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Abstract
Lung cancer is a major cause of cancer-related mortality in both men and women. A 5-year survival
of lung cancer patients is only 15% with a negative correlation between progressively advanced lung
cancer stage and a 5-year survival period. The only chance for cure is surgical resection if done at
the early stage of the disease. Therefore, an early diagnosis and a better prediction of prognosis could
decrease mortality. An early diagnosis could provide the opportunity for a therapeutic intervention
early in the course of the disease. Genetic alterations in the cancer genome include aneuploidy,
deletions and amplifications of chromosomal regions, loss of heterozygosity (LOH), microsatellite
alterations, point mutations and aberrant promoter methylation. Of the various types of genetic
alterations (i.e. gene amplifications, allele deletions, point mutations or deletions and methylation)
reported in different tumor types, aberrant promoter methylation of genes is recent and is the focus
of the present review. Specifically, we will briefly review the role of promoter methylation in various
malignancies and then focus on lung cancer diagnosis and promoter gene methylation with emphasis
on the methylation status of genes of the innate host defense, namely the surfactant proteins A and
D.
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1. Lung cancer prevalence and current status
Lung cancer is a major cause of cancer-related mortality in both men and women in
industrialized countries and causes more deaths than colorectal, breast and prostate cancer
combined (1,2). The overall annual incidence and mortality rate of lung cancer has been
estimated to be ~104 million new cases per year and 921,000 deaths in the world, with the
highest rates currently observed in Europe and North America (3,4). The incidence and
mortality rates are higher for men than for women. However, lung cancer mortality has
increased markedly among women since 1960, following an increased prevalence of smoking
(5). A high degree of correlation between smoking and lung cancer has been observed. Smoking
accounts for 80% of the attributed risk among men and for 45% of the cases among women
(6).
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The 5-year survival of lung cancer patients is only 15%, which is much lower than the survival
rate of colorectal (41%) and breast (67%) cancers. This is largely due to the fact that three
quarters of lung cancer patients are diagnosed when their disease has spread regionally or
distantly (7). There are studies on negative correlation between a 5-year survival period and
lung cancer stage (as per TNM classification, where T is characteristic of primary tumor, N is
regional lymph node involvement and M is metastasis). A 5-year survival period has been
reported as high as 60–70% following resection of stage I lung cancer, while a 5-year survival
rate of lung cancer as low as 8–13% has been observed if treatment starts at stages III-IV (8).
At present, the only chance of cure is surgical resection at the early stage of the disease, with
better prognosis for small tumors compared to larger ones. Thus, an early diagnosis of lung
cancer and prediction of patient's prognosis on the basis of clinical and genetic characteristics
of tumor could potentially decrease lung cancer mortality by enabling earlier and more
appropriate therapeutic intervention.

2. DNA methylation
DNA methylation mainly refers to methylation at cytosine residues located in dinucleotide
CpG sites. The specifics relating to CpG dinucleotide location and methylation status have
been reviewed previously (9–15). In brief, the CpG dinucleotide distribution in most of the
genome is statistically lower than the expected frequency. However, in some genomic regions
that mainly coincide with promoters or regions involved in gene regulation, the frequency of
CpG dinucleotides is that of the expected value. These C+G rich regions are termed CpG islands
[reviewed in (16)]. In the human genome, the pattern of CpG methylation varies during
development [reviewed in (11)]. For example, in the case of germ line-specific genes and
certain tissue-specific genes, promoter regions are subject to methylation as part of normal
developmental processes [reviewed in (11,17)]. This ensures that specific genes are expressed
in specific tissues and at specific times of development. Methylation of regulatory regions is
involved in genomic imprinting and X chromosome inactivation in females [reviewed in
(18)]. In a healthy individual [reviewed in (11)] most CpG islands are unmethylated and
associated genes are expressed. However, if CpG islands are located within genes expressed
in a tissue-specific manner, it is possible that the CpG islands remain unmethylated while these
genes are silent (11). The lone CpGs found throughout the rest of DNA (i.e. not in CpG islands)
are mostly methylated (19).

