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Abstract The successful treatment of nonunions represents
a major challenge for orthopaedic surgeons. Lately, ongoing
advances made in the field of molecular medicine and
molecular biology have increased our understanding of the
pathways and involvement of mediators surrounding the
bone healing process. As a result, the surgeon’s armamen-
tarium has been increased in terms of options for
intervention. This article aims to provide an overview of
minimally invasive techniques applicable in the treatment
of nonunions of fractures.

Introduction

The incidence of impaired healing of long bone fractures
has been reported to range between 5 and 10% [25, 88, 94,
118, 119]. It requires complex and expensive treatment and
a variable degree of morbidity is often a common finding.

Nonunion represents a challenging clinical problem for
both the patient and the treating physician [10]. The
implementation of treatment protocols can be time
consuming. Not infrequently, nonunion is associated with
chronic pain, functional and psychosocial disability, to say
nothing of the socio-economic burden [27, 116].

Implementation of a treatment strategy for aseptic
nonunions depends on an accurate assessment and classifi-
cation of the nonunion [52, 73]. Apart from the physiology
of the host (patient) both the presence of mechanical
stability and the state of the surrounding soft tissue
envelope are of paramount importance.

Autologous cancellous bone grafting (ABG) remains the
gold standard biological method used to promote bone healing
by stimulating the local micro-environment at the nonunion
site [7, 9, 34, 35, 87, 101]. However, its limited availability,
as well as the donor site morbidity and complications such as
chronic pain, neurovascular injury and infection have
dictated the need for the development of alternative methods
of biological stimulation [3, 15, 17, 24, 34, 35, 39, 49, 96,
105, 112]. Other methods of biological stimulation, used
either alone or in combination, include allo-grafting, the use
of electrical, ultrasound, and shockwave stimulation, a
variety of bone graft substitutes, with either osteoconductive
or both osteoconductive and osteoinductive properties and
bone marrow injections [26, 52, 73, 84, 87, 90, 122].

Assuming that the mechanical stability factor is sound,
each treatment option of biological stimulation may require
a degree of surgical dissection and exposure for the delivery
of bone stimulating substances or autologous bone graft.
Extensile surgical exposures ideally should be avoided as
they could negatively affect the already compromised local
biological environment of the nonunion site. In this context,
where appropriate, minimally invasive techniques of bio-
logical stimulation are desirable (Fig. 1).
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The purpose of this study therefore was to investigate the
current advances in the enhancement of the fracture healing
response and treatment of nonunions with minimally
invasive techniques.

Materials and methods

We searched MEDLINE for general keywords such as
‘nonunion’, ‘autologous bone marrow’, and ‘minimally
invasive techniques’, both isolated or in combination with
specific words including ‘growth factors’, ‘bone marrow
injection’ and ‘percutaneous patty’, from 1970 until the
present. For paper selection, the initial inclusion criteria
were studies reporting results on minimally invasive
techniques applied in the treatment of fresh fractures and
nonunions both in humans and animal models. We focussed
our research methodology retrieving studies on four
potential options on biological stimulation using non-
invasive techniques: (1) injection of growth factors, (2)
percutaneous bone grafting, (3) percutaneous patty and (4)
autologous bone marrow injections. Such parameters as the
type of nonunion, number of treated fractures, time to
union, and technique used were extracted and analysed
from the studies. The reference list of studies which met the
inclusion criteria were further screened for inclusion of
manuscripts which could have been omitted from the initial
screening process.

Exclusion criteria included publications in the non-English
language or studies having incomplete documentation.

Results

A total of 99 articles met the inclusion criteria [1–6, 11–13,
16–22, 25, 28–32, 36, 37, 39–51, 53–72, 74–83, 85, 86, 88,
89, 91–93, 95–100, 102–113, 115–117, 119–121, 123].

Studies selected were grouped as experimental or clinical
as described in this paper.

