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1. Introduction
Protein dynamics by NMR has been reviewed extensively in recent years [1–10]. These surveys
show decisively that information on structure should be complemented by information on
motion both to properly characterize the protein, and to understand its function. The time scale
accessible by NMR extends from picoseconds to days, with different methods accessing
different parts of this time axis. Here we focus on heteronuclear NMR spin relaxation used to
study ps to ns protein dynamics. The slow limit of this time regime is determined by the global
tumbling of the protein, with the rates for internal motion of the probe being typically faster.

Based on experience gained over nearly a decade we came to the conclusion that the traditional
method of NMR spin relaxation analysis in proteins and nucleic acids, called “model-
free” (MF) [11–13], does not extract adequately and fully the information inherent in the
experimental data largely because it is oversimplified. We have developed an approach that
overcomes many of the MF deficiencies. This method, called the slowly relaxing local structure
(SRLS) [14–20], may be regarded as a generalization of MF. SRLS predates the MF approach,
and even provided derivations of the exact equivalents of the MF equations [15,21].
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1In the equivalent of the B.-O. approximation one should replace ΓΞ by [ΓΞ + Em(Ξ)], leading to eigenfunctions |νm,q(Ξ)> in Eq. (11),
but we are assuming that the overall slow motion is unaffected by the local probe motion.
2The fact that YM is the main ordering axis in the C++OPPS fitting scheme for SRLS [90], whereas XM is the main ordering axis in our
previous fitting scheme for SRLS [20], is related to a different definition of the local ordering frame, M. This is inconsequential as far
as the physical picture is concerned.
3The Euler angles ΩMQ have been defined as (0°,βMQ°,γMQ°) in the fitting scheme developed in Ref. [20], and as (αMQ°,βMQ°,0°)
in the fitting scheme developed in Ref. [90]. The calculations presented in Sections 2 – 5 of Appendix F were carried out with the fitting
scheme of Ref. [20].
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The primary issue is how to address the great complexity of protein dynamics, including global
and restricted local motions. The typical probe for backbone motion in proteins is the 15N–1H
bond, with 15N relaxation observed [1–10]. The typical probe for side-chain motion is the
uniformly 13C-labeled, fractionally deuterated, 13CDH2 methyl group, with deuterium
relaxation observed [6,22–24]. A given probe might move independently of the protein or be
coupled to it dynamically. Any general theoretical approach should account for the relationship
between the global and local motions, for the local ordering, and for the relevant magnetic
interactions. The respective tensorial properties should be realistically chosen within the scope
of the data sensitivity. Thus, the model should include the appropriate parameter combinations.
All of these features and capabilities are inherent to SRLS. Correlations along the protein
backbone might well be important [3,25–27], but the local factors mentioned above must first
be accounted for. That the latter are important was shown in theoretical studies [16,17], and
confirmed experimentally [18–20]. Effects from statistical interdependence of the various
motions we have referred to as “mode-coupling”.

NMR spin relaxation in liquids pertains to the Redfield limit where only relaxation parameters
can be measured [28,29]. The number of experimental data points is limited; one acquires
typically three data points (15N T1, T2, and 15N–{1H} NOE) for amide 15N and two (2H T1 and
T2) for methyl 2H at each magnetic field. Hence, it is not practical to treat explicitly the complex
local motions coupled to the global motion and to account explicitly for correlations along the
protein backbone. However, the latter can affect the analysis implicitly via the values of the
parameters determined [20].

As currently implemented to treat NMR spin relaxation in proteins and nucleic acid fragments,
SRLS is a stochastic two-body coupled-rotator diffusive approach [16–20]. It can be
generalized to three (or more) bodies that are coupled, as well as the inclusion of inertial effects
in these motions [16], as opposed to the purely diffusive limit currently utilized for
convenience. In this limit a Smoluchowski equation is solved to obtain the time correlation
functions whose Fourier transforms are the spectral densities that underlie the expressions for
the experimentally measured relaxation parameters.

The two rotators represent the protein and the spin-bearing probe, with their rotational degrees
of freedom “coupled” by a local potential exerted by the immediate protein surroundings at
the site of the motion of the probe. All the tensors that are needed (e.g., ordering tensor,
magnetic tensors) are featured, including their general properties. Diffusion within two (or
more) wells, with less frequent jumps between the wells, can also be modeled within this
approach [17]. When the rate of the global motion is much slower than the rate of the local
motion, then “mode-coupling” is represented in a Born-Oppenheimer (B.-O.) type
approximation also implicit in the simpler MF approach [15,16]. In this limit one recovers a
key part of the (complex) theories of rigid-body motion in the presence of a space-fixed mean-
field potential [14,30–33]. That experimental data from probes reorienting in the presence of
restricting potentials require this complexity for proper analysis is amply documented in the
literature [32,33].

Within the scope of this picture, we consider SRLS to be a realistic general approach that also
allows for refinements. The analysis is typically carried out with data fitting [19,20,34,35].
Over-fitting and force-fitting are discernable provided the criteria for result acceptance include
appropriate statistics and physical viability of the best-fit parameters. It has been found that
the parameter combinations that match the data sensitivity for 15N amide and 2H methyl
relaxation can be determined with SRLS [20].

The philosophy underlying MF is different. According to it, the experimental data are scarce,
and the great complexity of protein dynamics cannot be possibly captured by a tractable
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stochastic model. Therefore, only simple approaches are justified, and good statistics suffice
for result acceptance.

The simplest approximation to the actual (normalized) time correlation function, C(t), is an
initial exponential descent from unity to a plateau value followed by a slower exponential
decay, with rate constant 1/τm, to zero at long times due to the global tumbling; that is, τm is
the correlation time for overall rotational reorientation. The initial descent is taken to be given
by a single decay constant, 1/τe. This (bi-exponential) form of C(t) assumes implicitly only the
simplest geometrical description. It is valid when the protein is “frozen”, i.e., τm = ∞, and
within a good approximation when τe ≪ τm and only two correlation times are sufficient
[11]. As noted above, a stochastic derivation leading to a very similar expression, but also
including the tensorial properties of the magnetic and ordering tensors, was provided earlier
[15].

Stochastic approaches have shown that actual time correlation functions associated with
restricted motions in liquids are given by sums of weighted exponents [14,30–33]. It is often
possible to least-squares fit such functions to the bi-exponential MF function with good
statistics. This constitutes parameterization of the measurable time correlation function in terms
of τe and the plateau value, which by itself is appropriate. However, one wishes to gain insight
into the physical nature of the protein dynamics. For that, it is necessary to determine the
conditions under which the MF parameters may be viewed as physical parameters.

These conditions cannot be specified within the scope of MF, given its “model-free”
characteristic. They can be specified using SRLS, which is general in nature and yields MF in
simple limits. The parameter τe will represent an effective local motional correlation time, and

the plateau value will represent the square of an axial order parameter, , under the
following conditions. (1) The time scale separation between the reorientation of the probe and
the reorientation of the protein is large. (2) The local ordering is either weak or strong. (3) All
the second rank tensors are as simple as possible. (4) The eigenfunctions of the local motional
diffusion operator take on a simple form, despite the presence of a local potential. Based on
previous work on restricted motions in liquids [14,30–33] these conditions are not likely to be
fulfilled, as confirmed recently [19,20,34,35]. If a given time correlation function, or the
spectral density obtained from it by Fourier transformation, are used outside of their validity
range, the best-fit parameters will be physically vague.

The “model-free” point of view has been extended further. The plateau of the MF time
correlation function was defined mathematically as the square of a “generalized” order
parameter, S2. As shown below, this is an artificial order parameter. Nevertheless its expression
is used to calculate order parameters from molecular dynamics (MD) trajectories [36] using a
formula valid in simple limits [37]. Furthermore, S2 is designated as an amplitude of motion,
and conformational entropy has been calculated from it [6].

For methyl dynamics the situation is more challenging because a single local motion – rotation
about the C–CH3 axis within the scope of the tetrahedral carbon geometry featuring the angle
110.5° (which corresponds to taking rCH=1.115 Å in analyzing cross-correlates HC-HH
relaxation [24]) – does not lead to good statistics in fitting the experimental data [38]. MF
addressed this problem by introducing a second local motion – axial fluctuations of the C–
CH3 axis – though factorization of S2 into the product 0.1×Saxis

2, and assuming that one may
assign τe to both motions [11,12,36]. The factor P2(cos(110.5°))2 = 0.1 is taken to represent
the squared order parameter associated with the motion about the C–CH3 axis; Saxis

2 is taken
to be the squared order parameter for the motion of the C–CH3 axis. The two local motions
are assumed to be decoupled from one another and from the global motion.
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The typical probe is the deuterium nucleus in the 13CDH2 methyl group [22]. The MF spectral
density described above can represent either motion about C–13CDH2 as described above, or
axial fluctuations of C–13CDH2. It cannot represent simultaneously both motions if one wishes
to sustain a physical scenario.

The issues brought up above will be addressed in detail in the review. It will be shown that
analogous, but physically distinct, SRLS and MF analyses often yield substantially different
results, indicating that the oversimplifications inherent in MF have unfavorable practical
implications. Within a broader perspective, we illustrate the disadvantages of applying
parameterization instead of setting forth models, using mathematical instead of physical
parameter definitions, and not abiding by the assumptions underlying the various equations
used. We offer the concepts that underlie SRLS as an alternative to the model-free point-of-
view, and we describe and illustrate how SRLS can be implemented in a practical fashion. We
also indicate how improvements to the current SRLS approach can be introduced.

2. Perspectives of protein dynamics by NMR
2.1. The Slowly Relaxing Local Structure (SRLS) approach

Relaxation rates of nuclear spins in biological macromolecules, particularly proteins, are a rich
source of information on kinetic, structural, geometric and thermodynamic properties [1–10,
22–24]. The spin-bearing moieties are engaged in both the global tumbling of the protein and
at least one local motion. The latter is restricted by the local structure, i.e., the immediate
(mobile) protein surroundings. This is a complex two-body (protein and probe) scenario [16–
20].

To extract properly the information inherent in the experimental data a reasonable but tractable
dynamic model, which matches data sensitivity, is required. The problem will be simplified
significantly if it is appropriate to assume that (1) the global and local motions occur on very
different time scales, (2) the properties of the second rank tensors involved are very simple,
and (3) the local ordering is weak. This scenario was treated in early work by Freed within the
scope of an SRLS model wherein the probe reorients (diffusively) rapidly in a “cage” which
experiences slow motion [15]. The cage (probe) can be considered to represent the protein
(spin-bearing moiety); the cage motion can be associated with the motion of the protein that
of course provides spatial restrictions at the site of the motion of the probe.

For weak axial local ordering, probe diffusion approximated as isotropic and cage motion taken
isotropic, C(t) comprises three terms [15]. They represent effects of the slow large-body
motion, the reorientation of the probe with respect to the mean field (ordering) potential, and
a negative cross-term between these two processes, which represents their statistical inter-
dependence from the point-of-view of the probe. By analogy with treating, in quantum
mechanics, the motion of a low mass particle relative to a heavy particle, this was also called
a Born-Oppenheimer (B.-O.) approximation [15] (see also Ref. [39]). The Fourier transform
of C(t) (the derivation of which is outlined in Section 3.2.1.) is given by:

(1)

where  is the axial order parameter defined in terms of a Legendre polynomial of rank 2,
τm = 1/(6 RC) is the correlation time for slow cage reorientation, and τ = 1/(6 RL) is the
correlation time for fast “probe” reorientation, with τ ≪ τm. The parameters RC and RL denote
the rate constants for global and local diffusion, respectively. For local ordering/local diffusion
and magnetic frames taken the same, j(ω) given by Eq. (1) is the measurable spectral density,
J(ω), in terms of which the experimental relaxation parameters are defined.
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Note that the form of C(t), hence of J(ω), is simple not only because of the large time scale
separation aspect, but also because the symmetry-related and geometry-related properties of
the second rank tensors involved are likewise simple. Finally, the eigenfunctions of the
diffusion operator of the probe in the presence of a local ordering potential are the same as the
eigenfunctions of the “bare” diffusion operator describing a freely diffusing axial probe. These
eigenfunctions are the generalized spherical harmonics (Wigner functions). In general the local
potential alters the basis set of the “bare” diffusion operator [14,30–33]. In the limit of very
weak potentials and large time scale separation [15] this basis set may be preserved.

In the limit in which a spherical particle reorients rapidly in the presence of a strong axial
potential the eigenfunctions of the diffusion operator become again simple to express [14,31].
Then the correlation time is , with the dimensionless coefficient, , denoting the
strength of the axial local potential as compared to kBT; τren represents a “renormalized”
correlation time [14]. In the limit of large time scale separation and strong axial local potential
the full SRLS solution features a dominant local motional correlation time which agrees with
τren [20,40], and has eigenfunctions given in Ref. [14]. We have shown that in this limit Eq.
(1) with τ replaced by τren is a good approximation to the SRLS spectral density [20].