DNA methylation acting via deregulated gene expression has been recognized as a key
component of aging (20,21) and various diseases (22). Although, initially reported in cancer,
DNA methylation is now being appreciated as playing a role in neurological, cardiovascular
and immunological pathologies as well. For example, there are studies of associations between
aberrant promoter methylation of certain genes and hypertension (23), immunodeficiency
syndromes (i.e. ICF, ATRX) and autoimmunity diseases (i.e. systemic lupus erythematosus,
rheumatoid arthritis) (24,25) and neurological disorders (i.e. Alzheimer’s disease) (22,26).

3. DNA methylation in malignancies other than lung cancer
The cancer genome is characterized by a general decline in methylated cytosine level (genomic
hypomethylation) accompanied by a local CpG island hypermethylation (27,28), with both
processes leading to dysregulated gene expression. Genomic hypomethylation (29) and
perhaps gene-specific CpG island hypomethylation (30–32) may lead to cancer via activation
of proto-oncogenes, reactivation of transposable elements, loss of gene imprinting and
hyperactivation of other genes (i.e. host defense genes, see below). On the other hand, when
CpG islands are hypermethylated, the activity of regulatory proteins that promote transcription
is restricted due to tightly packed nucleosomes (33). This often leads to suppression of gene
expression of genes that affect tumor suppression, DNA repair and chromatin condensation.
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Tumor suppressor genes contain unmethylated CpG islands in their promoters that become
methylated in various malignancies. Although, both of these processes (i.e. genomic
hypomethylation and gene-specific promoter hypomethylation or hypermethylation) occur
concurrently in cancer, thus far no relationship has been found between global genomic
hypomethylation and local hypermethylation, indicating that these processes may be
independent of each other (34).

Hypermethylation
DNA hypermethylation is a well established epigenetic alteration seen in various types of
malignancies. A growing number of genes are being recognized that harbor dense methylation
in normally unmethylated promoter CpG islands, with some of them common across different
types of tumors. These include genes mainly involved in functions such as cell-cycle control
and apoptosis (p14, p15, p16, Rb, DAPK), DNA repair (MGMT, hMLH1), adhesion and
metastasis (CDH1, CDH13), biotransformation (GSTP1) and signal transduction (RARβ and
APC). For example, epigenetic silencing of glutathione S transferase (GSTP1) is the most
common (>90%) genetic alteration reported in prostate cancer. It can be used to accurately
distinguish benign and malignant prostate lesions (35). A similar prevalence of methylation
changes was shown for RARβ gene. The methylation of RARβ correlates with more advanced
pathological stage and allows discrimination between neoplastic and non-neoplastic prostate
tissue (this included high-grade prostatic intraepithelial neoplasias and benign prostate
hyperplasia) (36). The combination of methylation analysis with histological tests resulted in
detection of 97% of prostate adenocarcinoma cases in comparison with only 64% when a
histological test alone was used (37). Furthermore, an analysis of the hypermethylation status
of a panel of four genes, GSTP1, RARβ, TIG1 and APC, could detect prostate carcinoma with
100% specificity. Similarly, hypermethylation of 3 or more genes from a panel of 5 genes
(CDH13, HSPA2, MLH1, RASSF1A, SOCS2) was observed in endometrial cancer, while 91%
of the controls showed hypermethylation of none or fewer than 3 genes (38). Hypermethylation
of a gene panel consisting of RARβ1, p16, p14, RASSF1A, DAPK, and GSTP1 was observed
in breast cancer tissue compared to non-cancer breast tissue (39).

