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Abstract Symptomatic intervertebral disc degeneration

is associated with several spinal diseases, which cause

losses of life quality and money. Tissue engineering pro-

vides a promising approach to recover the functionality of

the degenerative intervertebral disc. Most studies are

directed toward nucleus pulposus (NP) tissue engineering

because disc degeneration is believed to originate in NP

region, and considerable progress has been made in the past

decade. Before this important technique is utilized for

clinical treatment of disc degeneration, many challenges

need to address including in all three principal components

of tissue engineering, i.e., seed cells, signals and bioma-

terial scaffolds. This article briefly gives certain aspects of

state of the art in this field, as well as pays a little more

attention to our work published in the past 5 years, on

growth and differentiation factor-5 (GDF-5), adipose-

derived stem cells (ADSCs) and heparin functionalization

of scaffold. We suggest that combinatorial application of

ADSCs, GDF-5, heparin functionalization and injectable

hydrogels will be advantageous in NP tissue engineering.
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Introduction

Intervertebral disc (IVD) is anatomically composed of three

parts: the annulus fibrosus (AF), the nucleus pulposus (NP)

and the endplate (EP). Medical conditions associated with

symptomatic IVD degeneration include disc herniation,

radiculopathy, myelopathy, spinal stenosis, instability and

low back pain, and constitute the vast majority of the diag-

noses treated by spine specialists. Musculoskeletal disorders

of the spine and low back pain are the leading source of dis-

ability in people under 45 years of age and result in national

economic losses of over 90 billion dollars per year [47].

Treatment of disc degeneration remains still a great challenge

to both clinical physicians and basic researchers. As a bio-

logical treatment strategy, tissue engineering approach has

received considerable attention during the last decade, and the

achievements and challenges in this field have been well

documented in several reviews [25, 27, 44, 46].

Unlike most of previous reviews, this article is not

dedicated to giving remarks on the biology of disc and the

pathology of disc degeneration, but briefly reviewing some

data published recently on NP tissue engineering. In

addition, our achievements on growth and differentiation

factor-5 (GDF-5), adipose-derived stem cells (ADSCs) as

well as heparin functionalization of scaffold in this field in

the past 5 years, are described.

Disc degeneration and therapy

Disc degeneration usually begins from the second decade

of life and becomes severely developed with aging [22].

Both poor nutrient supply [4] and inappropriate mechanical

load [1] may result in loss/alteration of cell viability and

disc functionality. Matrix destruction results from an
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imbalance between synthesis and degradation and leads to

a diminished water-binding capacity in the NP region. In

pathology, the degraded matrix can no longer carry loads

effectively, and thus disc degeneration occurs. Concur-

rently, the well-organized lamellar architecture of the AF

begins to deteriorate, eventually developing internal fis-

sures spreading outward to the periphery [14, 46].

Current therapies of disc degeneration involve nonsur-

gical treatment modalities or surgical intervention. Non-

surgical treatment include lifestyle modifications (e.g.,

weight reduction, smoking cessation), rehabilitation pro-

grams (e.g., exercises, physical modalities such as heat/

cold, electrical stimulation, acupuncture, and traction), and

pain medications. When pain relief is not achieved with

nonsurgical approaches, surgical removal of the diseased

disc, e.g., spinal fusion and disc arthroplasty may be per-

formed [44, 52]. However, both nonsurgical and surgical

therapies do not deal with the inherent loss of functional

native disc tissue, and therefore they fail to regenerate or

cure the degenerated, painful disc tissue itself.

NP tissue engineering

With great progresses in both materials engineering and

molecular biology of IVD, tissue engineering has so far

been regarded as a promising approach to recover the

functionality of the degenerative IVD [44]. Since disc

degeneration is believed to originate in the NP region, most

studies are currently directed toward NP tissue engineering.

For this therapeutic strategy, three principal components of

tissue engineering, including cells, signals and scaffolds

can be utilized independently or combinatorially (Scheme 1).

Signals include biomechanical factor (mechanical load)

and biochemical factors (cytokines, enzymes, enzyme

inhibitors and growth factors, etc.), among which growth

factors have been extensively investigated [44].

