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Abstract – Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia. The
virulence factors of this microorganism involved in colonization and the induction of lung lesions have been
thoroughly studied and some have been well characterized. A. pleuropneumoniae binds preferentially to
cells of the lower respiratory tract in a process involving different adhesins and probably biofilm formation.
Apx toxins and lipopolysaccharides exert pathogenic effects on several host cells, resulting in typical lung
lesions. Lysis of host cells is essential for the bacterium to obtain nutrients from the environment and
A. pleuropneumoniae has developed several uptake mechanisms for these nutrients. In addition to
persistence in lung lesions, colonization of the upper respiratory tract – and of the tonsils in particular – may
also be important for long-term persistent asymptomatic infection. Information on virulence factors
involved in tonsillar and nasal cavity colonization and persistence is scarce, but it can be speculated that
similar features as demonstrated for the lung may play a role.
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1. INTRODUCTION

Porcine contagious pleuropneumonia is
caused by the Gram-negative rod Actinobacillus
pleuropneumoniae. This disease, which has
been described world-wide, affects swine of
all ages and has a serious impact on economy,
ecology and animal welfare in the pig rearing
industry [57]. Characterized by fibrinohemor-
rhagic necrotizing bronchopneumonia and
fibrinous pleuritis, it often takes a fatal course.
In vitro growth of A. pleuropneumoniae may
be NAD dependent (biotype 1 strains) or
NAD independent (biotype 2 strains) [87]. On
the basis of the antigenic properties of the
capsular polysaccharides and the cell wall
lipopolysaccharides, A. pleuropneumoniae has
been divided into 15 serotypes [17]. Although
all serotypes can cause disease, differences in
virulence exist [60]. In most herds, one serotype
predominates, although several different
serotypes have been demonstrated on one and
the same farm [31]. Herds with a high traffic
of animals have a higher risk of becoming
infected with new serotypes.

Outbreaks of acute pleuropneumonia may
occur in all age groups, but are mainly observed
in fatteners. Animals of 12 weeks of age seem
to be most susceptible [35]. In endemically
infected herds, A. pleuropneumoniae may be
detected in tonsillar samples taken from piglets
less than 4 weeks of age, whereas its presence
in lung tissue and the induction of lung lesions
is often only seen from the age of 12–16 weeks
onwards [31]. The pathogen is infrequently
detected in nasal samples [31]. The factors
allowing A. pleuropneumoniae to spread to
and colonize lung tissue in pigs that carry the
pathogen in their tonsils are not well-known.
Risk factors such as stress, crowding and the
moving and mixing of pigs, as well as adverse
climatic conditions may be involved and
contribute to the development and spread of
the disease, thus affecting the rate of morbidity
and mortality [85]. Concurrent or previous
infections with other respiratory pathogens
such as Mycoplasma hyopneumoniae [28, 77,
123] and Aujeszky’s disease virus [100] can
exacerbate the symptoms of pleuropneumonia.

However, this was not observed with an exper-
imental PRRSV infection [91].

The pathogenesis of porcine contagious
pleuropneumonia is complex, involving differ-
ent virulence factors of the bacterium. This arti-
cle aims to present an overview of the virulence
factors of A. pleuropneumoniae that enable the
pathogen to colonize the upper and lower respi-
ratory tract, to persist there and to induce
lesions.

2. INTERACTIONS OF
A. PLEUROPNEUMONIAE WITH THE
LOWER RESPIRATORY TRACT

The lower respiratory tract is the site where
A. pleuropneumoniae causes tissue damage
leading to clinical disease and mortality. In gen-
eral, the agent enters the lungs after inhalation
as an aerosol. It colonises this tissue by binding
to mucus, proteins and host cells, allowing mul-
tiplication and production of substances result-
ing in severe damage at these sites.

2.1. Virulence factors involved in adhesion

The bacteria bind preferentially to mucus,
proteins and cells of the lower respiratory tract.
The latter include ciliated cells of the terminal
bronchioli and alveolar epithelial cells [44].
Several virulence factors may play a role in this
adhesion phenomenon. In Table I, an overview
is given of these factors and the corresponding
genes.