Hypomethylation
Genomic hypomethylation refers to loss of methylation at CpG sites located in intergenic and
intronic DNA regions (global hypomethylation), as well as in promoters of specific genes
(gene-specific hypomethylation). Global hypomethylation mainly affects repeat sequences and
transposable elements. It often leads to cancer via chromosomal instability due to aberrant
transcription and recombination, while localized hypomethylation often leads to increased
expression of proto-oncogenes, growth factors, and genes, the protein products of which are
involved in cancer cell proliferation, invasion and metastasis (40). There is substantial evidence
of association of hypomethylation (whether at genome level or individual loci) with cancer.
For example, satellite DNAs (juxta centromeric Sat2 and centromeric Satα) were found
hypomethylated in ovarian samples with a direct correlation between stage of tumors and
degree of hypomethylation (41,42). Similarly repeat sequences Sat2, Satα and SatR-1 were
found to be hypomethylated in breast cancer (43,44). Hypomethylation at L1, a younger
subfamily of autonomous long interspersed nuclear elements, which are a type of non-LTR
retrotransposons, was reported in hepatocellular carcinoma (45), tumors of bladder, head and
neck (46) and various benign and malignant ovarian carcinomas (47). Evaluation of the
methylation status of LINE-1 repetitive sequences in genomic DNA derived from
microdissected samples from several human normal and neoplastic tissues revealed a greater
percentage of hypomethylation at LINE-1 repetitive sequences in several cancer tissues
including breast, colon, lung, head and neck, bladder, esophagus, liver, prostate and stomach
than their normal tissue counterparts (46). Similarly, hypomethylation of tumor genes, such as
urokinase type plasminogen activator (uPA), heparanase and S100A4 led to their increased
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expression in cancer cells. uPA (48,49) and heparanase (50) belong to a category of proteases
produced by tumor cells that degrade extracellular matrix, while S100A4 is a calcium binding
protein that regulates production of matrix-degrading enzymes. These enzymes are responsible
for remodeling of the extracellular matrix and for an increase in tumor cell proliferation and
motility (51). In summary, the available data indicate that a) a derangement of CpG methylation
in the promoter of a variety of genes has been shown to associate with numerous cancers,
including lung cancer and b) methylation markers of various genes have been shown to be
useful in tissue-specific cancer diagnosis.

4. Lung cancer and DNA methylation
Lung cancer is a disease where both, environment and genetics play a role (6,52–56). There
are two main types of lung carcinomas: non-small cell lung carcinoma (NSCLC) and small
cell lung carcinoma (SCLC) (57). SCLC is most often a centrally located tumor arising from
bronchial epithelium. NSCLC constitute the majority of all lung cancers (~85–90%) and are
sub-classified into three main histological types: the squamous cell, which is linked to smoking
and for the most part is found near the bronchus, the adenocarcinoma found in the outer lungs
and the large cell carcinoma that can originate anywhere in the lung. Squamous cell cancer has
at least one of three differentiating features that include individual cell keratinization, spherical
keratinization, or intercellular cytoplasmic bridges. Adenocarcinomas are malignant tumors
with tubular, acinar, or papillary growth patterns, and/or mucus production. Large cell
carcinoma is characterized by large nuclei, prominent nucleoli, abundant cytoplasm and well
defined cell borders.

Most lung cancers start in the lining of the bronchi. Carcinogenesis, starting from a normal cell
to an invasive carcinoma, is a multistep process (58). Lung carcinoma is preceded by a
premalignant lesion, such as hyperplasia, metaplasia, or dysplasia of the bronchial epithelium.
The transition of a premalignant lesion to lung cancer is often accompanied by several genetic
events (some of them are common between SCLC and NSCLC), such as alterations in the
expression of proto-oncogenes and tumor suppressor genes (58) and perhaps of other genes
(32). These changes include aneuploidy, deletions and amplifications of chromosomal regions,
loss of heterozygosity (LOH), microsatellite alterations, point mutations and aberrant promoter
methylation. Of interest, several of these genetic changes (i.e. aberrant promoter methylation,
chromosome deletions, aneuploidy, altered expression of oncogenes, tumor suppressor genes,
and other) occur during the premalignant stage that leads to malignant tumor cells and as such
these changes may be useful markers in early detection of lung cancer (59–64). This indicates
that several of the molecular, genetic and epigenetic changes that lead to malignant tumor cells
occur early in the process, and as such these changes may be useful markers in early diagnosis
of cancer. In fact, there is a considerable effort to use these genetic alterations as molecular
biomarkers for early cancer diagnosis by applying different approaches. An ideal tumor marker
should be highly sensitive, tumor-specific, easy to handle, and inexpensive.