The MF time correlation function is the same as J(ω) given by the B.-O. limit simple SRLS

time correlation function in Eq. (1) with S2 representing , and τe representing τ for small
S2 and τren for large S2 (on a 0 – 1 scale). As pointed out above, actual applications do not abide
by the limiting conditions underlying MF. More general versions of SRLS are required to treat
them properly.

The full SRLS theory, where all the restrictions mentioned above have been eliminated, was
developed by Polimeno and Freed by solving a two-body coupled-rotator Smoluchowski
equation [16]. In this development the effect of the coupling/ordering potential on the
eigenfunctions of the uncoupled diffusion operators, and statistical interdependence, or mode-
coupling, between the global and local motions, are accounted for rigorously in the diffusive
limit. The time scales of the global and local motions may be arbitrary. The global diffusion,
the local diffusion, the local ordering and the magnetic tensors are allowed their full asymmetry
and they may be oriented arbitrarily. The magnitude of the local potential is not limited. In the
limit of large time scale separation and strong potentials, and in the limit where τ is practically
the same as τm, inertial aspects of the probe motion become important, and a full Fokker-
Planck-Kramers treatment is advisable. This was also developed in Ref. [16]; efforts geared
toward the application of this approach to NMR spin relaxation in proteins are underway.

One may envision an NMR, ESR, fluorescence-related, etc., probe embedded in surroundings
that represent a protein or DNA fragment. SRLS is applicable to all of these scenarios. It thus
constitutes a general theoretical/computational tool for analyzing bio-macromolecular
dynamics. Clearly, it is not practical to use it in its most general form in a given calculation.
The parameter combination appropriate for analyzing given experimental data is determined
by requiring both good correspondence between theory and experiment, and physical relevance
of the results. In the context of ESR the SRLS approach was applied over the years to various
systems (e.g., see Refs. [41,42]), including bio-macromolecules [18,43–45]. The parameter
sets required exceed the scope of the MF limit.

We first applied the full SRLS theory to NMR spin relaxation in proteins in 2001 [19]. Further
developments, and many applications, are described in Refs. [20,34,35,40,46–50]. In this
review article, we present typical results and suggest further developments in modeling.
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2.2. Model-Free
The MF spectral density is given by [11]:

(2)

where 1/τe
| = 1/τm + 1/τe, and 1/τe

| ~ 1/τe by virtue of τm ≫ τe. This spectral density is based
on the premise that the global motion of the protein and the local motion of the probe are
statistically independent. By virtue of this assumption the total time correlation function, C
(t), is factored into the product CC (t)× CL (t), with CC (t) (CL (t)) denoting the time correlation
function for global (local) motion. The derivation of Eq. (2) is outlined in Section 3.2.3. Here
we only point out the meaning of the various MF parameters in comparison with their physically
precise SRLS counterparts.

Equation (2) is “model-free” since no physical model was used to derive it. For simple motional
and ordering properties its form is valid rigorously for a “frozen” protein with τm = ∞, and
approximately for τm ≫ τe [11]. Restricted local motions are in principle multi-exponential
[30–33]. In practice there exist limiting conditions under which these motions may be
represented by a single decay constant. For wobble-in-a-cone in a square-well potential this
approximation is valid for a semi-cone angle smaller than 50° [51]. For wobble-in-a-cone in a
cosine squared potential the threshold is 15° [20]. For diffusive local motion in a strong axial
potential the dimensionless coefficient  must be larger than 10 and the time scale separation
larger than 100 for a single correlation time given by  to be valid [20].

The parameter τe is defined based on the theory of moments as the area of the exact time
correlation function for internal motion divided by (1 − S2). No limits are imposed on the value
of this mathematical quantity.

The parameter S2 represents CL (∞). In Ref. [52] it was shown based on a stochastic model

that CL (∞) is equal to the square of the axial physical order parameter .
This agrees with CL (t) defined in Ref. [11] as the (axial) time correlation function of
P2(cosθ). The time-dependent variable, θ, is the angle between the axial “interaction” (i.e.,
magnetic) frame and an axial protein-fixed frame. By using the magnetic frame in defining
CL (t) [11] it is assumed implicitly that the local ordering and magnetic frames are the same.
This is certainly not obvious.

In Ref. [11] CL (∞) is re-defined as , where Y2m are the spherical
harmonics of Brink and Satchler [53]. This quantity is denoted as the square of a “generalized”
order parameter. The azimuthal angle φ is not defined, nor is it clear how does CL (∞) ≡ S2

[11] relate to the original definition of  [52].

As mentioned above, when order parameters are derived from molecular dynamics (MD)
trajectories one typically calculates S instead of  [36]. The expressions for these two types
of order parameters are clearly different. Moreover, S is calculated using a simple formula
based on the results of Normal Mode Analysis, which is valid for local motions in the extreme
motional narrowing limit and for strong axial local ordering [37]. Yet, this formula is being
used more generally, e.g., even in the presence of ns local motions; in some cases it is
considered “exact” [54]. The mathematical expression for S has also been used to calculate
order parameters of various models for internal motion in proteins [6,8].
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The parameter S2 is considered as a measure of the amplitude of the local motion. This
interpretation, appropriate in the limit of strong axial local ordering and local motion in the
extreme motional narrowing limit [18], prompted the utilization of S2 to calculate
conformational entropy [6,8,55–58]. The physical meaning of the latter quantity is thus

problematic outside the limit where , θ is small, and τe → 0.

The extended MF (EMF) spectral density was developed for cases where small
experimental 15N–{1H} NOE values were encountered [13]; such data could not be fitted with
the MF spectral density. Besides a fast local motional term with correlation time τf the EMF
spectral density also comprises a slow local motional term with correlation time τs, which helps
to reproduce the small NOE values. In principle, all three dynamic modes, represented by τm,
τf and τs, are assumed to be decoupled from one another. In practice, τs often occurs on the
same time scale as τm. The basic MF premise of statistical independence may well be in conflict
with τs being on the order of τm, because this similarity implies mode-coupling in the limit of
overdamped diffusive motions [16], as illustrated, e.g., in Ref. [20].

Lin and Freed [21] provided an extension of SRLS in the large time scale separation limit for
weak rhombic local ordering and axial local diffusion – see Eq. (B6) of Ref. [21]. For a 90°
tilt between the axial magnetic frame and the main local ordering axis the measurable spectral
density of this expansion is, within a good approximation, mathematically the same as the EMF
spectral density. Note, however, that the spectral densities developed in Ref. [21] include
general properties of the magnetic and ordering tensors, rendering them physically different
from the EMF spectral density. That is, the effective correlation times, τf and τs, considered in
MF to represent two independent decoupled local motions are in this SRLS spectral density
the parallel and perpendicular components of the axial local diffusion tensor. The MF order
parameters Sf and Ss, associated in MF with independent local motions, can be expressed as
functions of  and , which define a rhombic local ordering tensor [21]. Since Eq. (B6) of
Ref. [21] is a B.-O. limit spectral density, the EMF formula should not be used when τs and
τm occur on the same time scale.

As mentioned above, for methyl dynamics the MF spectral density given by Eq. (2) has been
re-interpreted to represent two local motions. One is described by Woessner’s model [59]
applied to rotation about the C–CH3 axis, and the other consists of local axial fluctuations of
the C–CH3 axis [11]. P2(cos110.5°)2 = 0.1 is taken to represent [11,12,36) the squared order
parameters of Woessner’s model [59]. Yet, this model has implicitly an order parameter of 1
[59]; its P2(cos110.5°) is actually a transformation of the axes frame. Saxis

2 is associated with
restricted fluctuations of the C–CH3 axis. Yet, in Woessner’s model the motion of this axis is
given by , which represents the isotropic global tumbling. Thus, τe = τ⊥ = τm. The

local motion is given in Woessner’s model by . Thus, τe = τ||. Clearly, this scenario
is not physically sound. The model developed in Ref. [60] treats methyl dynamics within the
scope of two separate motions (about the C-CH3 bond and of the C-CH3 bond), although
P2(cos110.5°)2 = 0.1 is also considered to be an order parameter.

With Saxis
2 designated as the amplitude of axial C–CH3 fluctuations one expects

correspondence between its value and various structural properties. Such correspondence could
in general not be established [61,62] (with a few exceptions [63]). Inconsistencies associated
with Saxis

2 have been reported in the literature (see, for example, Ref. [64]).

It is indicated in Ref. [11] that S2 and τe may be interpreted within the scope of various models
for restricted motions in proteins. There are numerous examples indicating that experimental
data from probes engaged in motions restricted by a potential of mean torque require accounting
for general tensorial properties (e.g., non-spherical local diffusion tensor, rhombic ordering
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tensor, and their respective principal axes frames tilted from the magnetic tensor frames) for
proper analysis [14,30–33]. Probes reorienting inside proteins experience such restricted
motions. Thus, even in the mode-decoupling limit Eq. (2) is too simple to treat adequately
protein dynamics.

There is compelling evidence within the scope of NMR spin relaxation in proteins for motion
about the  axis, which is tilted from the N–H bond direction [20,46–50,65,66], which
thus represents non-trivial geometry, and for asymmetric motions [20,34,35,46,48–50,67–
71]. The current MD-based picture visualizes that short-range correlations between dihedral-
angles dominate protein dynamics, with information propagating through the protein in a
diffusion-like manner via local interaction networks [72]. This picture implies rhombic
ordering at N–H sites, in agreement with motion about the  axis.

The scenario described above can be handled with SRLS; it is outside the scope of MF, which
has no provision for tilted and/or rhombic tensors. Therefore S2 and τe cannot be interpreted
in terms of realistic models for restricted motions in proteins.

The overview presented above has been demonstrated quantitatively by comparing formally
analogous SRLS and MF parameters. The application of SRLS and MF in parallel to a large
number of data sets has shown that MF is frequently a force-fitting to the experimental data
[19,20,34,35,46–50]. Namely, the statistical criteria are fulfilled but the best-fit parameters are
inappropriate for physical interpretation, having absorbed unaccounted for factors. In most
cases the differences between analogous SRLS and MF analyses were found to be quantitative
in nature; in some cases substantial qualitative differences were detected [20].

3. Theories
3.1. Local motion without the global motion

3.1.1. General relaxation limit theory—Nordio and Busolin [30], and Freed and co-
workers [31], treated diffusive rotational reorientation of an axial probe in a uniaxial liquid
crystal. These developments can be viewed as treatments of diffusion-restricted local motion
in proteins with the global motion frozen (alternatively, they apply to the overall motion of a
biomacromolecule, such as a protein, embedded within a membrane). They are general in
allowing for an arbitrary tilt between the local ordering/local diffusion and magnetic frames,
and for magnetic tensors of arbitrary symmetry and orientation. Szabo also treated local motion
with an axial ordering frame tilted from an axial interaction frame within the scope of
fluorescence depolarization [52,73]. Polnaszek and Freed [14] extended the development of
Ref. [31] by allowing for rhombic local molecular ordering.

In the theories developed in Refs. [30] and [31] one solves the rotational diffusion equation
for the probability density P(Ω,t) for the orientation of the probe:

(3)

Equation (3) is appropriately referred to as a Smoluchowski equation. Here ΓΩ is the diffusion
operator, R is the isotropic rotational diffusion coefficient, ∇Ω2 is the rotational diffusion
operator in the Euler angles Ω → α, β, γ, and T is the restoring torque. The latter is equal to
−∂U/∂β in the case of an axial restoring potential, e.g.,  (  is in units of
kBT). One diagonalizes the operator ΓΩ, typically using the normalized forms of the Wigner
rotation matrix elements, , as a convenient basis set, to obtain the eigenfunctions and
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eigenvalues of ΓΩ. Then the time correlation functions of these normalized  (as well as

their cross-correlation functions with  where L′ ≠ L, K′ ≠ K, and/or M′ ≠ M) may be
expressed in terms of these eigenfunctions and eigenvalues. Their Fourier transforms yield the
spectral densities from which the magnetic resonance relaxation parameters, such as T1, T2 and
heteronuclear NOE, are calculated.

These time correlation functions are, in general, found to be a sum of exponential decays, where
the decay constants are the respective eigenvalues, and the weighting factor of each decaying
exponential gives the relative importance of that eigenfunction in the correlation function. The
general expressions for rhombic R tensor and rhombic potential U(Ω), that replace the
respective quantities in the ΓΩ of Eq. (3), are given in Ref. [14]. Again, the time correlation
functions for the  are found to be sums of exponential decays determined by the
eigenfunctions and eigenvalues of the more general diffusion operator, ΓΩ.