Experimental studies

Injection of growth factors for enhancement of fracture
healing

The usefulness of this technique is still under intense
study by several investigators using different animal
models [4, 67, 77, 95, 97, 100]. Simple injection of
osteoinductive growth factors in subcutaneous tissue has
showed that it can promote bone formation [97, 100]. A
simple local percutaneous injection in fractures has been
shown to enhance bone healing [23]. Similarly, injection
of BMP-2 in a rat segmental defect model showed a dose-
dependent effect, with a low dose resulting in large
amounts of fibrous tissue and cartilage while larger doses
resulted in trabecular bone and small amounts of cartilage
[4]. Such a protein-based approach though poses potential
disadvantages derived from the short protein half-life and
the poor retention in the fracture, nonunion or defect site.
Gene transfer could overcome these limitations. Several
viral vectors carrying BMP-2 cDNA have been studied on
animal models over the years [4, 5, 104]. All showed
promising results for future clinical application.

The potential of other molecules have been studied
alongside BMPs in recent years. Basic fibroblast growth
factor (bFGF) injection was found to contribute to the
formation of a larger cartilaginous callus but without any
accelerating effect in fracture consolidation [77]. Rozen et
al. studied the effect of enhancement of each stage of
fracture healing by injecting IL-6 during the inflammatory
stage, PTH 1-34 during the granulation stage and PTH 28-
48 during the callus formatting stage [95]. Their findings
revealed a 300% increase in mechanical resistance in the
treated rat tibiae [95].

Percutaneous patty administration

The inspiration for the development of an injectable
osteoinductive graft for the treatment of bone defects
and nonunions came with the use of demineralised bone
matrix (DBM). So far, the available animal studies prove
that this technique can be used in such pathologies [16, 109,
110]. Comparison with autogenous bone grafting in
animals has shown that injectable allomatrix patty was as
effective as autograft bone, and was also excellent in
handling [107]. DBM, when applied in nonunions, tend to
remodel from the periphery, which may explain a lower
volume of bone but without any difference in bone mineral
density and signs of radiographic or histological healing
[54]. In a canine nonunion model, DBM stimulated defect
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healing, but its combination with bone marrow exerted a
greater healing potential [108].

Bone marrow injection for fresh fractures and nonunions

The use of BM to facilitate the healing of bone defects
and nonunions is extensively covered by several animal
models. The findings reported have been favourable [21,
83]. In segmental bone defects of canine ulna the animals
treated with autologous bone marrow united in contrast
with the untreated control animals which developed
nonunions [42]. Percutaneous BM injections were also
able to heal bone defects in rabbits [61]. In dogs suffering
from tibial shaft nonunions the injection of BM or
demineralised bone matrix in the site of nonunions revealed
that both were able to stimulate the healing of the defect
[110]. The combination though appeared to be more
potent compared to each of them alone. BM combined
with platelet-rich plasma and freeze-dried bone allografts
could serve as an alternative treatment modality [21].

Ma et al. reported a new method of promoting fracture
healing by the administration of multiple cryopreserved
injections of BM. In a rabbit model such an approach
increased the incidence of union, the radiological bone
volume and the bone mineral density [63].

Clinical studies

Injection of growth factors for treatment of nonunions

The injection of growth factors at the nonunion site could
be used as an alternative, less invasive technique. The
rationale behind this method may be associated with signal
transduction upregulating the activity of host mesenchymal
stem cells, with the increase of vascularity but also with the
enhancement of the low levels of expression of regulatory
molecules encountered at the cells at the nonunion site [78].
Currently, BMP-2 and BMP-7 are commercially available
and the results obtained by open implantation of these
molecules at the nonunion site appears to be promising [2,
11, 28, 29, 36, 37, 40, 52, 54, 98, 111, 121]. However, as
far as we know, there are no studies on the outcome of this
technique in humans. This is mainly due to formulation
problems and the lack of a perfect delivery vehicle [97].