While previous efforts, to identify tumor markers, used screening for mutations, LOH, and
microsatellite alterations, more recent strategies concentrate on aberrant promoter methylation
(65). This is mainly because of the following reasons: i) Aberrant promoter methylation of
specific genes has been shown to be an early event in the pathogenesis of lung cancer. For
example, in a rat model of lung carcinogenesis (59), 94% of adenocarcinomas induced by a
tobacco-specific carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone were
hypermethylated at the p16 gene promoter; most importantly, this methylation change was
frequently detected in precursor lesions to the tumors, adenomas and hyperplastic lesions. The
timing for p16 methylation was recapitulated in human squamous cell carcinoma (SCC) (59),
where the p16 gene was coordinately methylated in 75% of carcinoma in situ lesions adjacent
to SCCs harboring this change. Moreover, the frequency of this event increased during disease
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progression from basal cell hyperplasia (17%) to squamous metaplasia (24%) to carcinoma in
situ (50%) lesions. Similarly, aberrant methylation of the p16 and/or O6-methyl-guanine-DNA
methyltransferase promoter was observed in DNA from sputum in 100% of patients with
squamous cell lung carcinoma up to 3 years before clinical diagnosis (66). Collectively, these
observations indicate that assessment of the prevalence of these methylation markers could be
useful for prediction of a lifetime risk of developing lung cancer; ii) The methylation pattern
of some genes correlates with clinicopathological characteristics of lung cancer patients. For
example, lung cancer patients with methylated RASSF1A had an overall shorter survival than
patients who had unmethylated RASSF1A (67). Similarly, a direct correlation has been
reported between methylation of the APC and DAPK genes with poor survival rate in NSCLC
patients (68,69); iii) it is relatively easy to detect the methylation status quantitatively from a
variety of samples ranging from, tumor sample to sputum to blood, of lung cancer patients
(70). However, to date the penetrance of DNA methylation at any single locus has not been
high enough to provide great clinical sensitivity.

A major focus of research in cancer diagnosis is to create a panel of methylation markers (rather
than study methylation in a single gene) that could be used to detect cancer with high sensitivity
and specificity. The first step in developing a panel of DNA methylation biomarkers is to
identify patterns of tumor methylation signatures (71). One approach is a genome-wide
screening (72,73), where, after identifying patterns or signatures of genomic changes in cancer
tissues or cancer cell lines, candidate genes and/or regions can be selected to be included in
the biomarker panel. Another one is the candidate gene approach, where selected tumor
associated genes (such as tumor suppressor genes, proto-oncogenes, genes expressing cell
cycle proteins, proteins involved in DNA repair, apoptosis, or host defense and other) are
screened in samples of cancer tissue for their aberrant methylation. Using the candidate gene
approach several genes have been described to be inactivated by promoter methylation in lung
cancer, as previously reviewed (74,75). A recent study exemplified the candidate gene
approach along with high throughput technologies (76). Aberrant methylation was studied at
1536 specific CpG sites in 371 genes selected based on their biological relevance in lung
cancers and normal lung tissues. The selected genes included tumor suppressor genes and
oncogenes, genes that are indirectly involved in cancer development (i.e. DNA repair genes),
metastasis-inhibitor genes, genes regulated by various signaling pathways, and/or responsible
for altered cell growth, differentiation and apoptosis, genes considered to be targets for
oncogenic transformation, genes of innate host defense including lung surfactant protein genes,
imprinted genes and previously reported differentially methylated genes (29,75,77).

Among the genes identified with this high throughput approach that showed an altered
methylation pattern in lung cancer compared to normal lung tissue were the surfactant protein
(SP) genes, SP-A and SP-D. These genes, in addition to their role in surfactant-related
functions, have been shown to play important roles in the innate host defense of the lung and/
or regulation of inflammatory processes. Since infections and ensuing inflammatory processes
have been implicated in cancer pathogenesis (78–80), the surfactant proteins, given their
physiological relevance in lung health, are good candidate genes for study in lung cancer and
their methylation signatures may serve as valuable markers in lung cancer detection.