3.1.2. Specific models for internal mobility—Kinosita et al. [51] developed a stochastic
model for wobble-in-a-cone in the presence of a square-well potential for a fluorescent probe
embedded in a practically static membrane. The absorption (or emission) fluorescence dipole
was taken collinear with the axial wobbling probe, the symmetry axis of which represents the
local ordering/local diffusion axis. When the latter is collinear with the axial interaction axis,
i.e., the “diffusion tilt” is zero, one has . The equilibrium probability density is
given by Peq(θ) = (2πsinθ)−1 δ(θ − θmax), with θmax denoting the cone semi-angle. The function

 is given by:

(4)

The parameters 1/σi are the eigenvalues of the Smoluchowski operator that describes the
wobbling motion of an axial probe in a square-well potential. The parameters Ai are the
corresponding weighting factors, and Dw = 1/(6τ⊥) is the wobbling rate constant. Dw/σ∞ → 0,
which implies exp(−tDw/σ∞) → 1, represents the rate constant associated with the practically
static membrane.

It was shown that an effective decay constant, Dw/<σ>, where , with the
summation running over the local motional terms, is valid for θmax ≤ 50°. When this condition
is fulfilled, one has:

(5)

i.e., the function  decays with rate constant Dw/<σ> to a plateau value A∞. The latter was
shown to be given by:

(6)

Wang and Pecora [74] treated wobble-in-a-cone for a rhombic equilibrium probability density
of probe orientations. For biaxial (rhombic) local ordering, a solution yielding analytical time
correlation functions, , does not exist, even when the global motion is frozen. However,
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a numerical solution, given in terms of associated Legendre polynomials of non-integer degree,
was obtained.

London and Avitabile [38] found that experimental 13C relaxation data from methionine methyl
groups in dihydrofolate reductase cannot be reproduced with free diffusion or symmetric jumps
about the S–13CH3 axis (Woessner’s model [59]) combined with axial fluctuations of the
S–13CH3 axis. The experimental data could only be reproduced when the motion of the
S–13CH3 axis was allowed to be asymmetric. Thus, the sensitivity of the experimental data to
rhombic ordering at methyl sites in proteins was detected already in early solution work with
a model-based approach. Partially averaged rhombic 2H powder patterns from polycrystalline
samples were also observed in early work [75]. A recent solid-state NMR study has shown
with an elaborate analysis that the local ordering at the methyl sites of a given leucine residue
of the chicken villin headpiece subdomain protein (HP36) is rhombic [76].

Wittebort and Szabo [77] developed spectral densities for a general jump model and illustrated
it for the concerted motions of a lysine side chain.

The 3D Gaussian Axial Fluctuations (3D GAF) model [78] provides an analytical description
of anisotropic peptide plane motion in terms of 3D harmonic local reorientational fluctuations
that is consistent with molecular dynamics simulations. In its application to 15N and 13C′ spin
relaxation for the relatively rigid protein ubiquitin, 3D GAF reproduced the experimental data
of 76% of the peptide planes studied [65]. The local fluctuations were found to be anisotropic,
with the largest amplitude associated with motion about the  axis. Thus, 3D GAF has
proven that appropriate analysis of 15N relaxation data from well-structured parts of the protein
requires allowing for a “diffusion tilt” and anisotropic local restrictions. Experimental data
from flexible regions of the protein backbone could not be reproduced with 3D GAF [65].

Internal motions in proteins have been treated by Wallach [79], Woessner [59,80], Daragan
and Mayo [67], LeMaster [81], Korzhnev et al. [82], Atkinson and Kieffer [83], and others.

3.2. Local motion decoupled from the global motion
3.2.1. The Slowly Relaxing Local Structure: an early version—We provide here a
simple version of the derivation first presented in Ref. [15] that led to an expression now
commonly referred to as the model-free spectral density. That derivation was based upon
straightforward stochastic considerations. It considers the reorientation of a local (spin) probe
that is coupled to a slower reorienting object as a joint stationary Markov process. The local
motion is restricted in its range of reorientation by the “local structure” around it; these
restrictions are represented by a restoring potential. In the case of a spin-bearing entity on a
protein, the overall tumbling of the protein is the slowly reorienting object, to which the spin-
bearing entity is attached, and engaged in local diffusive motion relative to the slower moving
frame of the protein.

We can describe the time-dependent Euler angles representing the orientation of the protein
relative to a static lab frame by Ξ, and the Euler angles representing the probe orientation
relative to the static lab frame by Ω. Then the joint probability density, P(Ω, Ξ,t), in the Euler
angles Ω and Ξ becomes a composite (or multi-dimensional) Markov process, obeying the
diffusion equation:

(7)

where ΓΩ is the rotational diffusion operator in Ω for the local probe motion. Because of the
restoring potential, ΓΩ will depend on the orientation of the protein, i.e., ΓΩ = ΓΩ(Ξ), while
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ΓΞ is the rotational diffusion operator associated with the protein tumbling. It is not necessary
at this stage even to specify its exact form, although we give examples below.

Now we introduce the assumption that Ξ relaxes much more slowly than Ω. This assumption
for the diffusion equation (7) above is analogous to the Born-Oppenheimer approximation in
quantum mechanics. In fact, since diffusion equations such as (7) are mathematically similar
to (but clearly physically very different from) quantum mechanical equations (i.e., the
Schrödinger equation), we can employ similar methods of solution [84,85]. This B.-O.
approximation can be written as:

(8)

Here, f(Ξ,t) is the probability density for the overall (protein) tumbling, which we take as
independent of the local probe dynamics, so it obeys the simple rotational diffusion equation:

(9)

(where we usually let ΓΞ = −RC∇Ξ2, which is the standard rotational diffusion Laplacian
operator acting on the Euler angles Ξ; in Section 3.3. these angles are denoted ΩLC), whereas
the much faster motion of the probe obeys the diffusion equation:

(10)

where PΞ(Ω,t) is the probability density function in Ω (denoted ΩC′M in Section 3.3.) for a
fixed value of Ξ. An explicit form for the diffusion operator ΓΩ(Ξ) (not required in the
derivation below) is −∇Ω·RL·∇Ω [1 + U(Ω,Ξ)/kBT]. Here RL is the rotational diffusion tensor
for the local motion, and U(Ω,Ξ) is the potential for the local motion in Ω relative to the slowly
relaxing orientation of the large body specified by Ξ. Note that Eq. (3) is a special case of Eq.
(10) for isotropic RL and an axial potential.

Equations (9) and (10), being diffusion equations, have respective eigenfunctions and
eigenvalues, as already noted in Section 3.1.1. The general solution to these equations may
then be written as eigenfunction expansions. That is:

(11)

and

(12)

written in eigen-ket notation, with εq and Em the respective eigenvalues.1. Then from Eqs. (8),
(11) and (12) we obtain the overall solution:

(13)
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The expansion coefficients am,q are determined by an appropriate set of initial conditions. The
conditional probability density, P(Ω0,Ξ0|Ω,Ξ,t) arises from letting Ω = Ω0 and Ξ = Ξ0 at t = 0,
corresponding to Dirac delta functions:

(14)

Then by Eq. (8) we have:

(15)

Also, we have for stationary Markov processes the general relation:

(16)

for the joint probability density in Ξ0, Ξ, Ω0 and Ω.

For spin relaxation, one is interested in the correlation function of the Wigner rotation matrix
elements (cf. Section 3.2.1):

(17)

in isotropic fluids. We will only consider here K′ = K, M′ = M and isotropic fluids, for which
; the general case is given in Ref. [15], including anisotropic fluids (e.g.,

membranes, liquid crystals). Also, for convenience of presentation in the following we will
drop the 2 superscript and the K and M subscripts. Thus we have:

(18)

where the approximate equality results from the B.-O. approximation. Equation (17) can now
be rearranged into the sum of three terms by straightforward application of the general
properties of stationary Markov processes [15] to yield:

(19)

Here we have (somewhat simplified for present purposes):

(20a)

(20b)
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(20c)

Now consider C(1)(t) given by Eq. (20a) in more detail. First note that for isotropic systems
feq(Ξ) = 1/(8π2) independent of Ξ. Then we have:

(21a)

and

(21b)

Then

(22)

Equation (22) is readily seen to be just the standard correlation function associated with the
faster probe motion, independent of the overall tumbling. For a simple exponential decay we
get <[D(Ω)]2> exp(−t/τ)= (1/5)exp(−t/τ) for a second rank . Thus, the effect of the
overall tumbling must come from C(2)(t) and C(3)(t).

Now consider C(2(t) for which the integral:

(23)

refers to the restricted average of D(Ω) over Ω for a specific value of protein orientation, Ξ.
This is the definition of the order parameter for the probe, S, relative to Ξ. Thus we may write:

(24)

In the limit of low ordering, S(Ξ) = Sℓ D(Ξ) [15], where Sℓ is the local order parameter of the
probe, so Eq. (24) becomes:

(25)

which is just Sℓ2 times the standard correlation function for the slow overall motion, so that
for a simple exponential decay we get Sℓ2 (1/5) exp(−t/τm), τm ≫ τ.

More generally, with feq(Ξ0) = 1/(8π2) for an isotropic medium, and letting f(Ξ0|Ξ,t) ∝ δ(Ξ −
Ξ0)exp(−t/τm), we get:

(26)
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Given the definition of S(Ξ0) as the value of S(Ξ) at t = 0, it is reasonable to identify its average
over feq(Ξ0) to yield:

(27)

We now consider C(3)(t), which involves the combined time dependences on Ξ and Ω, and thus
has the property of being a cross-term. It arises because of the statistical dependence of Ω(t)
on Ξ, i.e., the orientation of the probe is coupled to that of the protein. As a result, its evaluation
is somewhat more complex than C(1)(t) or C(2)(t). Here we will again let f(Ξ0|Ξ,t) ∝ δ(Ξ −
Ξ0)exp(−t/τm), and [PΞ(Ω0|Ω,t) − PΞeq(Ω0|Ω,t)] = − Peq,Ξ(Ω) exp(−t/τ), which can be shown
to follow from letting

(28)

Then:

(29)

This expression is seen to be very similar to that of Eq. (25) and may now be evaluated in an
equivalent manner to yield

(30)

Collecting terms we now have:

(31)

which when Fourier transformed yields the spectral density:

(32)

where (τ|)−1 ≡ (τ)−1 + τm
−1 ≅ (τ)−1, since τm

−1 ≪ (τ)−1 by hypothesis. This expression is
identical to that of Eq. (5.5) in Ref. [15] for the case of an isotropic medium. That expression
also includes the effect of the large body (e.g., protein) in an ordered medium (e.g., a membrane
bilayer). Disregarding the coefficients 1/5, which is often included in the definition of the
squared magnetic interaction, Eq. (32) is equivalent to Eq (1): Sℓ2 in Eq. (32) is the same as

 in Eq. (1); one obtains a local motional term multiplied by (1 − Sℓ2), by analogy with a

local motional term multiplied by ( ) in Eq. (1).

We have also introduced a number of simplifications in this derivation to provide simpler
insight. The more detailed derivation with its subtleties is given in Ref. [15]. Note that the
essence of the derivation is simply based on a fast process coupled to a slow process following
Markov statistics. This is sufficient to yield Eq. (32) provided we simplify the tensorial
properties of the spin Hamiltonian and the “double tensor” properties of the  [86], as
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well as use only the simplest form of the diffusive motions and local probe ordering by
neglecting their full tensorial properties. Reference [15] explicitly considers these tensorial
properties, but keeps them simple.

This approach has been generalized in Ref. [21] to include a rhombic potential term. Then
along with the full tensorial properties of the  it yields the more general time correlation
functions, C−K,−K′,M, and by Fourier-Laplace transformation the more general spectral
densities, j−K,−K′,M (ω):

(33)

(33a)

where Sℓ,K are the spherical tensorial order parameters (K, K′ = 2, 1, 0, −1, −2).

The other limit of SRLS that leads within a good approximation to an equation formally
analogous to Eq. (1) was described in Section 2.1. It involves the same simplifications of the
tensorial properties in the limit of large time scale separation, but it requires the prevalence of
strong axial, instead of weak axial, local potentials [14,31]. In this limit one has a dominant
“renormalized” local motional correlation time given by , which may replace τ in Eq. (1).