Fimbriae are known to be involved in the
adherence of several pathogens. Type 4 fimb-
riae have been demonstrated on A. pleuropneu-
moniae [44, 114, 116], fimbrial subunits have
been purified [125] and the type 4 fimbrial
structural gene (apfA) has been cloned and char-
acterized [108]. Boekema et al. [18, 19] demon-
strated that the production of type 4 fimbriae is
induced by contact with epithelial cells in vitro
and during lung infection in vivo, thus suggest-
ing their possible role in adhesion.

Several studies have demonstrated the role of
lipopolysaccharides in adhesion to tracheal
mucus and porcine tracheal rings maintained in
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culture, aswell as to frozen tracheal and lung sec-
tions [13, 14, 89, 90]. Glycosphingolipids were
identified as receptors in respiratory epithelial
cells [1]. Although the involvement of lipopoly-
saccharides in adherence has been questioned
[97], and the adherence of A. pleuropneumoniae
to lung epithelial cells has been found to be lipo-
polysaccharide-independent [18], a study using
mutant strains with altered lipopolysaccharide
structures confirmed their role in adhesion [93].
The oligosaccharide core of lipopolysaccharides
seems to play a role in this phenomenon. Knock-
ing out the rfaE gene, which is involved in bio-
synthesis of lipopolysaccharides, resulted in a
mutant strain that was no longer able to adhere
[92].

Many outer membrane proteins have been
identified in A. pleuropneumoniae [33]. Proteo-
mic analysis demonstrated an outer membrane

protein with similarity to YadA adhesin, which
is involved in attachment and invasion of
Yersinia [33]. An apparently unique outer mem-
brane proteinwith a molecular weight of 55 kDa
was expressed in bacteria exhibiting a high
degree of adhesion to alveolar epithelial cells
[116]. The exact role of these proteins in adhe-
sion, however, has not yet been elucidated.
An outer membrane protein of 60 kDa was
found to be involved in adhesion to swine-lung
collagen [46], and a small protein, comE1, was
demonstrated to bind fibronectin [80]. A gene
encoding a putative adhesin (pomA) was up-reg-
ulated in A. pleuropneumoniae recovered from
necrotic lung tissue [8] and identified as impor-
tant in virulence using signature-tagged muta-
genesis [53].

Capsular polysaccharides are probably not
involved in adherence, but rather mask, at least

Table I. Virulence factors with confirmed or putative involvement in adhesion of A. pleuropneumoniae
to the lower respiratory tract and the corresponding genes.

(Putative) virulence factor Gene Reference

Type IV fimbriae (structural subunit,
3 biogenesis components)

apfABCD [18, 19, 44, 108, 114,
116, 125]

Lipopolysaccharide biosynthesis galU, rmlC, rfbN,
rfbP, rfbU, rfaE

[1, 13, 14, 89, 90,
92, 93, 97]

Putative adhesin (YadA outer membrane
protein homologue)

NA* [33]

55 kDa outer membrane protein NA [116]
60 kDa outer membrane protein NA [46]
Putative adhesin (OmpA outer membrane
protein homologue)

pomA [8, 53]

Fibronectin binding outer membrane
protein

comE1 [80]

Biofilm formation pgaA, pgaC, tadF,
apfB

[5, 27, 62, 68–70, 75]

Tight adherence protein (possible involved in
biofilm formation)

tadC, tadD [5, 70]

Histone-like nucleoid structuring protein
(regulator of biofilm formation)

hns [38]

Autotransporter serine protease
(involved in biofilm formation)

aasP [3, 111]

Putative autotransporter adhesin hsf [5, 8]
Putative fimbria-like protein
(possibly involved in microcolony formation)

flpD [8]

Putative fibronectin binding tufA [8]

* Information not available.
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in part, the adhesive functions [98, 116]. In fact,
capsular polysaccharide-associated genes are
down-regulated during in vitro adhesion of
A. pleuropneumoniae [5].

