements of new AWQC for both 
CWs and IWs will be significant and could 
result in the allocation of local funds away 
from other water quality programs. Same-
day measures of FIB have limited benefits 
beyond beach notification. Continued use of 
culture-based methods in those contexts is 
reasonable. A potential advantage of qPCR is 
the ability to differentiate human from non-
human sources of FIB. Work published after 
the workshop evaluated numerous promis-
ing approaches for both rapidly evaluating 
microbe density and differentiating human 
from nonhuman sources (Griffith et  al. 
2009). However, limitations of specific qPCR 
approaches for differentiating sources has been 
described (Stapleton et al. 2009).

New monitoring requirements for recre-
ational waters may encompass the vast num-
ber of inland lakes and miles of rivers within 
individual states. The application of predic-
tive models, sanitary surveys, and QMRA to 
develop site-specific standards, particularly 
where the dominant source of fecal pollution 
is nonhuman, is of interest to the regulated 
community. It remains an open question 
whether these alternatives to epidemiologic 
studies would provide accurate and sufficiently 
precise projections of FIB and health risk.
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Critical Research Questions
Four groups of critical questions should be 
answered regarding measures or models of 
water quality as a means of assessing recreational 
waterborne illness risk in IW (Appendix 1):

1. Microbial indicators as predictors 
of pathogen exposure and health risks. To 
advance our ability to model health risk, we 
must characterize the transport, survival, 
fate, and re-growth (for bacteria) of indica-
tors and pathogens in flowing and nonflowing 
IW. Persistence of pathogenic bacteria needs 
to be better understood, as Campylobacter, 
Salmonella, Shigella, and shigatoxin-producing  
E. coli have been found on algae growing in 
surface waters (Ishii et al. 2006). Similarly 
E.  coli O157:H7 can persist in sediments 
(Bruce et al. 2003). Although the dynam-
ics of FIB have been studied in some coastal 
contexts (Boehm et al. 2002; Whitman and 
Nevers 2004), FIB spatiotemporal variability 
and its determinants need to be characterized 
in hydrologically diverse IW.

2. Fecal pollution sources as predictors 
of pathogen exposure and health risk. It is 
important to determine if the source of fecal 
pollution modifies the indicator-health asso-
ciation. The assumption that human fecal pol-
lution presents the greatest health risk needs 
further evaluation. Prior discussions, including 
those at the workshop, focused on rates of ill-
ness seen among swimmers at beaches, gener-
ally mild and self-limited. Future work should 
also consider illness severity, which may be 
substantial if agricultural animals, wildlife, 
or other bathers are sources of pathogens at 
waters where dilution is limited. The health 
risks to recreators at IW impacted by con-
fined animal feeding operations have not been 

the subject of epidemiologic studies but are a 
potential concern. The possibility of zoonotic 
waterborne viral infections should be inves-
tigated, as recent evidence supports possible 
zoonotic origins of some human rotaviruses 
(Banyai et al. 2009; Matthijnssens et al. 2009).

3. Molecular methods for water qual-
ity testing. Sediments, which likely contain 
qPCR inhibitors, FIB (viable and nonviable), 
and cell-free FIB DNA present a challenge 
to IW monitoring. It is important to know 
how insolation, water chemistry, wastewater 
treatment, hydrologic parameters, season, and 
water matrix differentially affect these com-
ponents of the qPCR signal. Optimizing the 
primers and probes, particularly those that 
differentiate human from other sources, and 
establishing procedures for minimizing natu-
rally occurring PCR inhibitors are priorities.

4. Other approaches to predicting IW 
recreation health risks. Procedures for opti-
mizing and validating predictive models, 
sanitary surveys, and QMRA approaches are 
important for both coastal and IW. The U.S. 
EPA Great Lakes survey tool (http://www.
epa.gov/waterscience/beaches/sanitarysurvey/) 
should be modifiable for IW. For QMRA and 
mechanistic models, inputs such as indicator 
and pathogen concentrations, pathogen load-
ing estimates, and health risks posed by vari-
ous animal species are needed. An uncertainty 
in estimating the health risk associated with 
livestock is the high variability of protozoa 
excretion rates (Ferguson et al. 2009).

An IW Research Agenda
To provide answers to the questions identified 
in Appendix 1, short-term research (within 
2 years) and longer-term projects (2–5 years) 

are needed. These questions can be addressed 
through targeted literature reviews, com-
puter modeling, field sampling for environ-
mental microbes, laboratory research on 
analytic methods, and human health stud-
ies. Interdisciplinary studies would compile 
sediment, soil, hydrology, microbiology, and 
health data, all of which could be used to 
identify predictors of health risk. Other than 
epidemiologic and QMRA research, these 
studies would not directly inform the estab-
lishment of AWQC but could advance water 
quality modeling and our understanding of 
sources of risk and uncertainty. Research 
agenda elements are listed in Table 1. Limited 
explanations of several items follow.

Short-term research. Molecular tests for 
FIB. Rapid tests that are strongly correlated 
with pathogen densities are needed to sup-
port the development of improved predictive 
models of health risk. Pretreatment with pro-
pidium monoazide (PMA) may allow the dif-
ferentiation of DNA from intact viable cells, as 
opposed to extracellular DNA or DNA in cells 
without a functioning membrane (Nocker et al. 
2007). This PMA-qPCR approach has been 
used to demonstrate a faster decay of the qPCR 
signal of Bacteroidales compared with conven-
tional qPCR (Bae and Wuertz 2009). PMA 
pretreatment or other approaches for quantify-
ing elements of the overall qPCR signal should 
be evaluated for their ability to improve qPCR 
predictions of pathogen presence.