3.2.2. Specific models for decoupled internal motions—Halle and Wennerström
[87] developed Eq. (1) in the context of 2H relaxation of water in heterogeneous systems A
two-step model featuring slow isotropic overall motion, fast isotropic local motion, and small
axial local ordering collinear with an axial magnetic tensor, was set forth. Rhombic (biaxial)
magnetic tensors are also allowed for. However, the equation that justifies this generalization
(Eq. (137), Ch. VIII, Ref. [28]) applies in the extreme motional narrowing limit for the local
motion. The various steps pursued in developing the two-step model involve casting the local
motion in the form of equilibrium averages, and expressing the spin Hamiltonian as a sum of
a quasi-single-crystal slow motional term, and a fast motional term that represents the departure
from this equilibrium value. These features also rely on the assumption of extreme motional
narrowing for the local motion.

Brainard and Szabo [60] developed a model featuring the global motion, τm, a local motion on
the surface of a cone with semi-cone angle β and correlation time τ||, and axial fluctuations of
the cone axis with order parameter called SD and correlation time τ⊥. The various dynamic
modes are assumed statistically independent of one another. The factor P2(cosβ) is taken as
the order parameter for the parallel motion. An analytical local motional time correlation
function is developed as a Padé approximant. With β set equal to 110.5°, this time correlation
function yields the MF formula for methyl dynamics, with τe replacing both τ|| and τ⊥. It is
indicated in Ref. [60] that the overall order parameter, S, may be set equal to P2(cosβ)×SD
when τ|| → 0 and τ⊥ → 0. As pointed out in Ref. [38], this model could not reproduce
experimental 13C relaxation data from the methionine methyl groups of dihydrofolate reductase
(DHFR). Note that in Woessner’s model [59], which is the same as the model for the parallel
motion in the present development, τ⊥ represents τm.
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Lipari and Szabo [88] applied the function  developed by Kinosita et al. [51] to NMR
spin relaxation in proteins in the form of . An analytical expression
for τe as a function of cosθmax and Dw, valid for θmax < 50°, was developed. In Ref. [52] Szabo
solved a Smoluchwski equation for axial local ordering and zero “diffusion tilt” to obtain (in
agreement with previous developments [14,30–33])  for the value of

.

In a subsequent paper Lipari and Szabo [89] considered all three components CK(t), K = 0, 1
and 2, of wobble-in-a-cone for non-axial ordering in the presence of a square well potential
[89]. Padé approximants were developed for CK(t). For 0 < θmax < 90°, K = 0, ±2, and 0 <
θmax < 75°, K = ±1, the decay constants, 1/τK, and the jK (0) values, are given analytically as
functions of cosθmax and Dw. The availability of all three CK(t) functions allows for the
possibility of local ordering/local diffusion axes tilted from the magnetic frame. To our
knowledge, this capability has not been utilized.

The next papers in the series of Lipari and Szabo papers are Refs. [11] and [12]. Here Eq. (2)
is set forth in a “model-free” manner. The assumptions and implications associated with this
concept are outlined in the next section.

3.2.3. Model-free—The MF spectral density is given by Eq. (2) [11,12]. The following
considerations lead to this formula. The total time correlation function, C(t) = CC (t)× CL (t),
is defined as <P2(cosθLD(t))P2(cosθLD(t+τ))>, where L and D denote the axial laboratory and
magnetic (dipolar) frames. The time correlation function for isotropic global motion is given
by CC (t) = exp(−t/τm). The following form is suggested for the time correlation function for
the local motion:

(34)

where S2 is the squared generalized order parameter, and τe is the effective correlation time
for the local motion. The Fourier transform of the time correlation function obtained by
multiplying Eq. (34) by CC (t) = exp(−t/τm) yields Eq. (2).

The squared generalized order parameter, S2: The parameter S2 represents C(∞). The latter

quantity is set equal to , based on the addition theorem of spherical
harmonics, and S2 is designated as the square of a “generalized” order parameter. As outlined
in Section 2.2., the angle φ is undefined, and the relation of S to  is unclear.

Within the scope of spin relaxation, order parameters are principal values of ordering tensors,
defined in terms of local potentials [14,30–33]. They represent ensemble averages. In
irreducible tensor notation only two order parameters,  and , persist for L = 2 if there is at
least 2-fold symmetry around the main ordering axis and 3-fold symmetry around the local
director. In Cartesian tensor notation there are in this case three order parameters, Sxx, Syy and
Szz, with Sxx + Syy + Szz = 0, with  and .

Thus, as defined in MF S2 is conceptually an artificial quantity. Since the actual local ordering
is rhombic [20,48,50], in practice the experimental data are force-fitted when Eq. (2), which
comprises only a single order parameter, is used.

The effective local motional correlation time, τe: The parameter τe is defined as [11]:
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(35)

The integrand represents the exact time correlation function for local motion; this assumes that
τ0 ≡ τm = ∞. Although this scenario is clearly unrealistic there might be conditions under which
Eq. (35) is valid within a good approximation. The mathematical definition of τe prevents
identifying these conditions. As pointed out above, S2 must be either close to zero or close to
1 for the single decay approximation for the local motion to be valid. The parameter τe is
undefined by Eq. (35) in the limit in which S2 → 1.

Statistical independence between the global and local motions is contingent upon large
time scale separation: The general expression for a time correlation function describing fast
restricted Markovian internal motions with correlation times, τi, in practically static
surroundings reorienting (formally) with correlation time, τ0, is given by [11]:

(36)

with τ0 = ∞ ≫ τ1, τ2, … and a0 = C(∞). One may write:

(37)

Let us denote a0 as S2. Since exp(−t/τ0) = 1 by virtue of τ0 = ∞, and since in the context of
protein dynamics τ0 represents τm, one may write:

(38)

Thus, C(t) is given rigorously by CC (t)× CL (t) when τm = ∞. Since the protein is reorienting
in solution τm is obviously not infinity. However, in the large time scale separation limit where
τm ≫ τ1, τ2,…, one may assume that within a good approximation C(t) ~ [CC (t) = exp(−t/
τm)]×CL (t). One may restate this to say that the local motion may be treated for “frozen” global
motion. This is the meaning of statistical independence, or “mode-decoupling”, in MF. Clearly
large time scale separation is a contingency, and the factorization of C(t) into CC (t)× C L (t)
is an approximation. This is shown rigorously in Section 3.2.1.

Theoretical validation of the MF formula: One has to show that Eq. (34) is a good
approximation to Eq. (37). This cannot be accomplished at the level of the time correlation
function. The following is done instead. Based on the assumption that statistical independence
remains valid when CC (t) = 1 is replaced by CC (t) = exp(−t/τm), where τm ≠ ∞, by virtue of
τm ≫ τ1, τ2,...., one obtains the expression:

(39)
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Fourier transformation of Eq. (39), and the assumption that the local motions are in the extreme
motional narrowing limits, lead to:

(40)

Multiplying Eq. (34) by CC (t) = exp(−t/τm), applying Fourier transformation and assuming
that τe ≪ τm, yields Eq. (2). In the extreme motional narrowing limit, Eq. (2) yields:

(41)

This is the same as Eq. (40) provided τe is defined by Eq. (35). Thus, Eq. (34) is validated in
the form of a limiting case of the Fourier transform of its product with exp(−t/τm), assuming
that large time scale separation is in place.

The requirement for large time scale separation is invoked explicitly in the derivation of Eqs.
(35) and (41) of Ref. [11], and in the context of Eqs. (57) and (58) of Ref. [11].

The symmetry of the local motion: There is confusion in the literature (e.g., Ref. [54]) with
respect to the physical quantity that addresses the symmetry of a restricted local motion. The
symmetry of a restricted motion is determined by the manner in which the spatial orientations
are sampled. The form of the respective conformational space is given by the equilibrium
probability density function, Peq(θ,φ) sinθ dθ dφ (in general, Peq(Ω), Ω → (α, θ, φ)). The
function Peq(θ,φ), determined by the form of the local potential, is used to calculate order
parameters [32,33]. Thus, the symmetry of a restricted motion is determined by the symmetry
of the local ordering tensor, or the symmetry of the local potential in terms of which the order
parameters are defined. The highest symmetry of the local potential, and of the local ordering
tensor, is axial symmetry.

The local rotational diffusion tensor is determined mainly by the shape of the probe. It is
independent of Peq. In principle, the highest symmetry of the local diffusion tensor is axial
symmetry, otherwise the orientational restrictions are not “sensed” by the probe. In practice,
one may approximate the local diffusion tensor as isotropic in the large time scale separation
limit. Clearly, a scalar quantity cannot address the symmetry of the local motion, as suggested
in some cases [54].

The local geometry: In general, the local ordering frame (determined by liquid dynamics
considerations) and the magnetic frame (determined by quantum mechanical considerations)
are not the same. The MF formula does not allow for accommodating the difference between
these frames. They are intrinsically identical and axially symmetric in MF.

The effect of the local potential on the eigenfunctions of the uncoupled local motional
diffusion operator: The fact that in the presence of a local potential the Wigner functions are
no longer eigenfunctions of the (axial) diffusion operator was established in early work [14,
30–33] and outlined in Section 3.1.1. Single exponent representation of the local motional term
in MF constitutes simple Wigner function representation of the (uncoupled) local motional
diffusion operator. As shown below, the effect of the local potential on the simple (Wigner
function) basis set of the uncoupled diffusion operator (Section 3.1.1.) is very large even for
weak potentials. This important aspect is completely ignored in MF.
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Post-fitting interpretation of the MF parameters: Any model used to interpret S2 and τe
obtained with “model-free” fitting should pertain to the large time scale separation limit, have
simple functions as eigenfunctions of the uncoupled local motional diffusion operator, and
have τe limited according to the particular model considered. It should feature isotropic global
and local motions, axial local ordering, and collinear local ordering, local diffusion and
magnetic frames. Few motions comply with all of these requirements. In general, they are not
realistic [20,40].

The extended model-free (EMF) spectral density: The EMF spectral density is given by
[13]:

(42)

The parameter τf is the effective correlation time for fast local motion, τs > τf is the effective
correlation time for slow local motion, and Ss

2 and Sf
2 are squared generalized order parameters

associated with these motions. 1/τf
| = 1/τf + 1/τm ~ 1/τf and 1/τs

| = 1/τs + 1/τm. The large time
scale separation assumption requires that τf ≪ τm and τs ≪ τm. As pointed out above, it is
inappropriate to use Eq. (42) when τs and τm occur on the same time scale, because mode-
coupling, which dominates the actual spectral density in this parameter range, is ignored. It is
also inappropriate to omit the third term of Eq. (42), as is often done, because the coefficients
of the various terms in a physical spectral density sum to unity. Hence omitting terms entails
force-fitting. Simplifications should be made at the stage where the time correlation functions
are set forth; this is clearly not possible with a “model-free” approach. Besides, we found that

the SRLS analogue of τf, the correlation time , does affect the analysis [90]. Setting
τ|| → 0 leads to inappropriate results [90].

The MF spectral density adapted to methyl dynamics: As already indicated, in this context
S2 and τe are taken to represent both rotation around the C–CH3 bond, and fluctuations of the
C–CH3 bond. The typical probe is the uniformly 13C-labeled, fractionally deuterium-labeled
methyl group 13CDH2, with the deuterium nucleus observed [22]. The relevant magnetic
interaction for the spin I = 1 2H nucleus is the quadrupolar interaction, Q. As pointed out above,
in the context of HC-HH cross-correlation, a bond length of rCD = rCH = 1.115 Å is consistent
with a tetrahedral angle of 110.5° [24]. The generalized order parameter, S, is expressed as S
= [P2(cos110.5°)]×Saxis = 0.316×Saxis, where 0.316 (Saxis) is the order parameter for motion
about (of) C–CH3. The correlation time, τe, is common to both local motions [11,12,36]. This
yields the spectral density for quadrupolar spin relaxation in 13CDH2:

(43)

where 1/τe
| = 1/τe + 1/τm ~ 1/τe.

Extended versions of Eq. (43) for treating methyl dynamics have been also suggested [24].

Equation (43) represents three motional modes: reorientation about the C–CH3 axis according
to Woessner’s model [59], axial fluctuations of the C–CH3 axis, and global tumbling. Let us
examine the case wherein Saxis

2 = 1; in this limit Eq. (43) should reproduce Woessner’s model
for methyl rotation.

Woessner’s model: Diffusive (or jump-type) motion about an axis tilted at a fixed angle, β
(110.5° for methyl rotation) from an axial magnetic frame is treated. The decay constants are
(τ|

1) −1 = 1/τm + 1/τ and (τ|
2) −1 = 1/τm + 4/τ, where τ represents the axial correlation time for
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local motion about the z-axis of the local diffusion tensor (for symmetric jumps one has
(τ|

1)−1 = (τ|
2)−1 = 1/τm + 1/τ, where 1/τ is the jump rate constant). The internal diffusion axis

tumbles isotropically with correlation time τm, and τm ≫ τ. The measurable spectral density
(applied here to quadrupolar relaxation of 13CDH2) is given by [59]:

(44)

 and , where  denotes the
reduced Wigner matrix element and K = 0, 1 and 2, transform the local diffusion frame into
the magnetic frame. The isotropic tumbling limit, J QQ (ω) = τm/(1 + ω2τm

2), is obtained for
τ → ∞, βMQ → 0, or both.

