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Untangling complex networks: risk minimization in financial
markets through accessible spin glass ground states

Andreas Martin Lisewski and Olivier Lichtarge

Abstract

Recurrent international financial crises inflict significant damage to societies and stress the need
for mechanisms or strategies to control risk and tamper market uncertainties. Unfortunately, the
complex network of market interactions often confounds rational approaches to optimize financial
risks. Here we show that investors can overcome this complexity and globally minimize risk in
portfolio models for any given expected return, provided the relative margin requirement remains
below a critical, empirically measurable value. In practice, for markets with centrally regulated
margin requirements, a rational stabilization strategy would be keeping margins small enough.
This result follows from ground states of the random field spin glass Ising model that can be
calculated exactly through convex optimization when relative spin coupling is limited by the norm
of the network's Laplacian matrix. In that regime, this novel approach is robust to noise in
empirical data and may be also broadly relevant to complex networks with frustrated interactions
that are studied throughout scientific fields.
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1. Introduction

Large and abnormal fluctuations in financial markets can spread into other parts of the
global economy with untoward and often incalculable effects—as observed to dramatic
consequences in recent times. Therefore a key priority is to minimize risks and contain their
propagation in spite of the tendencies of current financial markets to the contrary [1,2].
Important examples of such market places include exchanges where stocks, commodities,
futures and other financial products can be bought and sold short by using leverage on
margin accounts held by investors. A central financial decision problem in these markets is,
for a given expected return rp, to distribute the available capital among multiple assets,
which comprise a portfolio P of size n, so to minimize the overall risk.

In portfolio selection models this goal can be mathematically formulated as finding the

global minimum of a risk function [4-7], R=1/2Zi.k=1kaPil’k - Zi:lpiri - VZ,»=1P"S",
where pj is the positive or negative amount of capital invested in asset i, and sj = sign (p;) €
{1, 1} are binary spin variables; r; is the expected return of asset i such that
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n
’p=2,=]ripizcik is the covariance between assets i and k; and y is the margin account
requirement which sets the fraction of capital that the investor must deposit in a margin
account before buying or selling short assets. With the inverse C™1 of the covariance matrix

C the minimum risk distribution p = (py,..., py) becomes pi= kC,-_klrkﬂ’Zkakl sk, Itis
known that finding the absolute risk minimum is computationally equivalent to the ground
state problem of the random field Ising model [4,6]. This is evident after inserting p into the
risk function while neglecting fixed terms that do not depend on spin variables which gives

n n
R=~ 1/2Zi_k:1~]ik5i5k - Z,-:lhfsi, and where we introduced an interaction term Jik:yCi_kl

and a random local field h = (hy,..., hy) with hFZk:lC,‘l-lrk. Covariance among assets can
be both positive and negative (see, for example, inset in Fig. 1 A), and globally minimizing
risk means finding a ground state of the random field Ising model with random spin glass
interactions, which in general belongs to the class of NP-complete decision problems [8,9]
and for which efficient algorithms are not known. This computational intractability arises
from the non-convexity of the cost function R; non-convex problems are much harder to
solve computationally than convex optimization problems for which efficient algorithms do
exist [10]. In the context of financial markets, the non-convexity of the spin glass model
prevents equilibration into an optimum ground state and is viewed as an inherent source of
risk [3,4].

2. Accessible ground states in the spin glass Ising model with random field

Here we demonstrate that ground states are efficiently accessible in the random field spin
glass Ising model provided the margin requirement y remains below a critical value, which

-1
—NLIF! = " . .

we define as Y<=IIZl ‘[max‘ (ZkzllLfkl)] , where L = D—C 1 is the network's Laplacian
- n -1 . i i

matrix, with D=diag (Zi:lcik )and LIl is its maximum norm. This upper bound on the

margin requirement ensures that there exists a related but convex risk function

R=1 /2Zi_k:11ik(5i - 5k)2+z,-:,(hi — )’ which in matrix form reads Re=(s — h)T (s — h) +
ysT L 's. We note that in the special and simpler case with non-negative interactions Jji > 0
similar objective functions have been studied in semi-supervised machine learning [11]. In
the more challenging spin glass case, our prerequisite y < y. makes the Hessian matrix H; =1
+ yL positive definite such that R, remains convex with one global minimum even if the
interaction is described by a random mix of positive and negative numbers. Let s denote the
minimum configuration in R obtained after convex optimization, then s also depicts the
ground state s* of the spin glass Ising model with a random field because assuming the
contrary, R(s) > R(s*), leads to a contradiction. To see this we choose a discrete path of
single spin flips that leads from s to s*. At the beginning R(s) is a global minimum and
nowhere on the path the cost in R can be lower. Concurrently, for any spin flip at site i the
resulting change in R, equals twice the risk change in R, viz.