Percutaneous bone grafting

Minimally invasive bone grafting for tibial nonunions
could serve as an alternative to open reduction with
favourable results. The technique consists of a cylindrical
cut through the nonunion site, replaced by a similar piece
obtained from the iliac crest. Kettumen et al. evaluated
this technique in 41 patients, achieving union in 37

(90%) by a period of 13 weeks (range 10–48). Similarly,
Bhan and Mehara [5] and Maghsudi et al. [64] reported
union rates in tibial nonunions of 86% (18 out of 21
patients) and 88% (seven out of eight patients), respec-
tively. Maneerit et al., in a randomised prospective trial,
compared the results of open reduction and percutaneous
bone grafting for tibial fractures. They reported equal rates
of union by both techniques, but with definite superiority
of the percutaneous technique in terms of blood loss and
reduction of operative time [68]. Alternatively, the tech-
nique of arthroscopy could be applied for the visual-
isation, exposure and application of bone grafts at the
nonunion site. Johnson et al. successfully treated eight
patients suffering from nonunions by arthroscopic delivery
of cancellous bone grafts [51].

Percutaneous patty

Wilkins et al. used injectable allomatrix patty for the
treatment of 35 patients suffering from long bone
nonunions [116]. Their results revealed an 85.1% union
rate. On the other hand, a recent study by Ziran et al.,
which evaluated an open application of a new calcium
sulphate-demineralised bone matrix/allomatrix in the
treatment of nonunions, presented an unacceptably high
rate of complications which included postoperative drain-
age (54%), deep infection (34%) and an overall failure rate
of 46% [123].

Bone marrow injection

The osteogenic properties of BM were first reported by
Gourjon et al. in 1869 after the observation that
injections of bone marrow to heterotopic sites resulted
in the formation of new bone. Since then several reports
have documented the osteogenic potential of BM which
was attributed to primitive wandering cells capable of
osteogenic differentiation. Our understanding of these
observations was improved in 1971 with the discovery of
“bone marrow derived osteogenic precursor cells” or the
so-called BM-derived mesenchymal stem cells.

Mesenchymal stem cells (MSCs) are osteoprogenitor
cells, readily available to differentiate towards chondro-
cytes or osteoblasts and support endochondral and intra-
membranous ossification. The frequency of MSCs obtained
from BM aspirates is about 0.01% or lower [20]. Hernigou
et al. concentrated BM by centrifugation, preparing
injections containing an average of 2,579±1,121 progen-
itors/ml compared to the 612±134 progenitors/ml in
simple bone marrow aspirates [47]. However, it should
be clear that bone itself, as well as many other tissues like
periosteum, fat and muscle host mesenchymal stem cells
capable of producing bone [91]. Furthermore, it was
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suggested that genetic reprogramming or transdifferentia-
tion can occur, so fully differentiated cells of one type
could switch into another fully functional cell type [20].
These issues though, are poorly understood, and currently
there is no indication for the existence of the “ideal
progenitor cell” responsible for fracture healing.

In any case, the fate of MSCs is influenced by the local
microenvironment, chemotaxis and interactions with the
extracellular matrix [70, 82]. During fracture healing they
can migrate outside BM and differentiate into osteoblasts to
form callus [106]. It was also shown that they could also
contribute to fracture healing after systemic injection, being
localized at the fracture site [22].

The concept of the delivery of fresh autologous bone
marrow as an autograft has developed over the last two
decades. It is an inexpensive method that requires
minimal hospitalisation and patient care. Patients under-
going BM harvesting can return to their daily activities
within 12 hours [80]. Several animal models together
have proven the feasibility of this technique both in
enhancement of the outcome in fresh fractures and in the
treatment of delayed unions or nonunions.

For fresh fractures The feasibility of BM injection in fresh
fractures with high risk for nonunions is currently under
investigation. Khanal et al., in a prospective randomised
study of tibial fresh closed fractures, compared the results
obtained by conventional treatment and injection of 15 ml
of bone marrow [57]. In the group that received BM all
fractures united, while in the control group the union rate
was 95% (19 out of 20). Patients who received BM
injection experienced a lower time to union. Another
application of BM was in a case of non-ossifying fibroma
of a radius of a ten-year-old girl with a pathological
fracture, whereby the curettage and the concomitant filling
of the void with autologous bone marrow resulted in
complete union in 12 months [44].