The following emerges. (1) Eq. (44) requires that τm ≫ τ. Therefore, Eq. (43) should not be
used when τe is on the order of τm. This is actually implicit in MF but often not appreciated
(see, for example, Ref. [91]). (2) Eq. (43) does not converge to the isotropic tumbling limit. It
yields J QQ (ω) = 0.1τm/(1 + ω2τm

2) for Saxis
2 = 1 and τe → 0; this differs from the Woessner

model limit (see above). (3) In Woessner’s model the diffusion axis tumbles isotropically; Eq.
(43) features a diffusion axis fluctuating with axial order parameter, Saxis. Therefore Saxis is
physically vague. (4) The parameter τe in Eq. (43) is taken to represent at the same time an
effective correlation time for local motion, the axial component of the internal probe diffusion
(τ in Woessner’s model), and axial fluctuations of the C–CH3 axis; the latter tumbles
isotropically in Woessner’s model. Therefore τe is physically vague. (5) As already noted, 0.1
in Eq. (43) is a coefficient associated with a frame transformation, not an order parameter.
Therefore Saxis

2 = S2/0.1 is also physically vague, especially since S2 is taken as a generalized
order parameter.

The Very Anisotropic Reorientation (VAR) model [18,92] describes the same physical
scenario as Woessner’s model in terms of an effective diffusion operator of the form:

(45)

ĴL is the infinitesimal rotation operator for internal probe diffusion equivalent to ∇Ω in Eq. (3),
 refers to its z component (z is the axis about which the internal rotation occurs), and

. The parameters RC and  represent the global and internal diffusion coefficients,
respectively, with the tilt angle βMQ between the internal diffusion z-axis and the principal z-
axis of the magnetic tensor to be specified.

VAR is a limiting case of SRLS wherein the axial coupling potential is very large, i.e.,
 equivalent to S2 → 1. We found that the parameter set comprising , βMQ = 110.5°

and RC = 0.001 (in units of ) yields, within a good approximation, single-exponential time
correlation functions C00 (t), C11 (t) and C22 (t) with eigenvalues of 1/τm, 1 and 4, respectively.
Given that τ/τm = 0.001, these eigenvalues are the same as 1/τm, (τ|

1)−1 = 1/τm + 1/τ ~1/τ and
(τ|

2)−1 = 1/τm + 4/τ ~ 4/τ in Eq. (44); in units of 1/τ one obtains 1/τm, 1 and 4, respectively.

The physical meaning of Eq. (43): This formula may be taken as a B.-O. limit of SRLS. It
represents a diffusive local motion time scale separated from isotropic global motion, taking
place in the presence of a weak axial local potential. The corresponding (axial) local ordering
tensor has its principal axis tilted at 110.5° from the (axial) magnetic frame.
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Let us consider Eq. (33a) for the quantum number M set equal to zero and axial local ordering

with  (we ignore the coefficient 1/5). The functions jKK (ω), with KK = (0,0),
(1,1) and (2,2), are given by:

(46a)

(46b)

and

(46c)

The measurable spectral density, J QQ (ω), is given by:

(47)

Assuming that τ0 = τ1 = τ2 = τ (by virtue of τm ≫ τK), one obtains:

(48)

This is the same as Eq. (43) wherein Saxis
2 is replaced by  and τe is replaced by τ. The

factor 0.1 is .

The local potential is given by u(ΩCM), where M is the local ordering frame fixed in the probe
and C = C′ is the local director fixed in the protein (for isotropic global diffusion C and C′ are
the same). The potential in Eq. (48) is axially symmetric and weak. This implies broad axially
symmetric distribution of the instantaneous orientation of the C-CH3 bond (i.e., the ZM axis)
about the equilibrium distribution of the C-CH3 bond (i.e., the C′ ≡ C axis). This is difficult to
rationalize for tightly packed protein cores.

On the other hand, weak but rhombic local potentials imply non-axial distribution of the
instantaneous orientation of the bond vector C-C around the local director. Tightly packed
protein cores can accommodate such excursions. For example, one may conceive of diffusion
in two (or more) rotamer wells with less frequent jumps between them [17], or asymmetric
torsional oscillations within a given rotamer well. As shown below, these are the potentials
forms determined from the SRLS analysis.

Comments on the MF point of view: Equation (2) represents an approximation to a probe
reorienting inside a “frozen” protein. The spatial restrictions at the site of the motion of the
probe, i.e., on the M frame, are exerted by the immediate protein surroundings, represented by
the C′ frame. This is formally analogous to the spatial restrictions at the site of the motion of
a rigid (non-spherical) particle exerted by a liquid crystalline director. Numerous studies of
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restricted motions in liquid crystals have shown that general tensorial properties, and the effect
of the restricting potential on the eigenfunctions of the diffusion operator, have to be accounted
for [14,30–33]. This leads to intricate numerical solutions. Hence, realistic spectral densities
for treating protein dynamics cannot be simple (analytical) functions, even when mode-
coupling is not important.

When the time scale separation is not large, “mode-coupling” was shown theoretically to be
important in the overdamped diffusion limit [16]. This prediction, which involves intricate time
correlation functions, was borne out by numerous SRLS applications to ESR spin labeled lipids,
gramicidin, proteins and nucleic acid fragments [41–45]. It was further confirmed by SRLS
applications to NMR spin relaxation in proteins [19,20,34,35,46–50].

In spite of this evidence, the limitations of the simple MF method are still not generally
appreciated. Thus, it is stated in Ref. [54] that (1) the time scale separation is a “merely
sufficient but not necessary condition”, (2) “the internal motion can be approximated by a
single exponential”, and (3) “the robustness of MF to asymmetric motion is warranted” by
recovering similar S2 values with the MF spectral density and the formula of Ref. [37]. The
latter is an analytical expression valid for ultrafast vibrations, librations and stretching motions,
based on the results of normal mode analysis. It has been overlooked in Ref. [54] that both
expressions used are only valid for simple fast axial local motions.

3.3. Local motions coupled to the global motion: the Slowly Relaxing Local Structure
approach

The fundamentals of the stochastic coupled rotator slowly relaxing local structure theory, as
applied to NMR spin relaxation in proteins [19,20], are summarized below.

3.3.1. Geometry—The various reference frames that define the SRLS model are shown in
Fig. 1a. They are related to the N–H bond as the probe. The laboratory L frame is space-fixed
with its Z-axis aligned along the external magnetic field, B0. The global diffusion frame, C,
and the (uniaxial) local director frame, C′, are both fixed in the protein. The Z-axis of the C′
frame lies along the equilibrium orientation of the 15N–1H bond (note that the time-independent
Euler angles, ΩCC′, are used in Residual Dipolar Coupling (RDC)-based structure-
determination protocols). M is the coordinate frame in which the local ordering tensor is
diagonal. In previous work we assumed for simplicity that the local diffusion tensor is diagonal
in the same frame [19,20]. In our most recent fitting scheme for SRLS [90] the local ordering
and local diffusion frame may be distinguished.

The magnetic 15N–1H dipolar tensor frame, D, and the magnetic 15N CSA tensor frame CSA,
are both fixed in the probe. The Euler angles for rotation from M to D are given by ΩMD, and
the Euler angles for rotation from D to CSA by ΩCSA. The Euler angles ΩMD and ΩD−CSA are
time independent. The D frame is taken as axially symmetric. If the M frame is also axially
symmetric, then ΩMD = (0,βMD,0), where βMD is known as ‘diffusion tilt’. The angle βMD is
determined with data fitting. Its value identifies the main local ordering axis.

The L frame, with ZL along the magnetic field, B0, is an inertial frame with respect to which
all the moving frames are defined. The time-dependent Euler angles ΩLM are associated with
the local motion; both the local and global motions modulate them. The time-dependent Euler
angles ΩLC are associated with the global tumbling; only this motion modulates them.

We consider relative (probe versus protein) coordinates, expressing ΩLM as ΩLM = ΩLC +
ΩCC′ + ΩC′M. A shorthand notation for indicating sequences of rotations will be employed.
Namely, for a generic rotation Ω12 = Ω2 + Ω1, resulting from first applying the rotation
involving angles Ω1, and then applying the rotation involving the angles Ω2, the explicit relation
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among Wigner rotation matrices is . The time-dependent
Euler angles ΩC′M represent the (typically faster) reorientation of the probe with respect to the
protein.

A segment of the protein backbone comprising the atoms , Ni, HNi, COi−1, Oi−1 and ,
the equilibrium positions of which lie within the peptide plane defined by Ni, HNi, COi−1 and
Oi−1, is illustrated in Fig. 1b. The axis ZD, which lies along the N–H bond, and the axis XM,
which for N-H bond dynamics turned out by data fitting to be the main local ordering/local
diffusion axis lying along , are shown.

The local motional diffusion tensor, RL, is diagonal in the M frame. The global motional
diffusion tensor, RC, is diagonal in the C frame. We start by assuming Smoluchowski dynamics
for the coupled set of orientational coordinates ΩLM and ΩLC, according to the SRLS approach.
Namely, the system consists of two Brownian rotators (or ‘bodies’), the N–H bond (probe) and
the protein (cage), coupled by an interaction potential which depends on their relative
orientation. Each 3D uncoupled rotator (assumed axial, i.e., Rx = Ry = R⊥ and Rz = R||) is
associated with three decay rates , K = 0, 1, 2, where R stands for either
RC or RL. The diffusion equation for the coupled system is given by:

(49)

where X is a set of coordinates completely describing the system. One has [19]:

(50)

where Ĵ(ΩLM) and Ĵ(ΩLC) are the infinitesimal rotation operators for the probe and the protein,
respectively.

Changing to different coordinates is straightforward [20]. It is physically of interest to select
the set defined by ΩC′M and ΩLC′, where the probe motion is described as relative to the overall
protein motion. One has [20]:

(51)

The Boltzmann distribution is Peq = exp[−U(ΩC′M)/kBT]/<exp[−U(ΩC′M)/kBT]>, where
ΩC′M(t) = ΩLM(t) − ΩLC′(t). The Euler angles ΩC′M(t) represent the motion of the probe relative
to the protein, the Euler angles ΩLM(t) represent the motion of the probe realative to the lab
frame, and the Euler angles ΩLC′(t) represent the motion of the protein relative to the lab frame.

The potential U(ΩC′M) is expanded in the full basis set of the Wigner rotation matrix elements,

i.e. . For D2 point group molecular symmetry, and axial locally
ordered media, the terms with L = 2 and 4, and K = 0, 2 and 4 are preserved. It might be
oversimplified to regard the local ordering potential of the probe with respect to the protein as
necessarily obeying the macroscopic symmetry constraints of typical ordered phases. One
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might expect biaxial character of the local director, C′. Similarly, one might expect that the
summation need not be restricted to even L terms. We first note that the anisotropic magnetic
interactions in the spin Hamiltonian have L = 2. Then we note that second rank correlation
functions are qualitatively very similar whether a first-rank or second-rank SRLS potential is
used [16].

Thus, for economy in fitting parameters, and for convenience, we restrict L to just even values.
In the same spirit, we will ignore any biaxiality in the local ordering potential, so M = 0 in the
expansion of u(ΩC′M). . The typical SRLS potential used so far has been:

(52)

The coefficient  is related to the orientational ordering of the N–H bond with respect to the
local director, whereas the coefficient  is related to the asymmetry of the ordering around the
director. Terms corresponding to L = 4, K = 0, 2, 4, (  and ) (mentioned above) are
included in our latest software [90]. This allows for modeling diffusion within two wells with
less frequent jumps between them [17,39]. More general jump models may be included by
adding appropriate terms in the expansion of u(ΩC′M).