ARC_,:RC(—S,') - RC(SI-)Z'?AR,‘WithARiZZSi (lzi+1/22/c:11iksk)7 and S0 nowhere along the
path—including its end-the risk in R can be lower than at the beginning. Therefore, in
contradiction to the assumption, it is R(s*) = R(s) which proves that s is a global minimum
of the Ising model. Note that this argument is valid only for the Ising model with non-zero
external field h; without a random field the cost function R, cannot be made convex by
reducing the parameter y.

This result directly implies that once y < y, is satisfied any feasible algorithm that converges
to a local minimum of the random field Ising model will, due to the underlying convexity of
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R¢, reach the absolute minimum in R; for example, this may be achieved by solving for all s;
the local stability condition through fixed points of the TAP (Thouless-Anderson-Palmer)

equation [12], Si=sign [hi’LZkJiksk] fori € {1,..., n}. It also shows that the critical margin
requirement separates two distinct regimes: a disordered regime for y >y, with an
exponential number ~2" of equivalent local minima in the risk function [4,7], each one
giving a different selection of the portfolio; and, for y < y¢, an ordered regime with only one
distinguished minimum. Thus in the latter case the portfolio risk model significantly loses
complexity and a computationally efficient, rational access to the optimum is opened.

3. Application to stock price data

To illustrate this general result with a numerical example we compared risk values from
actual stock price data evaluated below and above the critical margin requirement. For the
calculation of the covariance matrix C we used end-of-day (EOD) stock prices of m = 395
companies included in the Standard and Poor's 500 (S&P500) index over ten years,
recorded from February 1999 to February 2009 in t = 2511 time points, which after
centralization defined an mxt matrix M with zero mean. From this portfolios of any size n <
m were randomly selected defined through a reduced nxt matrix M,, where only n rows out

of m were retained. Given the selected portfolio's nxn covariance matrix C= (MHMZ) /t and
a random input distribution of the local field h, the portfolio risk was optimized efficiently
by solving the TAP equation through iteration until a fixed point was reached. Relative risk
is the lowest possible risk value (which was a negative number in our example) divided by
the estimated risk after optimization. The lowest risk was found through exhaustive search
in all spin states; this was computationally feasible due to our choice of a small portfolio
size (n = 16) even though solving the TAP equation by iteration is computationally efficient
for any network size n. Consistent with the theoretical prediction Fig. 1A shows that with
margin requirements below y the relative risk settled at its global minimum, i.e. at the spin
glass Ising model ground state. The picture changes for y > y., where strong fluctuations
significantly elevate the risk above the ground state; for instance, at y > y., the average
relative risk from the TAP solutions leveled out at ~25% above the optimum.

The price data further allowed us to follow the critical margin requirement as a function of
portfolio size n. Figure 1B shows that (a) y. is a decreasing function of n, indicating that in
larger portfolios efficient risk minimization imposes stricter limitations on margins, and (b)
¢ vanishes for g = n/t — 1, which means that for a given number of observed prices t
efficient risk minimization can only occur up to a maximum portfolio size n =t. This
behavior can be understood by assuming that C is a random Wishart matrix where the bulk
of eigenvalues follows a Marcenko-Pastur distribution [13] with a minimum eigenvalue

Amin=0>(1 — v/g)* and @ maximum A,..=co(1+ v/7); here, without loss of generality, 62 > 1
denotes the variance of the elements in M. Therefore—by duality—the spectral radius

p(C1), defined as the largest eigenvalue of C™1, equals ,mn. Since

-2 ~—1 - . . ..
(1= v~ <p(C™") < [IC™"I| < ILI+IIDI it follows that in the limit q —1 the norm IILI
diverges and hence y, must vanish.