Predictive modeling of health risk. 
Comparison of retrospective QMRA analyses 
with previously conducted epidemiologic stud-
ies could lead to revisions in QMRA model 
assumptions and inputs to bring projected 
levels of risk in line with risk levels observed 

Table 1. Research to address critical IW criteria questions.

Type of research required 

Critical questions
Library computer 

simulation Laboratory Field Study overview
Determinants of indicator-

pathogen relationships in IW
X X X L: Advance mechanistic modeling of FIB and pathogens, supported by sampling of water, sediment 

and soil in diverse IW. Repeated sampling to characterize the fate, transport, persistence, and 
re-growth

Sources of indicators, 
pathogens, and health risk

X S: Meta-analysis of epidemiologic studies to evaluate fecal pollutant source as a modifier of the 
indicator–health risk relationship

X X S: Optimize and anchor QMRA models based on prior epidemiologic study results
X X S: Develop a sanitary survey tool for use in future IW epidemiologic and QMRA studies
X X X S: Field sampling of feces from agricultural animals and wildlife to determine human pathogenic 

potential and dynamics
X X L: Epidemiologic studies conducted at diverse IW sites, each with a different dominant source of 

fecal pollution (agricultural animals, wildlife, urban runoff, wastewater)
Molecular methods in IW: 

interpretation, standardization
X S: Develop a database of relationships between rapid molecular-based and culture-based 

measures of indicator microbes described in the literature
X X S: Characterize the persistence of specific molecular targets (human vs. other) in a variety of 

environmental settings and wastewater, looking at viable and nonintact cells and cell-free DNA
X X S: Optimize, simplify, and standardize qPCR methods (particularly for source-specific markers) and 

other rapid methods; use these in epidemiologic studies
X X L: Develop rapid methods for concentrating, identifying, and quantifying pathogens in recreational 

waters
Modeling health risk and 
real-time water quality

X X QMRA validation studies, S (retrospective) and L (prospective)
X X S: Measure real-time physicochemical, hydrologic, meteorologic parameters, with microbes

Abbreviations: S, short term (< 2 years); L, longer term (2–5 years).
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in epidemiologic studies. This anchoring of 
the QMRA predictions will enhance their sci-
entific credibility for predicting recreational 
waterborne illness.

Longer-term research. Modeling water 
quality in real time. Long-term research 
is required to characterize the transport, 
fate, and persistence of microbes and their 
molecular targets in sediments and soils. 
Understanding how these variables change 
as a function of solar radiation, rainfall, and 
biotic and hydrologic factors will advance 
our ability to develop mechanistic models 
for watershed management and set pollutant 
discharge limits.

Pollutant source as a determinant of 
health risk in IW. New epidemiologic stud-
ies would fill the data gap that currently pre-
cludes directly comparing the FIB-health risk 
relationship in coastal and IW. Ideally, several 
inland sites should be selected, each with a 
different type of dominant source of fecal pol-
lution. Description of both illness rate and 
illness severity will be important to more com-
pletely characterize risk. Health data should 
be collected in conjunction with data on indi-
cators and pathogens in surface waters and 
sediments using conventional and emerging 
microbial detection methods. QMRA should 
be performed in tandem with the epidemio-
logic studies.

Conclusions
We endorse the development of science-based 
criteria to protect the health of those who 
use marine, Great Lakes, and riverine and 
lacustrine recreational waters. We think that 
the distinction of IW versus CW is of less 
importance than more fundamental vari-
ables such as the scale of the body of water, 
the source of the pollutant, and the effects 
of sediment, which translate into differences 
in the densities, transport, and fate of indi-
cators and pathogens. Differences in these 
variables between IW and CW may translate 
into weaker indicator–pathogen and indi-
cator–health risk relationships for IW com-
pared with CW. It remains an open question 
whether sediment in IW changes the rela-
tionship between enterococci qPCR measures 
and health risk, which has been described at 
coastal beaches impacted by human fecal pol-
lution. A challenge in addressing health risks is 
the imprecision in defining of risk, as frequent 
mild illness (seen in coastal epidemiologic 
studies) may be of less public health concern 
than infrequent severe illness (described in 
outbreaks of disease in IW). We suspect that 
the application of coastal-derived criteria 
should result in rates of sporadic mild illness 
that are no higher (and possibly lower) in IW 
than CW. We are concerned about outbreaks 
of severe disease caused by fecal matter from 

other bathers, wildlife, and livestock. In IW 
with limited dilution capacity and close prox-
imity to sources, outbreaks of severe disease 
may be difficult to prevent by the applica-
tion of coastal-derived criteria (this was not 
a conclusion of the workshop and represents 
the authors’ views). As critical research ques-
tions are answered, a basis will be established 
for developing criteria that would afford a 
similar level of protection in IW as in CW, at 
least for mild sporadic illness. The implemen-
tation of microbial monitoring of IW will 
be a challenge to local government agencies. 
Should rapid FIB monitoring, QMRA, sani-
tary survey data, or real-time modeling prove 
to be predictive of health risks in IW, these 
approaches could be used to protect the pub-
lic from recreational waterborne illness.
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