Eq. 51 can be solved in terms of the time dependent probability density function P
(ΩC′M,ΩLC,t), which describes the evolution of the system in time and orientational space.
Alternatively, it is convenient to directly calculate the time correlation functions

 (where the brackets 〈…〉 mean integration over
the full space of orientational coordinates), which for appropriate values of the coefficients
J,M,K,K′ determine the experimental NMR relaxation rates. Actually, the Fourier-Laplace

transforms of  are needed. They are obtained as the spectral densities given by:

(53)

As stated here the model features a large number of parameters including the potential
coefficients  and , the principal values of the local diffusion tensor, , i= 1,
2, 3, and the principal values of the global diffusion tensor, , with i = 1, 2, 3. The geometric
parameters featured include the Euler angles αMD and βMD for the relative orientation of the
(axial) dipolar and local ordering frames, and the Euler angles ΩCC′ for the relative orientation
of the global diffusion and local director frames. The Euler angles for the relative orientation
of the local ordering and local diffusion frames (not shown in Fig. 1) can also be varied. Clearly
only a small number of parameters are varied in a given calculation. We found that for N–H
bond dynamics studied with 15N spin relaxation it is appropriate (i.e., no overfitting is
encountered) to vary at most five parameters using data sets that comprise six data points (15N
T1, T2 and 15N–{1H} NOE acquired at two magnetic fields). For methyl dynamics studied
with 2H spin relaxation of 13CDH2, it is appropriate to vary at most three parameters using data
sets that comprise four data points (2H T1 and T2 acquired at two magnetic fields). In Appendix

A we show examples in which the parameters  and  (  and RL) were varied in
analyzing N–H bond dynamics.
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The generality of the fitting scheme makes it possible to select various parameter combinations.
Also, it is possible to carry out predictive or exploratory simulations.

The global diffusion tensor, RC, takes the following form in the C′ frame:

(54)

Note that for βCC′ = 0 or , the global diffusion tensor is diagonal and invariant in both
the C and C′ frames.

3.3.2. Numerically exact treatment—We address here the problem of devising an efficient
procedure for evaluating numerically accurate spectral densities. We adopt a variational
scheme based on a matrix vector-representation of Eq. (53) followed by an application of the
Lanczos algorithm in its standard form, developed for Hermitian matrices. It is convenient to
express the generic time correlation functions as linear combinations of the normalized auto-

correlation functions. By defining , the spectral densities of the normalized
auto-correlation functions of interest are:

(55)

and the generic spectral densities are:

(55a)

where J = 2 and the symmetrized form of the time evolution operator is . The
value of the quantum number M depends on the interaction(s) involved in the relaxation
parameter examined. Thus, M ≠ 0 for terms including Î±, where Î denotes the spin operator of
a nuclear spin of 1/2 or 1. We use the shorthand notation [J] = 2J + 1. A numerical calculation
is then performed by choosing a basis set of functions, representing in matrix form the
symmetrized operator, Γ̃, and evaluating Eq. (55) directly by employing a standard Lanczos
approach. The latter is reviewed here for completeness in accordance with the standard
technique of Moro and Freed [93,94]. Let us suppose that we are interested in calculating the
Fourier-Laplace transform of the normalized autocorrelation function of an observable f(q) or
a diffusive symmetrized (i.e. Hermitian) operator, Γ̃, acting on the coordinate q, in the form of

, where δf = f − <f Peq> is the observable redefined
to yield an average value of zero. In the present case we consider only rotational motion in
isotropic fluids, so that <f Peq > = 0.

The Lanczos algorithm is a recursive procedure for generating orthonormal functions that allow
a tridiagonal matrix representation, T, of Γ̃. The spectral density can be written in the form of
a continued fraction [93,94]. The calculation of the tridiagonal matrix elements can be carried
out in finite precision by working in the vector space obtained by projecting all the functions
and operators onto a suitable set of orthonormal functions |λ>. One only needs to define the
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matrix Γ, and the starting vector elements, v1, which are given by Γλ,λ′ = 〈 λ|Γ̃|λ′〉 and vλ =
〈λ|1〉 respectively.

In the case under consideration, the SRLS diffusion operator is given by Eq. (51) and the
starting vector is given by:

. A natural choice for a set
of orthonormal functions is the direct product of normalized Wigner matrices. What is left is
the calculation of the matrix elements Γλ,λ′ and the vector elements <λ|1>. The algebraic
intermediate steps are relatively straightforward and based on properties of the Wigner rotation
matrices, infinitesimal rotation operators and spherical tensors. We skip the technical details
and list the resulting expressions.

3.3.3. Observables—In order to interpret 15N–1H dipolar and 15N CSA auto-correlated
relaxation in the presence of axial potentials, only diagonal time correlation components,
KK, are required. In the presence of rhombic potentials cross-terms, KK′, are also required.
This scenario is discussed in detail in the following section.

According to standard analysis in the motional narrowing regime (Chapter 12 of Ref. [33]),
one may define the observable spectral densities for two magnetic interactions, μ and ν, as the
real part of the Fourier-Laplace transform of the time correlation function of the second rank
Wigner functions. The latter are given in terms of the orientation of the magnetic tensors in
the laboratory frame (here μ,ν = D or CSA, ΩD = ΩMD, and ΩCSA = ΩMD + Ω, cf. Fig. 1a):

(56)

Based on standard properties of the Wigner functions one has:

(56a)

(56b)

Based on the symmetry relation  (cf. Eq. (56a)) we obtain:

(57)

where ℜ stands for the real part. Note that for axial potentials ( ) the second term goes to

zero. The coefficients  are readily evaluated, while  can be calculated in

terms of ΩMD and Ω, according to the expression .
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The spectral densities for 15N–1H dipolar and 15N CSA auto-correlation are thus obtained as
 and JCC (ω) = ℜ[JCSACSA (ω)], respectively. The measurable 15N

relaxation parameters T1, T2 and 15N–{1H} NOE are calculated as functions of JDD (0), JDD

(ωH), JDD(ωN), JDD (ωH − ωN) and JDD (ωH + ωN) and JCC (0) and JCC (ωN), using standard
expressions for NMR spin relaxation [28,29]. Note that due to the additional symmetry
jM,K,K′ = jM,−K,−K′, only the nine distinct couples K,K′ = (−2,2), (−1,1), (−1,2), (0,0), (0,1),
(0,2), (1,1), (1,2), (2,2) need to be considered for rhombic local ordering and magnetic frames.
For rhombic local ordering and axial magnetic frames, one has the explicit expression (denoting

 for brevity):

(58)

with only six couples K,K′ = (0,0), (1,1), (2,2), (0,2), (−1,1) and (−2,2) involved. The function
JCC (ω) is obtained using Eq. (56a) with μ representing the 15N CSA interaction.

A convenient measure of the local ordering of the N–H bond is provided by the order parameters

 and . They are related to the orienting
potential (Eq. (52)), and hence to  and , via the ensemble averages:

(59)

One can convert to Cartesian ordering tensor components according to
, with Sxx + Syy + Szz = 0.

In the case of zero potential, , and axial diffusion, the solution of the diffusion equation
associated with the time evolution operator features three distinct eigenvalues:

(60)

where  and . Only diagonal jK(ω) ≡ jK,K(ω) terms are non-zero,
and they can be calculated analytically as Lorentzian spectral densities, each defined by width
of 1/τK. When the ordering potential is axially symmetric, , again only diagonal
jK (ω) survive, but they are given as infinite sums of Lorenzian spectral densities, which are
defined in terms of the eigenvalues, 1/τi, of the SRLS operator (Eq. (51)), and the weighing
factors, cK,i, so that:

(61)
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The eigenvalues 1/τi represent normal modes of motion of the system. The weighting factors
(eigenmodes) depend on the parameters that define the tenors RL and RC, and the coefficients
of the coupling potential. Although in principle the number of terms in Eq. (61) is infinite, in
practice a finite number of terms is sufficient for numerical convergence of the solution. A
user-determined quantum number, Lmax, must be large enough to ensure the convergence of
the solution. Note that the eigenmodes depend on a small number of physical parameters.

Finally, when the local ordering potential is rhombic, , both diagonal, jK (ω), and
non-diagonal, jKK′ (ω), terms are different from zero. The functions jKK′ (ω) are evaluated
explicitly according to expressions analogous to Eq. (61).

The spectral densities jK (ω) (in general, jKK′ (ω)) are the building blocks of a given dynamic
model, and the spectral densities JXX (ω) for auto-correlated relaxation and JXY (ω) for cross-
correlated relaxation are the building blocks for a specific geometric implementation of this
model. Together with the magnetic interactions, the appropriate values of the spectral densities
JXX (ω) and JXY (ω) determine the experimentally measured relaxation parameters [28,29].

To further clarify the relationship between jKK′ (ω) and JXX (ω) or JXY (ω), let us consider an
internally mobile peptide plane (e.g., as in 3D GAF [65,78]). Several probes, with their
equilibrium orientations lying within this plane, are conceivable: 15N–1H, 13C
′–13Cα, 15N–13Cα, 13Cα–2H, etc. They all sense the same motion, associated with the local
ordering/local diffusion frame, M, which is attached rigidly to the peptide plane. Therefore the
same jKK′ (ω) functions may be used to calculate all the auto-correlated and cross-correlated
relaxation parameters associated with all of these probes. The various probes differ in (1) their
local geometry, i.e., the orientation of the relevant magnetic frame(s) with respect to the M
frame, and (2) the relevant magnetic interactions. These properties are not part of the dynamic
models. They enter the calculation when JXX (ω) and JXY (ω) are assembled out of the jKK′
(ω) functions, and when the relaxation parameters are assembled out of the appropriate values
of JXX (ω) or JXY (ω).

If the peptide plane is engaged in several different motions, e.g., crank-shaft-type torsions,
anti-correlated movements between the dihedral angles Φi−1 and Φi, etc., then all the probes
with their equilibrium orientations lying within the peptide plane will experience all of these
motions. This has not always been appreciated [95].

For practical reasons our first fitting scheme for SRLS was based on pre-calculated 2D grids
of spectral densities, jKK (ω), calculated for axial potentials [19]. The coordinates of these grids
are  and RC (in units of RL). The parameter combinations used are formally (but not
necessarily physically) analogous to models 1–5 of Refs. [96] and [97], and models 6–8 of Ref.

[97]. We also made the approximation that , in analogy with τs > τf in MF. This fitting
scheme for SRLS differs from MF in accounting for mode-coupling and allowing for a
“diffusion tilt”. The global diffusion tensor, RC, is taken to be isotropic.

Pre-calculated grids of spectral densities are only practical for two coordinates; this limits the

number of parameters that can be varied. Imposing axial potentials and taking  turned
out to be oversimplifications. To improve the analysis we developed a newer fitting scheme
for SRLS [20] where the spectral densities are calculated at each iteration step in the
minimization process. This fitting scheme allows for rhombic potentials and for arbitrary

 ratios. The global diffusion is still taken as isotropic. Enhancing it to axial global
diffusion is relatively easy. However, this extension has not been carried out because this fitting
scheme is inefficient when the time scale separation is large and the local potential is rhombic,
which is the common scenario for “rigid” N–H bonds.
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In our most recent fitting scheme [90] the global diffusion tensor, RC, is allowed to be rhombic.
Also, the local ordering and local diffusion frame can be distinct. In addition, the local diffusion
tensor is allowed to be rhombic. The local potential includes terms with L = 2 and L = 4, which
(as already mentioned) makes possible modeling diffusion within rotamer wells with (less
frequent) jumps between the wells [17]. The programming language used is C++ (previously
we used the FORTRAN programming language). The computer-intensive parts of the code
have been parallelized, and object-oriented programming has been enacted. These features
brought about an increase in efficiency of approximately one order of magnitude relative to
the earlier fitting scheme developed in Ref. [20]. Importantly, the SRLS program has been
integrated with a hydrodynamics-based approach for calculating anisotropic global diffusion
tensors [98].

We call this software package C++OPPS (COupled Protein Probe Smoluchowski) [90]. C+
+OPPS is distributed under the GNU Public License (GPL) v2.0. The software is available at
the website http://www.chimica/unipd.it/licc/software.html.

The illustrative calculations presented in Appendix A were carried out using this fitting scheme.
We also compare in that Appendix SRLS and MF, using the same number of formally
analogous free variables. For MF analysis, we used in our work the programs Modelfree 4.0
[96] or Dynamics [97].

Application to 13CDH2 deuterium spin relaxation: The SRLS frames shown in Fig. 2a for
methyl dynamics are the same as the frames shown in Fig. 1a, except that the magnetic tensor
is in this case the 2H quadrupolar tensor (Q frame). The experimentally determined rhombic
local ordering/local diffusion frame, M, and the Q frame, are depicted in Fig. 2b. The axis
XM is the main local ordering axis, aligned parallel to the C–CH3 axis (the angle βMQ is close
to 110.5°).

For an axial quadrupolar tensor, Q, one has:

(62)

For 2H relaxation the spectral densities JQQ (0), JQQ (ωD) and JQQ (2ωD), together with the
magnitude of the quadrupolar interaction, determine the experimentally measured relaxation
rates 2H T1 and T2 according to standard expressions for NMR spin relaxation [28,29]. Equation
(62) applies to cases when the quantum number M is equal to zero.