In vivocolonizationofhost tissuesbybacteria
is often mediated by biofilm formation. Biofilms
are surface-associated colonies of bacteria
embedded in an extracellular polymeric sub-
stance that enables autoaggregation and attach-
ment to the underlying surface. Production of
biofilms has been described in many A. pleuro-
pneumoniae serotypes and is believed to play a
role in colonization [68–70]. Izano et al. [62]
identified poly-N-acetylglucosamine (PGA) as
the major biofilm adhesin in A. pleuropneumo-
niae. Buettner et al. [27] demonstrated that a
mutant strain deficient in biofilm formation was
less virulent. The importance of a histone-like
protein H-NS in biofilm formation and virulence
of A. pleuropneumoniae has been demonstrated
by Dalai et al. [38]. Genes involved in biofilm
formation were up-regulated in vitro in a malT
(positive transcriptional regulator of the maltose
regulon) mutant strain, mimicking a stringent
gene expression response during nutrient
deprivation [75]. This up-regulation was also
observed after contact of A. pleuropneumoniae
with porcine lung epithelial cells [5]. The role
of biofilm formation in colonization needs
further examination.

AnA. pleuropneumoniae aasP autotransport-
er serine protease-mutant strain showed
decreased adhesion to abiotic surfaces, but still
retained its full virulence, thus indicating that
AasP is not necessary for full pathogenicity
[111]. Since autotransporters can be involved in
adhesin processing, the function of AasP could
be to ‘‘fine-tune’’ the adhesion mechanisms.
Until now, AasP has been demonstrated to be
involved in cleavage and release of fragments
of OmlA from the cell surface [3]. A putative
autotransporter adhesin, similar to Haemophilus
surface fibrils (hsf), was up-regulated in vitro
after contact of A. pleuropneumoniae with
porcine tracheal and lung cell lines [5] and
in vivo in porcine necrotic lung tissue [8]. In
Haemophilus influenzae serotype b, this is con-
sidered to be the major nonpilus adhesin and it
was found to be associated with adherence to
human epithelial cells. Whether this protein in

A. pleuropneumoniae plays a similar role, still
needs to be elucidated.

Genes homologous to those playing a role in
adhesion in other bacteria, such as flpD and tufA,
have been demonstrated inA. pleuropneumoniae
[8]. Their possible role inpathogenesis of porcine
pleuropneumonia needs further investigation.

A. pleuropneumoniae is able to adhere to
porcine surfactant proteins B and C in vitro,
but the factors involved need to be elucidated
(unpublished results). Nevertheless, this associ-
ation might be the first step in colonization of
alveoli, followed by adhesion to the plasma
membrane of alveolar epithelial cells.

In conclusion, most probably several
mechanisms and antigens are involved in the
adhesion of A. pleuropneumoniae to the
lower respiratory tract. A multiple-step binding
process to epithelial cells has been proposed:
A. pleuropneumoniae might first use low-affin-
ity binding between the O-antigen of its cell-
wall lipopolysaccharides and phospholipids or
short glycolipids on the host cell. Thereafter it
might rely on the core oligosaccharide of its
lipopolysaccharides and/or bacterial surface
proteins (55 kDa outer membrane protein, type
4 fimbriae) to interact more avidly with other
host cell receptors [65].

2.2. Virulence factors involved in the acquisition
of essential nutrients

Confirmed or putative virulence factors
involved in acquisition of nutrients and their
corresponding genes are summarized in Table II.

In the lower respiratory tract, there is a lim-
ited supply of essential nutrients for the growth
of bacteria. However, A. pleuropneumoniae has
developed a number of features to overcome
this impediment. For example, the pathogen
can induce lysis of several cells, resulting in
the release of nutrients into the environment.
Lipopolysaccharides and secreted exotoxins
(see below) may both be involved in this
phenomenon.