For nonunions The first application of injectable bone
marrow for un-united fractures appeared in the 1980s
[45, 50]. Connolly et al., using relatively large amounts of
bone marrow of 100–150 ml, successfully treated eight
out of ten tibial nonunions [18]. Healey et al. evaluated the
feasibility of this technique in eight patients suffering
from nonunion after reconstruction for primary sarcoma.
Five of the eight patients received chemotherapy. The
authors reported union in five cases (three out of five of
whom received chemotherapy) [45]. Thereafter, bone
marrow injections were widely used for tibial [18, 19,
32, 99, 103, 111, 113], femoral [69, 103, 115], humeral
[32, 102, 103, 115], and clavicular nonunions [107], and
also for nonunions of radius and ulna [32, 101, 103].
Various amounts of bone marrow were used, from 10 ml

to 150 ml, without showing any difference in the success
rates (Table 1). However, a definite relationship was apparent
between the number of osteoprogenitors injected and the rate
of union [47]. Hernigou et al. compared the number of
mesenchymal stem cells injected in 53 cases of successful
union to seven cases where this technique failed [47]. The
united cases received 54,962 ± 17,431 MSCs while the
unsuccessful ones received 19,324 ± 6843 MSCs [47].

In total, 336 cases of nonunions have been described.
From those, 249 (72.1%) were tibial nonunions, 40 (11.6%)
were femoral nonunions, 20 (5.8%) were humeral and the
rest (36; 10.4%) were nonunions of the radius and ulna
(Table 1). The mean age was 38.1 years. The union rate
after treatment with percutaneous injection of autologous
bone marrow was 88.8% (296 out of 336 nonunions; range
57%–94%). The mean time to union was 4.8 months (range
2.5–8.1).

In addition to pure bone marrow grafting, composites of
allogenic demineralised bone matrix impregnated with
aspirated bone marrow were evaluated for their efficacy in
nonunions of long bones. This approach resulted in an
overall success rate of 88% [117]. Similarly, Kocialkowski
et al. reported the successful treatment of 11 cases (100%
success rate) of nonunions with the use of composites of
1:1 collagen and ceramic enriched with bone marrow [59].

For other orthopaedic applications The value of bone
marrow is not only restricted to the enhancement of
fracture union and healing of nonunions, but rather has
proved important in other orthopaedic pathologies
(Fig. 2). The isolation of osteoprogenitors contained in
BM, followed by their uploading onto scaffolds and
implantation in bone defects and difficult nonunions, is
another successful method of treatment [81, 93]. Orozco et
al. has proposed a method comprising aspiration of 7–
30 ml of BM at 12 days prior to surgery, followed by
mesenchymal stem cell isolation and expansion [81].
During surgical fixation the cultured cells were mixed
with β-tricalcium phosphate matrix and placed at the
nonunion site. Radiological callus formation occurred in
five out of six patients at an average of eight weeks (range
6–24 weeks). Additionally, culture-expanded mesenchymal
stem cells are used in distraction osteogenesis showing
acceleration of regeneration with shortening of the
treatment time [58]. Another application of BM consists of
BM stem cell auto-transplantation at the ischaemic lower
limb, which resulted in an improvement of the peripheral
blood flow and percutaneous oxygen partial pressure [80].
Moreover, BM and its osteoprogenitors were used in spinal
fusion [22, 73], osteonecrosis of the femoral head [30, 31,
46], bone cysts [14], osteochondral defects [13], tendon
osteointegration [62], and in facilitation of nerve repair [12,
120].
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Discussion

The normal physiological reaction to fracture is a sponta-
neous sequence of events briefly summarised as initial
inflammation, followed by soft and hard callus formation
and ultimately bone remodelling [91]. When this process
does not occur, as in cases of nonunions or traumatic bone

defects, surgical intervention is required and is commonly
combined with autologous grafting, which enhances the
local environment in terms of osteoprogenitor cells,
structural substrate and bone inducing proteins [92].