3.4. Collective motions
The analysis of collective behavior is based on conformational fluctuations in the protein.
Collective coordinates are mainly used to single out functionally relevant motions and to
elucidate protein energy landscapes. The simplest approach of this kind is the Gaussian network
model (GNM) [27], which pertains to the coarse-grained elastic network category. GNM
predicts both localized modes, which have been associated primarily with structural features,
and collective modes, which have been associated in many cases with biological function.
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Methods for treating collective internal motions include normal mode analysis (NMA) [99],
molecular dynamics in the context of principal component analysis (PCA) [100], essential
dynamics analysis (EDA) [101], combined PCA and NMA based on jumping among minima
(JAM) [102], and various elastic network models [27,103,104]. A combined contact and
elastic-network-model-based approach has also been developed [105]. Approaches where the
Langevin equation is applied in the context of independent damped oscillators have been set
forth [106].

MD techniques based on simplifications of the empirical potential energy functions, or
advanced sampling techniques, can be included in the present section (e.g., see Ref. [107] and
relevant papers cited therein). Recourse to low-dimensional sub-spaces, where significant
motions occur, and considering parts of the protein as quasi-rigid bodies, are common strategies
[108]. In general, a relatively small number of dominant independent collective modes are
determined.

Several predictive structure-based methods have been integrated with MF analysis [109–
111].

The network of coupled rotators (NCR) [112–115] is among the most sophisticated structure-
based approaches. Internal dynamics is described in terms of bond vectors coupled by pair-
potentials, within the scope of analytical time correlation functions. Order parameters are
derived, and conformational entropy is calculated. Unlike the simpler models, NCR solves the
Langevin equation at each N–H site. It captures the important aspect of local structural
asymmetry. The local geometry is encoded. NCR shares some common features with contact-
based approaches [116–118] and elastic network models [27,103,104,119].

Brüschweiler and Prompers developed the isotropic reorientational eigenmode dynamics
(iRED) approach [25,26]. In this method, the snapshots derived from the MD trajectory are
treated analytically to yield an isotropic ensemble from which a covariance matrix is computed.
A geometric “separability” parameter, which singles out the five largest eigenvalues associated
with the global motion, is defined. Non-separability does not account for correlations between
the rotational degrees of freedom of the protein and the probe. However, iRED treats correlated
motions along the polypeptide chain; it is applicable to partially unfolded and unfolded
proteins.

We include in this section the method of Vugmeyster et al. [120]. This approach assumes that
C(t) = CC (t)×CL (t), belonging thus to the mode-decoupling limit. It associates dynamical
coupling with comparable values of τe and τm.

“Diffusive mode-coupling” approaches [121,122] treat the effect of fast local bond-vector
fluctuations on the global diffusion tensor, i.e., on the shape of the protein. The method of
Perico and co-workers [121] recovers the original MF formula. The agreement with the
experimental NMR data is not satisfactory. Caballero-Manrique et al. [122] developed an
enhanced approach and used it to calculate experimental relaxation parameters; here the
agreement between theoretical and experimental relaxation parameter is good.

There is ample literature on Markov chain dynamics [123–127] and lipid dynamics [128–
130].

4. Future directions
The SRLS model as described in this review article has served as a working model in several
analyses of NMR spin relaxation data from proteins [19,20,34,35,46–50]. We have found that
for N–H bonds located in flexible regions of the protein structure, and for methyl groups, this
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model provides a new and insightful picture of protein dynamics, with a level of
parameterization of the model sufficient in most cases to provide consistent analyses of the
available experimental data. The analysis of a “rigid” N–H bond can be improved by including
inertial effects (see below).

This modeling can be improved in a number of ways. For example, from the viewpoint of
an 15N–1H bond located in a mobile domain or flexible loop, one perhaps expects three types
of motions including the local motion of the N–H bond, the motion of the flexible moiety
housing it, and the overall tumbling of the protein. A natural extension of our current 2-body
Smoluchowski SRLS model would be a 3-body Smoluchowski SRLS model to incorporate all
three kinds of motion; one such example is developed in Ref. [16]. One can also account for
rotamer jumps around side-chain χ angles [17]. However, this would yield additional
parameters to fit, an issue on which we comment further below.

The analysis of “rigid” N–H bond dynamics has been problematic in some cases, as pointed
out in Appendix A. This can be rationalized by recognizing that in the presence of strong local
potentials rapidly moving N–H bonds are expected to experience torsional oscillations which
are not included in the overdamped diffusive or Smoluchowski limit. One must therefore
account for inertial effects via explicit inclusion of the respective angular momentum degrees
of freedom. This leads to the Fokker-Planck-Kramers (FPK) SRLS model, which has been
previously described in detail by Polimeno and Freed [16]. The methodology is somewhat
more complex, but tractable. The additional physical parameters needed are the moments of
inertia of the bodies, which can be inferred from structural considerations. For local motions
occurring in strong potentials, this can lead to a reasonable modeling of (under-damped)
torsional oscillations. The implementation of the FPK SRLS model to NMR spin relaxation in
proteins is in progress.

Another limitation of the Smoluchowski equation is in the back-reaction, due to the coupling
potential, on the heavy body, i.e., the overall protein motion, which is rigorously required for
“detailed-balance”; this back-reaction was ignored in the early Born-Oppenheimer-type of
treatment [15]. In the Smoluchowski SRLS model this leads to significant “mode-coupling”
between the local probe motion and the overall protein motion when their diffusive rates
become comparable, with the small body “pulling” on the large body. In the FPK-SRLS model,
the much larger moment-of-inertia of the whole protein relative to the local probe will greatly
suppress this effect, as may be seen in the analysis provided in Ref. [16]. Thus, to treat this
limit, it will be appropriate to replace the Smoluchowski equation with the more complete FPK
equation. However, in our extensive analyses of NMR data, we have found that such cases of
slow local motions are typically associated with mobile domains or relatively large loops; for
these heavier probes, Smoluchowski SRLS is reasonable adequate.

One may also ask whether it is useful to compare the results of SRLS analyses of the
experimental data with the results of MD simulations. Currently comparisons are made
between results from MF analyses of the NMR data and MD [36,70,131–135]. We argue in
this review that the results of a SRLS analysis are more physically relevant than those from
MF, so it would be appropriate to make comparisons between SRLS and MD. Once the SRLS
analysis is completed, producing the best-fit values of the parameters which define the local
potential, the diffusion tensors, and the geometric factors (i.e., relative frame orientations),
relevant time correlation functions of the  (cf. Eqs. (56) and (56a)) can readily be
computed. In would then be of interest to calculate the equivalent correlation functions from
the MD trajectories and compare with their SRLS counterparts.

In practice the comparison between NMR/MF and MD is carried out as follows. Based on the
assumption that C(t) = CC (t)×CL (t), the global motion is first eliminated from the MD
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trajectory by frame superimposition onto a reference structure. Based on the form of Eq. 34,
S2 MD is typically derived as the value of CL (t) at long times. In some cases least-squares
fitting of the CL (t) MD to Eq. 34 was carried out. In a very few cases CL (t) was computed as
the time correlation function of P2(cosβCD), where D is the magnetic dipolar frame and C is
the protein-fixed frame matching the reference structure (a thorough discussion of these matters
appears in Appendix B). Clearly none of these methods provide the correlation functions of
the .

Progress on how such correlation functions may be obtained from MD simulations is illustrated
in Refs. [136,137]. It was found that in extracting information on rotational reorientation from
MD trajectories, it is more convenient to work with quaternions rather than Euler angles
[136]. It is then possible to transform an analysis based upon quaternions into the . [].
In addition, efforts were made in Ref. [136] to model the MD trajectories as Markov chain
processes to overcome the need for very long trajectories, and the need to obtain enough
trajectories to provide adequate ensemble averages.

An MD approach based on these techniques has been successfully applied to simulate complex
ESR line-shapes over a 20-fold range in frequencies [43,136,138–140]. The ESR spectra
calculated with MD agreed very well with their counterparts calculated with SRLS and with
experiment. The reproduction of ESR line-shapes with MD represents an even greater
challenge than the reproduction of the NMR relaxation parameters (typically T1, T2 and
heteronuclear NOE), which only require time correlation functions for their evaluation. The
techniques developed in these ESR studies could be adapted to help calculate from the MD
trajectories the expressions for the experimental NMR spin relaxation parameters, in analogy
to the calculation of ESR line-shapes.

As noted above, in its present implementation SRLS does not treat explicitly the correlated N–
H bond vector motions along the polypeptide chain, or such correlations for domain motion.
More advanced modeling would be required to achieve this. Polimeno, Barone and co-workers
have developed an integrated approach that combines stochastic models, molecular dynamics,
quantum-chemical calculations and hydrodynamics-related methods [141–145]. This approach
has been applied successfully to small molecules in the context of both ESR [141–145] and
NMR [146]. Current efforts are directed toward its application to bio-macromolecules.

5. Conclusions
Experimental NMR spin relaxation data from proteins can be used to obtain unique information
on mode-coupling, local potentials, local ordering, conformational distributions, global and
local motional rates, associated activation energies, and features of local geometry. For local
potentials which are not so strong as to invalidate the overdamped limit, and time scale
separations, RC/RL, which are apreciably smaller than unity, the Smoluchowski SRLS equation
provides an appropriate tool for extracting this information. The generality of its solution makes
it possible to determine, for each case, the parameter combination that conforms to the
sensitivity of the experimental data. When the conditions mentioned above are not fulfilled,
then analogous FPK equations are appropriate; their development is currently near completion.

In the Smoluchowski limit the main factors that affect protein dynamics include mode-
coupling, the asymmetry of the local potential, and the fact that in the presence of a local
potential the eigenfunctions of the (axial) local motional diffusion operator are no longer
simple. For amide bonds located in well-structured regions of the protein structure the dominant
factor is the asymmetry of the local potential. For amide bonds located in mobile domains and
flexible loops, all of the factors mentioned above are important. For methyl dynamics, mode-
coupling is typically a small effect, but the other factors are important.
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N–H bonds reorient primarily about the  axis with ps correlation times when located
in well-structured regions, and with ns correlation times when located in mobile domains or
flexible loops. For “rigid” (flexible) N–H bonds, the local potential is strong (of moderate
strength) and highly rhombic when the main ordering axis is defined to lie along the
instantaneous N–H orientation. When the main ordering axis is defined to lie along

 then the local ordering is strong at both “rigid” and flexible N–H sites, with different
degrees of rhombicity.

The local ordering at methyl sites in proteins is rhombic, with the main local ordering axis
lying along the C–CH3 bond. The rate of the local motion is typically fast relative to the rate
of the global motion. The local potential is weak and highly rhombic. The diversity of the
potential at different sites represents in a simple, economical and physically reasonable manner
the effect of the structure surrounding methyl groups on their motion.

The model-free approach does not feature key elements that are found to be important by the
SRLS model. In view of the oversimplifications inherent in the MF method the experimental
data are force-fitted, and the best-fit parameters are often not appropriate for physical
interpretation. Their problematic nature is intensified by simplified constructs (e.g., see the
expression for S2) or mathematical definitions (e.g., see the expression for τe, based on the
theory of moments) whose meanings are physically vague, and by the utilization of spectral
densities which do not represent a physical scenario (e.g., see the MF formula for methyl
dynamics [36]). There is ample evidence for adverse implications of parameterization and for
not abiding by the assumptions underlying the equations employed.

In the limit of large time scale separation one may express the total time correlation function
as exp(−t/τm)× CL (t). Replacing the simple MF forms of CL (t) with more elaborate analytical
functions is not usually possible because the time correlation functions for restricted motions
in the presence of mean-field potentials lead to intricate numerical solutions – cf. Section 3.1.1.

Acknowledgments
The work reported herein could not have been carried out without the contribution of Dr. Mirco Zerbetto of the
University of Padova, Dr. Zhichun Liang of Cornell University, Dr. Vitali Tugarinov of the University of Maryland,
Dr. Edith Kahana of Bar-Ilan University, and Drs. M. A. Sinev and E. V. Sineva, formerly of Bar-Ilan University. We
also wish to acknowledge people who generously provided their experimental data: Prof. Lewis E. Kay of the
University of Toronto, Prof. A. G. Palmer III of Columbia University, Prof. Erik R. P. Zuiderweg of the University
of Michigan, Ann Arbor, and Prof. G. Wagner of Harvard Medical School. EM thanks Prof. Zeev Luz and Prof. Shimon
Vega of the Weizmann Institute, Israel, for numerous fruitful and inspiring discussions. EM gratefully acknowledges
the hospitality of the Department of Computational Biology, University of Pittsburgh School of Medicine, where she
spent her sabbatical year 2009/2010, in the course of which this work was finalized.