Random matrix theory can be further applied to analyze the influence of noise on the critical
margin requirement. For that we normalized C by the variance to obtain the price correlation
matrix C with a small parameter q = 395 / 2511 » 0.16; we then filtered C by setting all its
eigenvalues below An,x to zero because these are expected to contribute only uninformative
noise [13,14]. Even though this procedure discarded all but the highest 23 eigenvalues (Fig.
1C) the resulting distribution of price correlations remained practically unaffected (compare
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inset in Fig. 1C with inset in Fig. 1A), which indicates that spin glass interactions from these
data are genuine and not mere noise artifacts [14,15]. However, filtering significantly lifted
the critical margin requirement estimates (Fig. 1D) which suggests that this number is
systematically underestimated when computed from unfiltered correlations. In this filtered
case, the critical margin requirement is expected to scale inversely proportional to 2n, which
directly follows from the definition of y; and from the fact that the underlying pairwise
correlations form a totally connected graph. Indeed, Fig. 1D shows that this simple scaling,
ye ~ (2n)71, is an accurate approximation to the critical margin requirement graph obtained
from actual price data. Thus, in this example, noise filtering becomes a stabilizer that can
extend the parameter range for efficient risk optimization.

4. Conclusions

Risk minimization in portfolio selection models with short selling is equivalent to the
ground state problem of the random field Ising model with spin glass interactions. Because
calculating its ground state is computationally hard in general, globally minimizing the risk
has been regarded as unfeasible with a computationally efficient and rational approach [3,4].
Our result shows that, under realistic conditions, finding the ground state and thus efficient
risk minimization is rationally possible. As a direct consequence in financial markets, this
may provide an instrument for curbing volatility if financial products are traded below the
critical margin requirement, and if investors and traders rationally optimize their portfolios.
The second condition is both desirable and realistic in today's highly computerized markets,
although it may have been less realistic in the past when computers were not widespread and
therefore complex financial decisions were to a lesser degree rational. But the first condition
seems to be in conflict with interests of traders and lenders who, in individual contracts, seek
to reduce default risk by increasing margins. From a collective market perspective, however,
higher margin requirements may have a destabilizing effect through higher transaction costs,
which can drive traders from the market place; this may lead to a lower overall liquidity thus
making the market more susceptible to volatility [16,17]. Hence, in financial markets where
minimum margin requirements are regulated a reduction of risk by lowering margins is
conceivable. Historically, the possibility of such a regulatory approach is indirectly
supported by the fact that both the 1987 and the 1929 financial market crashes were
accompanied by an increase in margin requirements which exacerbated liquidity problems
and which might have contributed to rapid downfall [18,19]. Of practical relevance may be
the observation that for portfolio sizes above n ~ 10 our estimates on the critical margin
requirement from the recent American stock market fall below one (Fig. 1B), thus
potentially imposing realistic upper limits on margins requirements.

The efficient access to an optimum is not restricted to portfolio risk models; in general, an
efficient computation of a ground state is possible in any spin glass Ising model with a
random field if the relative coupling strength between spins falls below the critical value.
Further applications may follow in frustrated systems that routinely occur in artificial
[20,21] and in biological [22,23] networks and where the goal is to find a ground state.
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Figure 1.

(A) Portfolio risk can be globally and rationally minimized if the relative margin
requirement satisfies y / y. < 1. In contrast, for y / y. > 1 the estimated risk undergoes large
fluctuations above the optimum. Red data points (“TAP”) give the risk from solutions of the
TAP equation for n = 16 with randomly selected assets from the S&P500 price data, and
with a random field h = (hq,..., hy) with |hj| < 1. Blue data points (“Local field”) depict the
risk obtained by taking the sign of local field h. Error bars represent standard deviations
after 128 random trials. Inset shows the distribution of all price correlations between all
pairs in the m = 395 assets taken from the S&P500 index. (B) Estimated critical margin
requirement as a function of portfolio size n < m and for three different choices of price
samples, t = {2511, 193, 78}, where stock prices were selected every {1, 13, 32} days,
respectively. Error bars represent standard deviations from 128 random selections in the

S&P500 price data. Black solid and dashed graphs represent the function (1 - Vn/ t)_. ©

m
The inverse partition ratio NFZ.,:](Mf)4 for each normalized eigenvector uk of the m x m
correlation matrix C ranked by its increasing eigenvalues [13]. Red dots represent the
unfiltered correlation matrix which, up to a rank of k = 372, follow a semicircle distribution;
blue dots represent the filtered correlation matrix after setting all eigenvalues with lower
rank to zero, i.e. those in size smaller than Amax. Inset shows the resulting histogram of
pairwise price correlations after filtering. (D) Estimated critical margin requirement y; from
the S&P500 correlation matrix C before (red) and after (blue) eigenvalue filtering. Black
solid line represents the graph (2n)1.
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