Growth factors

Disc cell metabolism is modulated by a variety of growth

factors, which act in a paracrine and/or autocrine fashion

[46]. These factors could involve in increasing the syn-

thesis of certain extracellular matrix components such as

proteoglycans, blocking their catabolic breakdown, or a

combination of increased synthesis and decreased catabo-

lism. Growth factors can be applied in NP tissue regener-

ation via delivery of the ‘‘naked’’ or ‘‘embedded’’ proteins

as well as prolonged supplement by vector- or cell-based

gene therapy [46]. Previous studies have documented the

beneficial effects of growth factors, such as transforming

growth factor-b (TGF-b) [37, 55], insulin-like growth

factor 1 (IGF-1) [21, 45], platelet-derived growth factor

(PDGF) [21], osteogenic protein-1/bone morphogenetic

protein-7 (OP-1/BMP-7) [28, 36, 63], bone morphogenetic

protein-2 and 12 (BMP-2 and BMP-12) [20, 24], fibroblast

growth factor-2/basic fibroblast growth factor (FGF-2/

bFGF) [60] and GDF-5 [9, 10, 13, 31, 62].

GDF-5, also known as cartilage-derived morphogenetic

protein-1 (CDMP-1) and BMP-14, is a member of the GDF

family closely related to the bone morphogenetic proteins.

Among the known effects of GDF-5 its crucial role is

found in stimulating the production of matrix and prolif-

eration of disc cells. Walsh et al. [62] induced degeneration

in murine caudal disc by static compression, and then

investigated in vivo treatment of various exogeneous

growth factors. A single injection of GDF-5 stimulated a

significant increase in disc height, but IGF-1, TGF-b, or

bFGF did not. Masuda and co-workers [9] found that

rhGDF-5 enhanced cell proliferation and matrix synthesis

in both bovine NP and AF cells, with a greater response by

NP cells than by AF cells. They also reported that in a

rabbit disc degeneration model, injection of rhGDF-5 into

the NP area induced restoration of disc height and ame-

liorations determined by histological and magnetic reso-

nance imaging (MRI) analysis. These results, along with

ours described below [10, 31] indicated a potential use of

GDF-5 in cell-based gene therapy.

Using a GDF-5 deficient mouse model, we explored the

effect of GDF-5 deficiency and identified for the first time

that the deficiency led to abnormalities of disc tissues [31].

Baseline MRIs of GDF-5 deficient and wild-type mouse,

lumbar spines were engaged to investigate signal differ-

ences between the two strains. A lower signal intensity was

found in the GDF-5 deficient mouse discs on T2-weighted

sequences, indicating a loss of water within discs, a hall-

mark of disc degeneration (Fig. 1). Histological analysis

showed that GDF-5 (?/?) lumbar disc was composed of an

outer AF with prominent concentric fibrous lamellas and an

inner NP with an amorphous matrix and a heterogeneous

cell population. In a normal disc, Safranin-O stained both
Scheme 1 Principal components of nucleus pulposus tissue

engineering
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regions in a deep red color as a result of the presence of

proteoglycans. In contrast, staining of the AF from GDF-5

(-/-) mice demonstrated loss of the normal lamellar

organization and replacement with chondroid tissue

resembling fibrocartilage, and the discs from GDF-5 (-/-)

animals apparently had a smaller, less cellular NP region

with a disorganized matrix (Fig. 2).

In a recent study [10], we provided evidences that

GDF-5 treatment was capable of improving chondrogenic

features of NP cells. Lumbar discs were obtained from six

balb/c mice and a cut was made through the middle of the

annulus with a #15 scalpel blade under a 409 dissecting

microscope. The exposed NP were scooped out with a

30G needle and then the sample was digested with 0.01%

collagenase. NP cells were cultured in 24-well plates and

treated with different concentrations of GDF-5. DNA and

glycosaminoglycan (GAG) assays, gene expression, and

immunostaining were performed to investigate the effects

of GDF-5 on NP cells. The DNA content after treatment

with 10 and 100 ng/mL GDF-5 was significantly

increased to 158 and 169% of the control, respectively.

The amount of GAG/DNA in the presence of 10 or

100 ng/mL GDF-5 was significantly higher than control

cells (P \ 0.01). At 10 ng/mL GDF-5, GAG accumula-

tion in NP cells was approximately 1.4-fold higher than

the control and it increased to 190% of control in the

presence of 100 ng/mL GDF-5 (Fig. 3). After 7 days in

culture, numerous differently sized clusters with positive

staining of collagen type II were found in NP cells with

GDF-5. More and larger three-dimensional aggregates

Fig. 1 T2-weighted magnetic

resonance imaging analysis of

GDF-5 (?/?) and (-/-)

lumbar spines. A lower signal

was shown in the intervertebral

disc of the GDF-5 (-/-) mouse

than in the GDF-5 (?/?)

control

Fig. 2 Photomicrographs of

horizontal and vertical sections

of GDF-5 (-/-) and (?/?)

discs. The GDF-5 (-/-) discs

have a smaller nucleus pulposus

region and less lamellar

architecture in the annulus than

the GDF-5 (?/?) controls. The

area within the square is shown

in the inset at a higher

magnification, with the

chondroid tissues indicated

within the yellow circles in the

horizontal section of GDF-5

(-/-) disc
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were observed in cells treated with the higher concen-

tration of GDF-5, while the most significant effect was

observed at 100 ng/mL (Fig. 4).