The surgical technique usually implies extended incisions
for the revision of fixation of the affected bone [3, 17, 39, 49,
65, 96, 105, 112]. The use of judiciously applied orthopaedic

Table 1 The effectiveness of bone marrow (BM) injections for nonunions

First author/year Number of
nonunions

Type Mean age
(y), n (range)

United,
n (%)

Time to union
(months),
n (range)

Comments

Healey/1990 [45] 8 Femur 8 27 (6–60) 5 (62.5) 4.95 (1–9) Nonunion occurred after reconstruction for
lower limb cancer resection

50 ml percutaneous injection

Connolly/1991 [18] 10 Tibia 10 30 (18–82) 8 (80) 6.7 (5–10) 100–150 ml of BM aspirated and injected

Fractures were immobilised by cast

Garg/1993 [32] 20 Tibia 15 35 (18–65) 17 (85) 5 (3–7) Percutaneous injection of 15–20 ml of BM
Humerus 3

Ulna 2

Sim/1993 [102] 11 Tibia 8 38 (19–62) 9 (81) 2.5 (1–5.75) Percutaneous injection of 50–200 ml of BM
Femur 1

Humerus 1

Ulna 1

Garg/1995 [33] Case report Tibia 12 1 (100) 18 ∼20 ml of BM were aspirated and injected in
pseudoarthrosis while limb was placed in cast

After 3 weeks the procedure was repeated

Matsuda/1998 [69] 7 Femur 53 (24–70) 4 (57) na (5–9) Percutaneous technique with injection of 150 ml
of BM

Two infections encountered resulting in failed
union

Sebecic/1999 [99] Case report Tibia 1 44 1 (100) 5 150 ml injected and immobilisation achieved by
external fixation

Siwach/2001 [103] 72 Tibia 42 41.2 (26–56) 68 (94) na A maximum of 30 ml of BM aspirated and
injected percutaneously at nonunion site

Femur 8 The procedure was repeated where required after
4–6 weeks after initial injectionHumerus 12

Forearm 10

Wang/2001 [113] 56 Tibia na (19–72) 53 (94) na BM aspirated and injected percutaneously at
nonunion site

The procedure was repeated every month 2–3
times

Wilkins/2003 [115] 69 Tibia 36 42 (15–81) 61 (88) 8.1 (2–36) Percutaneous technique with BM combined with
allograft demineralised bone matrixFemur 16

Humerus 4

Others 13

Goel/2005 [38] 20 Tibia 20 37.5 (24–60) 15 (75) 3.5 (1.5–5.5) A maximum of 15 ml of BM was aspirated and
percutaneously injected

Hernigou/2005 [47] 60 Tibia 60 40 (18–78) 53 (88) 3 (1–4) An average of 306±24 ml was aspirated,
concentrated to 20 ml and percutaneously
injected

Tetreault/2007 [107] Case report Clavicle 39 1 (100) na (within 12) Percutaneous injection of 10 ml of BM

na not available

Level of Evidence: All presented studies are 2C except case reports which are 1C
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implants through limited incisions to treat fractures and
nonunions is a recently developed alternative to the
traditional techniques [92]. Similarly, the introduction of
osteoprogenitor cells or osteoinductive materials has gained
more support lately with satisfactory results [20, 45, 47, 71].