Iron can be acquired by means of transferrin
binding proteins [6, 8, 12, 37, 54–56, 88, 96,
112, 121], siderophore receptors such as ferri-
chrome receptors [41, 78, 79, 103], and the
binding of porcine hemoglobin by both
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lipopolysaccharides and outer membrane pro-
teins [4, 15, 103, 107]. Fatty acids of the lipid
A of lipopolysaccharides were shown to bind
porcine hemoglobin. Lipid A is normally
anchored in the outer membrane. However,
during formation of outer membrane blebs, this
hydrophobic moiety is better exposed, allowing
binding of hemoglobin [15]. During in vitro
growth of A. pleuropneumoniae under iron
restriction, several genes with confirmed or
putative involvement in iron acquisition were
up-regulated [40].

The mechanism for the uptake of nickel and
cobalt is not known yet, although an operon for

its transportation (cbiKLMQO) has been dem-
onstrated [22].

An outer membrane protein of 42 kDa may
be involved in the uptake of maltose [39]. The
genes involved in maltose regulation were
demonstrated to be up-regulated in A. pleuro-
pneumoniae exposed to bronchoalveolar lavage
fluid [76]. Furthermore, a malT mutant strain
exposed to bronchoalveolar fluid, expressed a
gene profile resembling the stringent response
during nutrient deprivation: up-regulation of
genes involved in amino acid and nucleotide
biosynthesis, biofilm formation, DNA transfor-
mation, and the stress response [75].

Table II. Confirmed or putative virulence factors of A. pleuropneumoniae involved in acquisition
of essential nutrients and their corresponding genes.

(Putative) function Gene Reference

Iron acquisition TonB1 cluster tonB1-exbB1-
exbD1-tpbB-tbpA

[5, 6, 8, 37, 40, 54–56,
88, 96, 112, 121]

Iron acquisition TonB2 cluster exbB2-exbD2-tonB2 [12, 40]
Ferric hydroxamate uptake fhuA, fhuB, fhuC, fhuD [41, 70, 78, 79, 103]
Hemoglobin-binding protein A
precursor

hgbA [4, 5, 15, 40, 103, 107]

Putative nickel and cobalt periplasmic
permease system

cbiKLMQO [5, 22]

Maltose regulon malEFG, malK-lamB-malM,
malT, malPQ

[39, 75, 76]

Double stranded DNA binding comE1 [80]
ferric transporter afuB, afuC [70, 75]
Putative arginine/ornithine antiporter arcD [70]
Arginine transport system
permease protein

artQ [40]

Branched-chain amino acid
transport system carrier protein

brnQ [75, 76]

Putative ferric enterobactin
transporter binding protein

fetB2 [40]

Iron-regulated outer membrane protein B frpB [75, 76]
Glycerol uptake facilitator and transporter glpF, glpT [5, 40, 70, 75, 76]
D-ribose binding periplasmic and
transport protein

rbsB, rbsD [40, 75, 76]

Peptide transport system permease protein sapC [40]
Serine transporter sdaC [75, 76]
Thiamine transport ATP-binding protein thiQ [70]
Colicin transport proteins tolQ, tolR [5, 76]
Urea transport utp [22]
Iron (chelated) ABC transporter,
periplasmic binding protein

yfeA, yfeB, yfeC, yfeD [5, 40, 75], [105]
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It has been demonstrated that some bacteria
can use nucleic acids as nutrients [49]. In
A. pleuropneumoniae, a small protein, Com
E1, is able to bind double stranded DNA and
might be involved in this alternative pathway
of nutrient metabolism [80].

In different experimental set-ups, similar
genes as described above and several other
genes encoding putative factors involved in
nutrient uptake have been demonstrated
(Tab. II) [5, 22, 40, 70, 75, 76, 105].