Cells

NP region of the disc is anatomically encapsulated by the

dense AF tissue and surrounding extracellular matrix as

well as the cartilaginous EPs, in which an established

matrix-blood barrier protects the nucleus from immune

cellular exposure. Nomura et al. [43] used CD4 and CD5

monoclonal antibodies to detect T cells and B cells, and

found no immune reaction after injecting allogeneic NP

cells into rabbit intervertebral discs to retard the degener-

ative process of discs. Furthermore, the disc, like other

specialized tissues such as the eye, constitutively expresses

Fas ligand (FasL), which plays a major role in maintaining

the immunoprivileged status of these organs [57]. Recently

Hiyama et al. [23] concluded that mesenchymal stem cell

(MSC) transplantation elicited a positive effect on preser-

vation of immune privilege in a canine model of disc

degeneration, possibly by differentiation of transplanted

MSCs into cells expressing FasL. These data suggest that

the NP region may tolerate MSCs from other areas of the

body or even other individuals.

To repair the matrix of degenerative NP tissue, trans-

planted cells must produce proteoglycans (e.g., aggrecan),

collagens and other matrix proteins in large quantities [53].

Chondrocytes and cells from the central regions of the disc

normally produce these matrix proteins, making them

candidates for cell-based disc repair. Moreover, develop-

ment of stem cell research in the past decade provides an

attractive prospect of adult MSCs for NP tissue engineering

[23, 25, 27, 44, 49, 50, 54, 56, 61, 64].The study of MSCs

was initiated by Friedenstein and colleagues [15] more than

40 years ago. So far it has been well recognized that MSCs

Fig. 3 GDF-5 protein increased GAG production of mouse NP cells

in alginate culture. NP cells were cultured in alginate beads for 7 days

in the absence of GDF-5 or in the presence of three different doses of

GDF-5. *P \ 0.05 compared with control

Fig. 4 GDF-5 promoted

chondrogenic nodule formation

of NP cells. NP cells were

cultured on cover slips for

7 days in the absence of GDF-5

(a), or in the presence of on

of three doses of GDF-5

(b 1 ng/mL; c 10 ng/mL; and

d 100 ng/mL). Chondrogenic

nodules were identified by type

II collagen immunostaining.

The scale bar in all images is

100 lm
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have the ability to differentiate along various lineages of

mesenchymal origin, including chondrocyte, osteoblast,

and adipocyte lineages, depending upon the biological

environment, and can be obtained from multiple adult tis-

sues such as bone marrow, trabecular bone, articular car-

tilage, muscle, and adipose [6].

Although relatively new in stem cell research field,

ADSC has attracted intensive attention as a cell source in

bone and cartilage repair [59]. Particularly, application of

ADSCs in NP tissue regeneration is greatly inspired by

recent studies [19, 33, 34, 58]. Lu et al. [33] reported that

co-culture of human ADSCs and NP cells in a micromass-

cultured way resulted in differentiation of ADSCs into a

NP cell-like phenotype. Tapp et al. [58] revealed that either

treatment of TGF-b or co-culture of human disc cells could

significantly stimulate expression of proteoglycan and type

I collagen in 3D-cultured sand rat ADSCs. Gaetani et al.

[19] presented data indicating that co-culture of human NP

and ADSCs improved the quality of the in vitro recon-

structed tissue in term of matrix production and 3D cell

organization. On the other hand, cell expansion is funda-

mentally required in order to achieve sufficient cell

amounts for transplantation, and the conventional approach

of culture in monolayer has aroused several concerns

including cell dedifferentiation, senescence and genetical

mutagenesis [27]. Retrieval of adipose tissue involves a

minimally invasive procedure that can be easily performed

in outpatient clinics, and yields of adherent ADSCs can

reach up to 25,000/g of tissue. Therefore, adipose tissue

might be regarded as a suitbale source of stem cells for a

clinical use, both in terms of ease of procedure and number

of cells obtained.