Injection of growth factors is based on the tremendous
effect that these molecules exert to induce upregulation of
bone healing [91]. Currently, a variety of molecules including
BMP-2, BMP-7, platelet-derived growth factor, fibroblast
derived growth factor and PTH have been used for the
treatment of nonunions in experimental studies (animal
models) [4, 7, 8, 50, 67, 71, 77, 95, 97, 100, 114]. The
results have shown that the molecules are capable of
upregulating the healing process, thus accelerating the
fracture consolidation and mechanical properties [50, 71,
77, 89, 95, 100, 114]. However, there are no clinical data
involving injectable formulations. This can be attributed to
the slow development of appropriate delivery vehicles
(liquid formulations), the lack of identification of the ideal
concentration and the lack of safety data.

Percutaneous bone grafting could be the alternative to
local application of osteoinductive molecules. In animal
models, it has been well established that DBM is capable of
stimulating new bone formation, but also that its combina-
tion with osteoprogenitor cells produces better results [16,
109, 110]. In humans this approach proved controversial as
the use of injectable demineralised bone resulted in a high
rate of complications [123]. Percutaneous bone grafting on

the other hand has been proven successful in the safe
treatment of nonunions [5, 54, 56]. This could be attributed
to the fact that autologous bone chips contain the required
structural osteoconductive substrate combined with the
osteoinductive properties of the autologous growth factors
and osteoproductive cells. Although this has been proven to
be true, donor site morbidity, potential unavailability and
restrictions due to the size of the defect are limiting factors
to be taken into account.

Percutaneous bone marrow implantation for the treatment
of nonunions is a low risk inexpensive procedure with high
biological activity [79]. The results from published papers
indicate that the success rate of treating established non-
unions with percutaneous injection of autologous bone
marrow can be as high as 88.8% (Table 1). Literature
describing conventional approaches using autologous bone
grafts have reported a variable success rate. Tibial nonunions
heal at a rate of 90–95% [25, 88, 119], whereas in femoral
nonunions the rate of healing is slightly lower, ranging from
78.3% to 92.3% [43, 85, 86, 117]. Similarly, in humeral
nonunions the healing rates vary between 76% and 100% [1,
41, 48, 72]. Therefore, it can be clearly concluded that
percutaneous bone marrow injection could be as effective as
open autologous grafting. This efficacy can be attributed to
the implantation of viable osteoprogenitor cells. However,
the concentration of MSCs may vary significantly between
individuals, aspiration sites, and aspiration technique [66, 74,
75].

Fig. 2 Bone marrow
applications
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Over the past several decades, minimally invasive
surgery has revolutionised many fields of medicine. In
orthopaedics and especially in challenging situations, it has
decreased the damage to soft tissues, minimised scaring,
reduced postoperative pain and improved recovery time
[51, 68]. All of these have lead to accelerated return to
work, sports and normal daily living. Among these
techniques the choice of the most appropriate approach
can be difficult. The injection of growth factors can
enhance the local biology and optimise the potential of
osteoprogenitors. This technique though is not fully
developed for human use yet and will not benefit poor
local environment [97]. Percutaneous bone grafting seems
to be an excellent alternative to extensive open bone
grafting. It enhances the local environment with fresh bone
and cells required to facilitate healing [5, 56, 64]. The
disadvantages of this technique can be the limited extent of
grafted bone, the potentially small number of grafted
osteoprogenitors, and the small but present donor site
morbidity. Autologous bone marrow injection on the other
hand, augments cellular numbers and has extremely low
donor site morbidity but stimulates the grafted cells to
produce a structural osteoconductive substrate [79]. Our
view is that all these techniques can be used in the
treatment of simple or challenging cases with favourable
results. However, simple cost-effective techniques such as
autologous bone marrow injection have been proven to
have results comparable to those of open techniques. By
standardised nomenclature, enhanced training, and rigorous
evidence-based research, these emerging techniques will
continue to improve the surgical outcomes for hundreds of
thousands of patients.

Conclusion

Minimally invasive techniques for the treatment of non-
unions and enhancement of fracture healing appear to be
effective as a single treatment modality. Current literature,
although limited, supports the idea that a simple injection of
bone marrow can have the same results as those obtained
from open techniques. However, more studies and rando-
mised trials are needed for definitive conclusions.
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