5. SP-A and SP-D in lung cancer
An essential for life function is carried out by the lung, namely the oxygen and carbon dioxide
exchange, where the delicate gas-exchanging alveolar epithelium that lines the terminal lung
airspaces allows for efficient diffusion of oxygen and carbon dioxide between inspired air and
the pulmonary circulation. The lung via inspired air is virtually in direct contact with the
external environment and therefore it is exposed daily to thousands of insults (i.e. bacteria,
viruses, allergens, particulate matter, ozone and other) and yet under normal circumstances
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remains well functioning. A delicate network comprising of various immune cells (i.e.
macrophages, neutrophils and other) and molecules of innate host defense together maintain
a normal functioning lung via their ability to mount an appropriate inflammatory response to
help get rid of foreign insulting agents. Inflammation under normal circumstances is self-
limiting and it subsides as soon as foreign material is removed. However, an inappropriate
response (whether less than optimum or more than optimum) can have a negative impact on
lung structure and function. A suboptimal inflammatory response may lead to persistence or
continuous presence of an infection or foreign matter in the lung, while an overzealous
inflammation may take the form of chronic inflammation. Either scenario of deranged host
defense results in cellular and/or tissue damage that may ultimately lead to lung cancer or other
pulmonary diseases. The relationship between inflammation and lung cancer is not new. It was
first proposed by Virchow in 1868, when he first observed leukocytes in neoplastic tissue
(81). Since then several cancer types have been shown to associate with inflammation. Also,
there is a growing body of evidence that many malignancies are initiated by infections (78–
80). According to an estimate >15% of malignancies can be attributed to infections (79).

Molecules of innate immunity and host defense in the lung include the surfactant proteins (SP-)
A or SP-A and SP-D. SP-A is a major protein component (by weight) of the lipoprotein complex
called surfactant, which is essential in preventing, at low lung volumes, alveolar collapse via
its ability to lower surface tension at the air-liquid interface in the terminal airspaces or alveoli.
SP-D co-purifies with surfactant. SP-A and SP-D are hydrophillic proteins [reviewed in (82–
85)] and have been shown to play a role in surfactant-related functions of the lung (i.e.
surfactant homeostasis, structure, inhibition of surfactant secretion and other) as well as in host
defense and/or the regulation of inflammatory processes in the lung. Both have been implicated
in diverse activities of pulmonary host defense and regulation of inflammation via their effects
on immune cells in the presence or absence of a pathogenic insult (86–93), production of
reactive oxygen and nitrogen intermediates (94,95), clearance of apoptotic cells (96–98) and
other. Furthermore, both SP-A and SP-D have been shown to provide a link between innate
and adaptive immunity (99,100), via their effects on dendritic cells.

Study of the SP-A−/− mice has provided in vivo support of the role of SP-A in innate host
defense. These mice lack tubular myelin, a structural form of surfactant, and although they are
able to survive with no apparent pathology in a sterile environment (101) and respond similarly
to wild-type mice following exercise or hyperoxic conditions (102), their pulmonary immune
responses are insufficient during immune challenge (103,104). SP-D−/− mice on the other hand
although early in life appear healthy with no differences in the biophysical function of
surfactant, later in life exhibit quite a complex phenotype. Even in the absence of any apparent
insult, the SP-D−/− mice display phenotypic abnormalities in alveolar macrophages and type
II epithelial cells, and increased lipid pools, indicating that SP-D has an important role in
surfactant homeostasis (101,105,106). Metalloproteinases are also elevated in their lungs. SP-
D−/− lungs develop an emphysema-like phenotype (105). Therefore, collectively, given their
role in infection and inflammation, alterations in the level or activity of lung collectins (SP-A
and SP-D) may lead to pathogenesis of various diseases, including lung cancer.

In human, SP-D is a single gene locus, whereas the SP-A locus consists of two functional genes,
SP-A1 and SP-A2 with several intragenic haplotypes or variants identified for each SP-A gene
(107,108). The in vitro expressed products of the SP-A1 and SP-A2 genes have been shown
to exhibit different levels of activity in terms of their ability to modulate cytokine production
by a macrophage-like cell line (109–111), enhance phagocytosis of bacteria by alveolar
macrophages (112–114), inhibit secretion of surfactant by epithelial type II cells (115) and
bind to carbohydrates (116). Given the observed differences in activity between SP-A1 and
SP-A2, it is possible that the overall functional activity of SP-A in the lung depends on the
relative functional content of each SP-A1 and SP-A2 product and that derangement in SP-A1
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and/or SP-A2 expression or functional ability compromises lung health. In a recent study, we
showed that the SP-A1 to total SP-A ratio, in samples of bronchoalveolar lavage from different
individuals, differs as a function of lung health status and age (117). Moreover, both SP-A1
and SP-A2 genes have been identified with extensive genetic variability (107) that affects
function and/or structure (110,112–116) or regulation (118–121). This extensive genetic
variability may serve as ‘tag’ to identify individuals at disease risk and also provide insight
into the underlying mechanisms of a given lung disease.