2.3. Virulence factors involved in the induction
of lesions

The first, and probably most important,
are the pore-forming exotoxins ApxI, ApxII
and ApxIII [52] (Tab. III). All virulent A. pleuro-
pneumoniae strains express 1 or 2 of these
toxins. The genes involved in the production
and secretion of Apx toxins have beenwell-char-
acterized [52]. The secretion of Apx toxins
results in lysis of alveolar epithelial cells, endo-

thelial cells, red blood cells, neutrophils and
macrophages [42, 43, 50, 51, 102, 115]. The
adhesion of A. pleuropneumoniae to cells of
the hostmay allowbacteria to release their toxins
directly to the surface of the host cell membrane,
resulting in the destruction of these cells, even in
the presence of Apx toxin-neutralizing antibod-
ies [59]. A fourth toxin (ApxIV), which has been
demonstrated in all A. pleuropneumoniae strains
[101], is essential for full virulence [74]. It is
only expressed under in vivo conditions [32,
101]. The apxIVA gene was up-regulated
during contact with bronchoalveolar fluid
in vitro [75, 76] and expressed in necrotic por-
cine lung tissue in vivo [8]. Its exact role in path-
ogenesis, however, still needs to be elucidated.

Lipopolysaccharides also have the potential
to cause damage to host cells. They are a
major constituent of the outer membrane of
Gram-negative bacteria. The lipopolysaccha-
rides of A. pleuropneumoniae may contribute
to the formation of lesions. They enhance
the effects of Apx toxins on phagocytes,

Table III. Virulence factors with confirmed or putative involvement in the induction of lesions by
A. pleuropneumoniae and the corresponding genes.

(Putative) virulence factor Gene Function Reference

Pore forming RTX toxin I
(activator, structural unit,
secretion proteins)

apxICABD Strongly haemolytic; strongly
cytotoxic for alveolar macrophages
and neutrophils

[42, 50–52,
59, 115]

Pore forming RTX toxin II
(activator, structural unit)

apxIICA Weakly haemolytic; moderately
cytotoxic for alveolar macrophages
and neutrophils

[42, 43, 50–52,
59, 102, 115]

Pore forming RTX toxin III
(activator, structural unit,
secretion proteins)

apxIIICABD Non-haemolytic, strongly
cytotoxic for alveolar
macrophages and neutrophils

[42, 43, 50–52,
59, 115]

Putative pore forming
RTX toxin IV

apxIVA Uncertain, required for full virulence [8, 32, 74–76, 101]

Lipopolysaccharide
biosynthesis

galU, rmlC, rfbN,
rfbP, rfbU, rfaE

Enhanced effect of Apx toxins
on phagocytes, activation
of production of inflammatory cytokines,
induction of necrosis
in porcine lung epithelial cells

[5, 47, 48,
93, 94]

Proteases NA* Degradation of porcine gelatin,
actin, hemoglobin

[81–83]

* Information not available.
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activate the production of inflammatory cyto-
kines [47, 48, 93] and induce necrosis in por-
cine lung epithelial cell lines via binding to
Toll-like receptors [5]. Direct binding of lipo-
polysaccharide outer core (GalNAc-Gal II-Gal
I) to ApxI and II toxins might explain the
enhanced cytotoxicity [94].

Other factors that may play a role in tissue
damage are the different proteases secreted by
A. pleuropneumoniae, which degrade porcine
gelatine, actin and hemoglobin [81–83].

2.4. Virulence factors involved in avoiding
the host’s defense mechanisms

The effectiveness of thehost’s defense against
pulmonary bacterial infections depends on the
rapid clearance of the microorganisms from the
respiratory tract [23]. Besides nonspecific factors
such as the ciliary beat, the cough reflex and
mucus clearance, the innate pulmonary
immunity is composed of a cellular portion
(airway and alveolar epithelial cells, resident
and recruited leukocytes) and a humoral

component (antimicrobial products secreted in
the epithelial lining fluid) [124]. A. pleuropneu-
moniae, however, possesses several properties
that enable it to avoid the host’s immune system
(Tab. IV).