A couple of papers have been published by us with

regards to the use of ADSCs as seed cells in NP tissue

engineering [13, 32]. In the first paper, Li et al. [32]

co-cultured rabbit ADSCs with NP tissues through a spe-

cifically designed device (Fig. 5a), and concluded that

ADSCs were able to respond to soluble mediators from NP

tissues. In the experiments, alginate beads containing

ADSCs isolated from inguinal fad pads of NZW rabbits

were co-cultured with NP or AF tissues. Real time RT-PCR

analysis showed NP tissues could significantly stimulate

expression of type II collagen and aggrecan genes in

ADSCs, while AF tissues could not (Fig. 5b).

In the second paper, Feng et al. [13] investigated the

chondrogenic effect of GDF-5 on rat ADSCs. 2.0 9 105

cells were gently centrifuged for 5 min at 500g in a 15-mL

polypropylene tube. Without disturbing the resulting pellet,

cells were treated as follows: (a) basal media control (BM),

(b) chondrogenic medium (CM) in which 10 nM dexa-

methasone and 1% ITS-Premix was added, (c) CM con-

taining 10 ng/mL TGF b1, (d) CM containing 100 ng/mL

GDF-5, (e) Cells transduced with an adenovirus vector

containing the cDNA encoding GDF5 (Ad-GDF-5) and

cultured in CM. Safranin-O staining showed that TGF b1,

GDF-5 and Ad-GDF-5 all increased deposition of proteo-

glycans compared with basal media or chondrogenic media

alone. Immunostaining technique revealed in the presence

of TGF b1, GDF-5 and Ad-GDF-5 was found robust

staining for collagen II and aggrecan (Fig. 6). These results

implied an activity of GDF-5 to augment chondrogenesis

of ADSCs and a possible application of Ad-GDF-5 trans-

duced ADSCs in NP tissue engineering.

Scaffolds

Scaffolds in tissue engineering can help to retain cells in

the desired location and provide appropriate mechanical

properties and/or biochemical signals. To date, a variety of

biomaterials have been used for fabricating scaffolds in NP

tissue engineering, such as chitosan/hydroxybutyl chitosan,

alginate, collagen/atelocollagen, gelatin, hyaluronan, cal-

cium polyphosphate, poly-D, L-lactide (PDLA), deminer-

alized bone matrix (DBM) and small intestine submucosa

(SIS) [44].

Injectable scaffolds have been used to agument NP tis-

sues after surgical treatment for many years because of

Fig. 5 Real-time RT-PCR analysis of rabbit adipose-derived stem

cells (ADSCs) in alginate beads co-cultured with annulus fibrosus

(AF) or nucleus pulposus (NP) tissues isolated from lumbar discs.

a The co-culture system. b Gene expression of type II collagen and

aggrecan in alginate beads with ADSCs co-cultured with AF or NP

tissues
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easy and minimally invasive operation. Since silicone

elastomer was first applied for disc replacement in 1974, a

lot of injectable biomaterials have been delevoped, such as

hyaluronic acid, fibrin, elastin-like polypeptides, type I

collagen, alginate and chitosan [5, 8]. Among them, chitosan,

derived from partial depolymerisation and deacetylation of

chitin which is a main component of the shells of crusta-

ceans, has outstanding biological properties like biocom-

patibility, biodegradability and antibacterial activity. These

properties, along with its unique physical and chemical

properties, make it a versatile biopolymer for orthopedic

tissue engineering [11]. Especially, in the presence of a

gelling agent, it can form a hydrogel through a shift of

either pH or temperature. It has been shown that a com-

bination of chitosan with glycerophosphate or ammonium

hydrogen phosphate (AHP) produces a thermo-sensitive

gel, i.e., soluble at room temperature and solidified at

physiological temperature [7, 40]. This property affords

chitosan-based hydrogel for intradiscal injection. Hydrogels

have been proposed as ideal candidates of scaffolds for NP

replacement because of their similarity in mechanical

properties to native tissues [2]. In fact, a couple of studies

have provided supporting evidences that using chitosan/

glycerophosphate hydrogel as a scaffold can keep viability

and functionality of encapsulated bovine NP cells [51] or

induce differentiation of human MSCs into NP-like cells

even in the absence of a differentiating medium [49].