6. Methylation signatures in SPs
Although the study of methylation signatures of SPs in lung cancer is recent, the role of SPs
in lung cancer has been under investigation for >10 years. Several studies based on different
approaches including, reverse transcriptase PCR, immunoblot analysis, ELISA and
immunohistochemical analysis have been carried out to study alterations of SP-A in lung cancer
(122–128), while there is a single study (129) that has reported usefulness of SP-D as a
diagnostic marker for lung cancer. Immunohistochemical detection of SP-A in lungs (130) and
pleural effusions (131) has been reported to be useful for differential diagnosis of lung cancer
from metastatic carcinomas to lung and pleural mesotheliomas.

Various genetic variants and/or epigenetic changes of SPs may under certain micro-
environmental conditions, alter surfactant protein expression and/or function and these changes
in turn may modulate susceptibility to lung cancer. Studies carried out by our group and others
support this postulate. We have shown an association of lung cancer susceptibility with
different SP-A variants (132) and a high resolution comparative genomic hybridization (CGH)
analysis of a cDNA microarray showed deletion of the SP-A gene to be one of the most common
genomic changes in primary lung cancer (133). The latter genomic aberrations were found to
be associated with tumor progression and a history of smoking and were proposed as useful
biomarkers in the identification of poor prognoses in patients with NSCLC (134). Recently,
using a high-throughput technology platform, consisting of miniaturized bead-based array, we
studied the methylation level of 1536 specific CpG sites in a panel of 371 genes (76). The panel
included the lung surfactant protein genes, SP-A1, and SP-D, as well as the two hydrophobic
surfactant protein genes, SP-B and SP-C, along with other genes documented to be involved
in cancer and shown to be differentially methylated (29,75,77) in cell lines, normal tissues, or
lung biopsy cancer samples. This study led to identification of a panel of 55 methylation
markers that included surfactant protein (SP-) methylation markers. With these markers, lung
adenocarcinomas could be distinguished from normal lung tissues with high specificity (76).

With regard to SP gene methylation, a total of 4 groups were obtained, when the collective
DNA methylation profile was assessed, by clustering analysis, for 11 CpG sites of lung
surfactant proteins (SP-A1, SP-B, SP-C and SP-D) in 23 adenocarcinoma tissues and 23
matched non-cancerous lung tissues obtained from the same patient (32). The percentage of
cancer samples increased from group 1 to group 4, while the overall level of methylation for
the SP markers tested decreased as one moved from group 1 to group 4. This indicated an
inverse association of the collective level of methylation of the 11 SP CpG sites with lung
adenocarcinoma. A similar pattern was observed in the case of squamous cell carcinoma
compared to matched control tissues obtained from the same patient, although the clustering
was not as tightly defined. A further comparison of the methylation levels of each CpG site in
cancerous and non-cancerous samples revealed that from the 11 CpG markers analyzed, only
4 CpG sites (namely SP-A1_370, SP-A1_1080, SP-D_1170, and SP-D_1370) differed
significantly between cancerous and non-cancerous samples in both adenocarcinoma and
squamous cell cancer cohorts, indicating that these 4 CpG sites can serve as potential
biomarkers for lung cancer diagnosis. Of interest, a better group separation was obtained when
the methylation content of all 11 SP CpG sites were included in the analysis compared to that
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obtained with only the four CpG sites that showed significant differences between cancer and
non-cancer tissues. Therefore, at this point, we can not exclude the possibility that inclusion
of small changes in methylation of certain genes may help improve the specificity of
methylation panels of genes identified with significant CpG changes.