A. pleuropneumoniae can survive a 30 min
exposure to bronchoalveolar lavage fluid while
70% of Escherichia coli cells were killed [76].
Genes involved in cell envelope, DNA, and
protein biosynthesis as well as those playing a
role in the bacterium’s energy metabolism were
most frequently up-regulated. Genes encoding
proteins for co-factor biosynthesis, toxin pro-
duction and secretion and trafficking of ions
and biomolecules were also up-regulated while
genes encoding proteins involved in protein
folding and stabilization, nucleotide biosynthe-
sis, and mobile elements were down-regulated
[75, 76].

The pathogen secretes proteases that degrade
porcine IgA and IgG [81, 82]. It is not known
whether these proteases impair the host’s
defense against bacterial adhesion, toxins or
in vivo opsonization.

Table IV. Confirmed or putative virulence factors of A. pleuropneumoniae involved in avoiding the host’s
defense mechanism and the corresponding genes.

(Putative) virulence factor Gene Function Reference

Proteases NA* Degradation of porcine
IgA and IgG

[81, 82]

Apx toxins see Table III Cytolysis of neutrophils and
macrophages, apoptosis
of alveolar macrophages,
impairment of macrophage
chemotactic and phagocytotic
function, intracellular survival

[29, 34, 36, 42,
43, 110]

Urease ureABC,
ureDEFG

Intracellular survival,
impairment of
macrophage function,
toxic for macrophages

[20, 21]

Carbohydrates in capsule
and lipopolysaccharides

NA Intracellular survival [16]

Heat-shock protein dnaK Intracellular survival [53]
Cu-Zn superoxide dismutase sodC Intracellular survival [71, 104]
Capsular polysaccharide cpxDCBA Antiphagocytic, serum resistance [8, 11, 61, 66, 75,

97–99, 113, 118–120]
Regulator of the maltose regulon malT Serum resistance [75]

* Information not available.
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ApxI, II and III toxins have lethal effects on
neutrophils and macrophages [36, 42, 43] and
may thus also play a role in impairing the host’s
defenses. Chien et al. [29] demonstrated that
ApxI induces apoptosis of pulmonary alveolar
macrophages. At sublytic dose, the toxins
impair macrophage chemotactic and phagocytic
functions [110].

An A. pleuropneumoniae serotype 2 mutant
strain, deficient in production of ApxII and
ApxIII, was still capable of damaging porcine
alveolar macrophages in vitro [36]. Therefore,
other cytotoxic factors could be involved, such
as ammonia. Indeed, urease activity is present
in allA. pleuropneumoniae serotypes and ammo-
niamay act synergistically with Apx toxins. This
may contribute to cytotoxicity, as well as to
impaired macrophage function [20, 21].

After phagocytosis,A. pleuropneumoniae can
survive for up to 90 min in macrophages [34].
Several factors may contribute to this intracellu-
lar survival, such as high molecular-weight sur-
face carbohydrates present in capsule and
lipopolysaccharides [16], secretion ofApx toxins
[34], heat-shockproteins [53], ammonia [21] and
copper-zinc superoxide dismutase [71, 104].

Capsular polysaccharides and/or lipopoly-
saccharides of A. pleuropneumoniae exert anti-
phagocytic properties [61, 97–99, 113, 118,
120]. Furthermore, Ward et al. [118] demon-
strated that capsulated (A. pleuropneumoniae
serotype 5a) strains were resistant to comple-
ment-mediated killing, whereas non-capsulated
strains were killed. However, this may be sero-
type or strain dependent since a serotype 1 cap-
sule mutant still was resistant [98]. A malT
mutant strain was not able to survive following
incubation with porcine serum. This may be
due to changes in its cell surface polysaccharide
composition [75]. Anyway, virulence of an
A. pleuropneumoniae strain is influenced by
the amount and type of capsular polysaccha-
rides as well as by its mechanism of expression
[11]. The genetic organization of the capsule
biosynthesis region of several A. pleuropneu-
moniae serotypes has been described [66, 119,
120]. Several of these genes were up-regulated
in necrotic lung tissue [8] and during contact
with bronchoalvealar lavage fluid [75].