Functionalization is an effective way to improve the

performance of a scaffold. Due to its binding ability toward

growth factors such as BMPs, bFGF and vascular endo-

thelial growth factor (VEGF), heparin functionalization of

scaffolds to sequester and protect these growth factors

becomes a concept with great appeal [26, 41]. So far a large

number of methods have been established for heparin

functionalization [38], and published results have inspired

the versatility of heparin-functionalized scaffolds in tissue

engineering [3, 12, 18, 26, 30, 35, 42]. For bone repair, a

multifunctional hydrogel, constructed by dual functionali-

zation with heparin and fluvastatin, has been reported to

promote osteogenic differentiation of human MSCs [3]. In

another study, BMP-2 was immobilized onto heparin-

functionalized surface of resorbable polymers, inducing a

greatly improved attachment and proliferation of murine

MSCs [12]. In addition, a chitosan/periodate-oxidized

(IO4)-heparin hydrogel has been fabricated and proven

capable of stimulating the controlled release of biologically

active FGF-2 [16]. Since growth factors like BMP-2 and

FGF-2 are benefical to NP regeneration, it is highlighted

that heparin-functionalized scaffolds will find a potential

use in NP tissue engineering.

The common strategy for heparin functionalization is to

covalently link heparin to the scaffold. However, we

recently developed a new strategy [30], by which heparin-

carrying microcapsules were grafted onto the surface of a

scaffold by a specifically designed route. The heparin-

carrying microcapsules were assembled with poly allyla-

mine hydrochloride (PAH) and heparin, alternately coated

on the Ca2?-cross-linked alginate microspheres via the

layer-by-layer (LbL) technique. Then these microcapsules

were grafted to poly (lactic acid) (PLA) films, by –CONH–

linkage between carbohydroxyl groups on surface PLA

molecules and primary amino groups on the outer PAH

layer of microcapsules, in the presence of catalysts of

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)

and N-hydroxysuccinimide (NHS). The advantage of our

strategy is to keep immobilized heparin molecules intact,

and thus induce minimal loss of their bioactivity. We

suggest that this strategy could also be applied to graft

heparin-carrying microcapsules onto chitosan hydrogels,

which will be potentially used in NP tissue engineering.

Fig. 6 Safranin-O staining

(top panel), aggrecan

immunofluorescence

(middle panel), and type II

collagen immunostaining

(bottom panel) of rat ADSCs

in a pellet culture with various

treatment (see the text)
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Characterization of NP cells

A successfully tissue-engineered NP graft should have

similar functionality to the native tissue. With the lack

of current sufficient knowledge about their biology,

characterization of NP cells is still under being defined.

Certain cell markers such as CD24, hypoxia inducing

factor-1 (HIF-1), glucose transporter-1 (GLUT-1),

matrix metalloproteinase-2 (MMP-2), glypican 3 (GPC3)

and keratin 19 (K19) are regarded as useful references

[17, 29, 48, 50].

Because the phenotype of extracellular matrix in NP

tissue is similar to that in articular cartilage, expression of

several chondrogenic markers including SOX-9, aggrecan

and type II collagens, as well as the ratio of proteoglycans

and collagens have also been used as references for veri-

fying NP cells [49]. It is reported that in NP tissue the ratio

of proteoglycans and collagens is around 27:1, in com-

parison with 2:1 in articular cartilage [39].

Summary and perspectives

NP tissue engineering provides promising prospects for

treatment of disc degeneration. However, its clinical

application is still far away. So far most of in vivo

experimental data have been obtained from adult rabbits

and rodents because of the ease of handling and avail-

ability [44]. In these animals, notochordal cells that have

potential to develop into NP cells are present in the discs

throughout their lives, however, in human discs noto-

chordal cells exist only during the embryonic develop-

ment and disappear shortly after birth [27]. Apparently

this difference should be considered seriously as a limit-

ing factor when these experimental data are transferred to

humans. Another obvious obstacle comes from the bad

nutrient supply in the NP area of the degenerated disc due

to its avascularity. The nutrient shortage will undoubtedly

prevent the cellularity and functionality of the implanted

NP graft, and bring a specific challenge of nutrient sup-

plementation in NP tissue engineering, which is currently

far from being solved [27]. Other challenges in this field

involve all aspects of a general tissue engineering

approach, i.e., cells, signals and scaffolds. In these

regards, ADSCs, GDF-5, heparin functionalization and

injectable hydrogels have advantages towards NP tissue

engineering, and designed combination of these beneficial

factors is expected to have synergentic effects. Specifi-

cally, NP tissue engineering based on combination of

heparin-functionalized chitosan hydrogel with GDF-5

genetically modified ADSCs, deserves desirable prospects

for NP regeneration.
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