A preliminary analysis of the impact of individual CpG methylation on gene expression
revealed an inverse correlation (32) between the methylation content and mRNA expression
for one of the SP-D CpGs (SP-D_1170). This CpG showed significant changes in methylation
between cancer and normal lung tissue. An association between the methylation content of an
SP-A1 CpG (SP-A1_1468 that did not show significant differences between cancer and normal
tissue) and mRNA expression was also shown. These preliminary observations indicate that
methylation of a given CpG site may be one of the mechanisms that regulates SP-A1 and SP-
D expression. However, the details of the mechanisms via which an overexpression of SP-A
and/or SP-D (presumably a result of promoter hypomethylation) may contribute to lung cancer
development are currently unknown.

It is possible that SP-A and SP-D contribute to deranged immunity in cancer via their role on
dendritic cell maturation (99,100). Dendritic cells in lung tumor infiltrates appear to be largely
defective regarding their ability to stimulate T-cells (135). The effect of SP-A and SP-D on
dendritic cell maturation and/or activity appears to be in opposite direction (99,100) indicating
that together SP-A and SP-D provide under normal conditions the necessary balance required
for a healthy immune lung response. Although hypomethylation at both SP-A1 and SP-D CpG
sites was observed in lung cancer (32) and an association was shown between hypomethylation
of certain CpG sites and SP expression, there is no information available to indicate whether
the changes in expression are similar between SP-A1 and SP-D. Also information is lacking
with regards to the role of SP-A2 CpG methylation in lung cancer. It is currently unknown
whether any SP-A2 CpG sites are hyper- or hypomethylated and whether these associate with
lung cancer. Moreover, as discussed above, SP-A1 and SP-A2 exhibit differences in their
ability to modulate macrophage function with regards to proinflammatory cytokine production
(92,109–111) and bacterial phagocytosis (112–114). Since the level of SP-A1 and SP-A2
differences on macrophage function depends on SP-A protein concentration and functional
integrity, an altered SP-A expression or SP-A dysfunction, as it occurs after SP-A is exposed
to ozone, may adversely affect macrophage host defense function. This may lead to an overall
deranged lung host defense and perhaps lung cancer. Thus, although deranged SP-A and SP-
D expression may adversely affect lung immunity via their effects on dendritic cells,
macrophages, or other cells, our current knowledge is limited to further comment on this.

7. Summary and expert opinion
The available data are consistent with a potential contribution of SP-A in lung cancer. We
postulate that a hyperactivity of SP-A via increased expression as it may occur via
hypomethylation (32), or a decrease of SP-A activity as it may occur via SP-A dysfunction
due, for example, to oxidation (109,111,112), or lack of SP-A as it may occur by SP-A gene
deletion (133) may contribute to lung cancer pathogenesis. An excessive SP-A activity may
lead to an exuberant and sustained inflammatory reaction that may have dire consequences on
lung tissue integrity. On the other hand, reduced SP-A activity or lack of SP-A activity may
compromise the innate host defense ability of the lung to maintain a healthy lung status. In
either case, where SP-A (and/or SP-D) over-functions or under-functions, the host defense
ability of the lung is compromised and with time and/or in the presence of various macro- or
micro-environmental insults, this may contribute to lung carcinogenesis.

Although the role of innate host defense molecules, such as SP-A and SP-D, in cancer is still
in its early stages, the available literature argues for an inclusion of SP-A and SP-D in future
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studies, where panels of methylation markers for early lung cancer diagnosis are being
considered. The SP-example, discussed here, provides support for the role of inflammation in
cancer development and as such there should be consideration of inclusion in panels of
diagnostic markers of lung cancer, not only of SPs but also other innate host defense molecules.

In the pursuit of identifying the best panel(s) that would be appropriate for a given type of lung
cancer, it is likely to encounter several challenges. These may not only relate to decisions as
to which genes to include but may also relate to decisions as to what percent of methylation
change should favor inclusion of a given gene. For example, small non-statistically significant
changes along with larger statistically significant changes may provide higher level of
specificity. Since environmental insults have been shown to contribute to lung cancer
development, inclusion of genes responsive to such insults may also be warranted. Moreover,
as we may move towards ‘individualized medicine’ selection of a panel of markers for
diagnostic use, may require prior understanding of the individual's life style. Such a knowledge
may help determine which gene-environment interactions are more relevant to that individual
and consequently choose a panel most appropriate for that individual. Finally, we expect that
as our knowledge on the subject increases many more factors and considerations are likely to
enter the design and selection of diagnostic methylation marker panels.
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