Finally, biofilm formation may also increase
resistance to the host’s immune system by inter-
fering with the macrophage phagocytic activity
so as to keep the antibodies from reaching
the surface of the bacterial cells and thus
decreasing these cells’ sensitivity to killing by
polymorphonuclear leukocytes [25, 45]. How-
ever, this still needs to be demonstrated in
A. pleuropneumoniae.

2.5. Virulence factors involved in persistence

A summary of virulence factors possibly
involved in persistence and the corresponding
genes is presented in Table V.

A. pleuropneumoniae may persist during
prolonged periods of time in necrotic lung tis-
sue [8]. At this site, oxygen availability is
low. In such conditions, A. pleuropneumoniae
expresses a global regulatory gene (hlyX) that
activates production of several enzymes such
as dimethyl sulfoxide reductase and aspartate
ammonia lyase, which enable anaerobic respira-
tion of the bacterium [7, 9, 10, 64]. Expression
of genes encoding hemoglobin-binding proteins
and dimethylsulfoxide reductase is also stimu-
lated [7, 8].

Sheehan et al. [105] demonstrated that sev-
eral genes are required for the survival of
A. pleuropneumoniae in its porcine host, includ-
ing the genes involved in biosynthesis of cell
surface structures, energy metabolism, nutrient
uptake and stress response. In addition, Baltes
et al. [10] demonstrated the up-regulation of
different genes involved in nutrient transport,
stress response, energy metabolism and the syn-
thesis of nucleic acids or cellular components in
the chronic stage of the disease.

Flagella andmotility in A. pleuropneumoniae
have been demonstrated, but their role in patho-
genesis and survival in the host has not yet been
elucidated [84].

In lung fluid, essential branched-chain amino
acids, such as isoleucine, leucine, and valine
are limited. Subashchandrabose et al. [109]
demonstrated that a gene encoding an enzyme
(acetohydroxyacid synthase) required for
branched-chain amino acid biosynthesis was
expressed in A. pleuropneumoniae in vivo,
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and that this was necessary for survival and full
virulence.

In a recent study, Buettner et al. [26] demon-
strated the importance of ArcA (a global cyto-
solic response regulator facilitating metabolic
adaptation to anaerobicity and changing redox
potential) in biofilm formation and autoaggre-
gation, and hypothetized that ArcA plays an
essential role in respiratory tract persistence of
A. pleuropneumoniae. Biofilm formation does
not only allow colonization. Bacteria in a bio-
film also often exhibit increased resistance to
antimicrobial agents, making it difficult to erad-
icate [68]. However, no genetic data are yet
available confirming this hypothesis.

ComE1 has been shown to play amajor role in
natural transformation of someA. pleuropneumo-
niae strains, which could allow adaptation of the
bacterium and persistence in the host [24, 80].

Taken together, all this evidence indicates
that the pathogen has a capacity to adapt to dif-
ferent environmental conditions enabling long-
time survival in the host.

3. INTERACTIONS OF
A. PLEUROPNEUMONIAE WITH
THE UPPER RESPIRATORY TRACT
AND TONSILS

A. pleuropneumoniae may colonize the ton-
sils and, albeit to a lesser extent, the nasal
mucosa in the presence or absence of lung

colonization [63, 86, 106]. Indeed, in some sub-
clinical infections, the bacterium does not enter
the lungs but persists in the tonsils, thus result-
ing in symptom-free carriers [31, 58, 67, 106,
117, 122]. In such animals, antibodies against
A. pleuropneumoniae are usually not detected
[31, 73, 106].

Although healthy animals may carry
A. pleuropneumoniae in their nose, information
on the mechanisms by which the bacterium
resides in this organ is lacking.

Adhesion of A. pleuropneumoniae to tra-
cheal crude mucus has been well documented
and lipopolysaccharides were found to be
involved [14]. Since the epithelium of tonsils
is also covered by a mucus layer, such interac-
tion may constitute a first step in colonization.
However, mucus (and attached bacteria) is
continuously being cleared, and therefore bacte-
ria need other mechanisms to persist. Such a
mechanism could involve a specific binding
of bacteria to epithelial cells. Indeed,
A. pleuropneumoniae adheres to surface and
crypt tonsillar epithelial cells. This was
presumed to be a specific interaction since the
bacteria were closely associated with micropro-
jections of epithelial cells [30]. A similar
two-step mechanism has been described in the
pathogenesis of Streptococcus pyogenes pha-
ryngotonsillitis in humans [72]. Adherent bio-
films have been shown to be associated with
chronic tonsillitis in children [2]. Whether

Table V. Virulence factors of A. pleuropneumoniae with putative involvement in persistence in the upper
respiratory tract and the corresponding genes.

(Putative) virulence factor Gene Reference

Aspartate ammonia-lyase aspA [64]
Global anaerobic regulator hlyX [7, 9, 10]
Dimethylsulfoxide reductase dmsA, dmsB, dmsC [7, 8]
Hemoglobin binding protein hgbA [8]
Capsular polysaccharide export cpxB, cpxC, cpx D [10, 105]
Lipopolysaccharide biosynthesis galU, rmlC, rfbN, rfbP, rfbU [105]
Autotransporter serine protease aasP [10]
Stress protein dnaK [10]
Branched-chain amino acid biosynthesis IlvI [109]
Aerobic respiration control protein acrA [26]
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biofilm formation contributes to the coloniza-
tion of A. pleuropneumoniae in porcine tonsils,
however, still needs to be elucidated.

There is speculation that tonsillar crypts are
the niche in which A. pleuropneumoniae may
persist [30]. The mechanism by which this hap-
pens is not known, but since bacteria are local-
ized in the deeper parts of the crypts and tonsils
are covered by mucus, oxygen availability is
probably low at these sites. Therefore, similar
mechanisms as have been proposed for persis-
tence in necrotic lung tissue may play a role
[7, 64]. For instance, it was demonstrated that
a hlyX (gene involved in anaerobic respiration)
mutant is unable to persist in tonsils [9]. In
addition, maltodextrin carbohydrate metabolism
also might play a role in tonsillar persistence,
since all serotypes of A. pleuropneumoniae pos-
sess the maltose-regulon genes and maltodext-
rins can be found in the oropharynx [75].

In natural A. pleuropneumoniae infections,
the tonsils and nasal mucosa are not routinely
examined for the presences of lesions, and
information on this subject is therefore lacking.
However, experimental inoculation of tonsils in
gnotobiotic piglets resulted in vacuolization,
localized disruption and necrosis of the superfi-
cial epithelium with subsequent hyperemia and
neutrophilic inflammation [30]. The factors
involved in these findings were not examined.
Since the events are very similar to those induc-
ing lung lesions, it is tentative to speculate that
similar virulence factors may play a role.

4. CONCLUSIONS

The virulence factors and their correspond-
ing genes involved in lung colonization and
induction of lung lesions by A. pleuropneumo-
niae have been thoroughly studied and some
have been well characterized. This information
has been used to design new vaccines that
induce partial protection against the disease
[60, 95]. A. pleuropneumoniae has the capacity
to persist in its host during prolonged periods
of time, and this factor plays a role in the spread
of the infection. In addition to persistence in
lung lesions, the colonization of the upper
respiratory tract and of the tonsils, in particular,

is important for long-term persistent asymptom-
atic infection. Information on virulence factors
involved in tonsillar and nasal cavity coloniza-
tion and persistence is scarce.

The availability of full genomes of
A. pleuropneumoniae should allow new
approaches to further clarify the role of selective
genes in the pathogenesis of porcine pleuropneu-
monia and persistence of the micro-organism in
its host. It may also help to elucidate cellular
mechanisms and pathways involved in these
processes.
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