This work was supported by the Israel Science Foundation (Grant No. 347/07 to E.M.), the Binational Science
Foundation (Grant No. 2006050 to E.M. and J.H.F.), the German-Israeli Science Foundation for Scientific Research
and Development, grant no. 928-190.0/2006, and the Damadian Center for Magnetic Resonance at Bar-Ilan University,
Israel. E.M. This work was also supported by the National Center for Research Resources of the National Institutes
of Health (Grant No. P41-RR016292 to J.H.F.). A.P. acknowledges support provided by Ministero dell’Istruzione,
Universita e Ricerca (MIUR), grant PRIN 2006 (2006033728), by the Consorzio Interuniversitario per la Scienza e
la Tecnologia dei Materiali (INSTM), grant PROMO 2009 and by the University of Padova, grant “Progetto Strategico”
HELIOS 2009.

Abbreviations

AK adenylate kinase

AKeco adenylate kinase from Escherichia coli

B.-O Born-Oppenheimer approximation
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CaM Ca2+-calmodulin

CSA chemical shift anisotropy

3D GAF 3-dimensional Gaussian axial fluctuations

DNA deoxyribonucleic acid

EDA essential dynamics analysis

EMF extended model-free

ESR electron spin resonance

FPK Fokker-Planck-Kramers

GB3 the B3 immunoglobulin-binding domain of streptococcal protein G

GNM Gaussian network model

HP36 chicken villin headpiece subdomain protein

iRED isotropic reorientational eigenmode dynamics

JAM jumping among minima

LC liquid crystal

MD molecular dynamics

MF model-free

MOMD microscopic order macroscopic disorder

NCR network of coupled rotators

NMA normal mode analysis

NMR nuclear magnetic resonance

NOE nuclear Overhauser enhancement

PCA principal component analysis

protein L the B1 immunoglobulin binding domain of Peptostreptococcal protein L

RDC residual dipolar coupling

RNA ribonucleic acid

SLE stochastic Liouville equation

SRLS slowly relaxing local structure
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6. Appendices

Appendix A: Typical data fitting scenarios
Let us denote N–H bonds located in well-structured regions of the protein, notably elements
of secondary structure, as “rigid”, and those located in mobile domains, loops, end-chain
segments, etc., as “flexible”. In many cases the MF analysis of “rigid” N–H bonds (and in some
cases of “flexible” N–H bonds) requires the inclusion of conformational exchange (Rex)
contributions (added to the expression for 1/T2 given in Eq. 64). The fitting of the experimental
data by the program SRLS/C++OPPS in terms of motion of these three types of N–H bond is
illustrated below [90]. We selected as an example 15N relaxation parameters of E. coli adenylate
kinase (AKeco) acquired at 14.1 and 18.8T, and 303K [46,47]. The global motional correlation
time at this temperature is 14.9 ns [50].

The expressions for 15N 1/T1, 1/T2 and 15N–{1H} NOE are given by [29]:

(63)

(64)

and

(65)

where d2 = γH
2γN

2h2/(40π2)<1/rNH 3>2, c2 = (2/15)γN
2 B0

2(σ|| − σ⊥)2, rNH is the 15N–1H
internuclear distance in Å, B0 is the magnetic field strength, and σ|| and σ⊥ are the parallel and
perpendicular components of the axially symmetric 15N chemical shift tensor. JDD (ω) and
JCC (ω) are obtained using Eq. (56a) with μ representing the 15N–1H dipolar interaction and
the 15N CSA interaction, respectively. The magnetic interaction parameters used in the
calculations presented below are rNH(eff) = 1.015 Å [147], Δσ = −169 ppm [148] and β D = 17°
[149].

Meirovitch et al. Page 41

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lmax (the quantum number which determines how many terms need to be preserved in Eq. (61)
and similar equations) of 24 was always found to suffice in these calculations. In our previous
implementation of SRLS [20] the principal values of the global and local diffusion tensors,
RC and RL, are given in units of RL or . In the SRLS/C++OPPS program they are given in
units of s−1. We use the same notation in both cases.

For axial local potentials we also show below the results of the MF analyses corresponding to
the SRLS analyses carried out. Corresponding calculations feature the same number of
formally analogous variables; hence, the differences arise from the manner in which the time
correlation functions (spectral densities) are calculated.

The MF parameter S2 is formally analogous to  in SRLS. For high axial local ordering
τe agrees with  [14,20,31,40]. The MF parameters τf and τs are formally analogous

to  and , respectively, in SRLS. The parameters Sf
2 and Ss

2 can be

expressed in terms of  and  [20,40].

Example 1: “Rigid” residue with axial local ordering
Data for the 15N–1H bond of the aspartic acid residue D197 of the CORE domain of AKeco
were analyzed with the MF program DYNAMICS [97]. MF model 2, where S2 and τe are
varied, was selected. It led to the best-fit values of S2 = 0.84 (corresponding to the coefficient

 of the potential u given (in units of kBT) by the axial version of Eq. 52, calculated

assuming that ) and τe = 12.7 ps (corresponding to τ = 78 ps using the
expression for τren given above), with χ2 = 2. In analogy, we allowed  and τ to vary in the
SRLS calculation. We fixed the angle βMD at 0°, in accordance with its implicit value in MF.

This led to  and τ = 69 ps, with χ2 = 0.6. The SRLS calculation lasted 19
s. These results are shown in Table 1, rows 1 and 2.

The differences between the SRLS and MF results are 1.2% for the squared order parameter,
13% for the local motional correlation time, and 6.9% for the potential coefficient, . Although
χ2 = 0.6 in the SRLS calculation and χ2 = 2 in the MF calculation, both are considered
appropriate since both values lie below 5.99, which is the percentile value for χ2 distribution
for 4 degrees of freedom (six data points and two variables) for a commonly used 5% threshold
(Table 39 of Ref. [150]).

The differences stem from (1) accounting in SRLS for the frame transformation between
the 15N–1H dipolar and 15N CSA frames [20] (Figure 1), and (2) possible deviations in MF
from the single-decay approximation for the local motion [20]. As pointed out above, in the
presence of local motions the transformation from the 15N–1H dipolar frame to the 15N CSA
frame requires besides j00 (ω) the time correlation functions j11 (ω) and j22 (ω), which do not
exist in MF. This frame transformation is required to calculate JCC (ω), as well as the cross-
correlated spectral density, JDC (ω).

When the local motion is in the extreme motional narrowing limit the functions j11 (ω) and
j22 (ω) are negligible in comparison to j00 (ω). Hence MF can calculate JCC (ω) and JDC (ω)
adequately only in this limit. This is stated explicitly in Ref. [151] in the context of JDC (ω).
SRLS can treat cross-correlated relaxation, as well as provide JCC (ω), over the entire parameter
range relevant for folded proteins. It is therefore recommended to use SRLS even in cases in
which the local potential is axially symmetric.
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Example 2: “Rigid” residue with rhombic local ordering
The leucine residue L209 of AKeco is also a “rigid” residue. In this case the MF calculation
did not pass the Goodness-Of-Fit (GOF) criteria of the program DYNAMICS [97]. The best
results generated by this program, obtained with model 3 MF, are S2 = 0.78 ( ), τe = 9.3
ps (τ = 41.7 ps) and Rex = 4.35 s−1. The χ2 value is 8.8, which is higher than the relevant
threshold of 7.81 (Table 39 of Ref. [150]). By using as variables , RL and Rex (in analogy
with the MF variables), and setting βMD = 0°, we obtained with SRLS

, τ = 30.9 ps and Rex = 3.56 s−1. The χ2 value is 5.8, which is below the
relevant threshold. These results are shown in Table 1, rows 3 and 4.

As pointed out above, Rex can absorb the rhombicity of the local potential [40]. With this in
mind we set βMD = 101.3° and αMD = 90°. This is consistent with rhombic local ordering with

 (rather than N–H, as implied by axial ordering and βD = αD = 0°) being the main
local ordering/local diffusion axis [20,46–50,65,78]. Within the scope of this geometry we
allowed  to vary and set Rex equal to zero. To obtain good statistics and effective convergence

we had to set  and allow  to vary.

The results of this calculation are shown in Table 1, row 5. The potential coefficients are
 and . The Cartesian tensor components calculated from these coefficients

(e.g., see Ref. [20]) are Sxx = −0.401, Syy = +0.874 and Szz = −0.473.2 Viewed in the context
of αMD = 90° and βMD = 101.3°, the fact that Syy = +0.874 means that relatively high ordering
prevails along the  axis. The anisotropy of the local ordering around   is
given by (Sxx − Szz)/Syy = 0.082.

The value of  corresponds to τ = 12.8 ps. This represents fast fluctuations of
the N–H bond. Setting  equal to RC = 1.117×107 s−1 (14.9 ns) means that we cannot detect
backbone motions which based on geometric considerations are associated with . Thus, the
combined two-field data from the “rigid” N–H bond of residue L209 makes it possible to
determine the magnitude and symmetry of the local ordering, the form of the potential in terms
of which the order parameters  and  (or Sxx, Syy and Szz) are defined, and the rate of the
N–H fluctuations.

Note that not accepting the simple scenario of an axial potential and locating the main local
ordering/local diffusion axis along the N–H bond, i.e., βMD = 0°, was motivated by physical
considerations. If only statistical criteria were considered, we would have accepted the results
shown in Table 1, row 4. At present the local geometry associated with residue L209 is fixed
at αMD = 90° and βMD = 101.3°, and  is fixed. The analysis of data combined from three
B0 values, concerted analysis of temperature-dependent data, or combined analysis of several
probes with their equilibrium orientation lying within the peptide plane, might allow for a large
number of variables, including  (this discussion is limited to the overdamped Smoluchowski
limit).

The time required to complete the calculation illustrated in Table 1, row 5, was approximately
one hour. The local potential determined is high ( ), the local ordering is high (Syy

= +0.874), and the time scale separation between  and RC is large (0.00087). The Lmax value
required was 24. Higher potentials do not require much larger Lmax values, and the time scale
separation has already reached a limiting value for which a robust fitting calculation should
stop. Therefore, this example may be considered represent a typical long fitting calculation.
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Example 3: “Flexible” residue with rhombic local ordering
The glycine residue G46 of AKeco is located in the mobile domain AMPbd. The program
DYNAMICS [97] selected model 7 but the calculation did not pass the GOF criteria. The best
results are , Sf

2 = 0.87 (corresponding to βMD = 12.2°, according to Sf
2 =

(1.5 cos2 βMD − 0.5)2 – see Ref. [19]), τs = 0.91 ns, τf = 0.0 ps and Rex = 1.8 s−1. The χ2 value

is 5.1. By using SRLS with axial potentials and assuming that  [19], in analogy with

τs ≫ τf in MF, we obtained , βMD = 21.4°, τ⊥ = 7.12 ns and τ|| = 0.004 ns
[46]. These results are shown in Table 1, rows 6 and 7.

As reported previously [46], the SRLS and MF results differ significantly mainly because
mode-coupling is not accounted for in MF. However, the SRLS results shown in Table 1, row
7, are also problematic because  represents too weak a potential inside a folded protein,
and a 21.4° tilt from the N–H bond does not identify a structural element which can serve as
the main local ordering/local diffusion axis [20].

Row 8 of Table 1 shows the results obtained with SRLS/C++OPPS by allowing the local
potential to be rhombic and the local diffusion tensor, RL, to be axially symmetric. The angles
αD and βD were set equal to 90° and 101.3°, respectively. The best-fit values of the potential
coefficients are  and , and the corresponding Cartesian tensor components
are Sxx = −0.426, Syy = +0.876 and Szz = −0.450. The anisotropy of the local ordering around

 is given by (Sxx − Szz)/Syy = 0.027.  corresponds to τ⊥ = 4.0 ns,

and , to τ|| = 20.6 ps. This calculation was completed in 21 minutes.

The physical picture is as follows. Based on geometric (and other [20,46]) considerations, the
perpendicular component, τ⊥ = 4.0 ns, may be associated with domain motion. In the present
case τ⊥ is 3.7 times faster than the global tumbling. The parallel component, τ|| = 20 ps,
represents fast fluctuations about an axis in close proximity to the equilibrium N–H orientation,
and is 1.6 times slower for the “flexible” N–H bond of residue G46 than for the “rigid” N–H
bond of residue L209.

Both the “rigid” N–H bond of residue L209 and the “flexible” N–H bond of residue G46
experience comparably high ordering around the  axis: we obtained Syy = +0.874 for
the former and Syy = +0.876 for the latter. On the other hand, the anisotropy of the local ordering
is nearly 3-times higher for the “rigid” site than for the “flexible” site. This is interesting new
information. There are controversial views, based largely on order parameters from MF
analysis of spin relaxation, on whether proteins prevail in solution as narrow or broad
conformational ensembles [152]. The forms of these ensembles bear a direct relationship to
the relative equilibrium probability density, Peq, determined with SRLS. The Peq function
depends on the geometric perspective; this is illustrated in Appendix F, Section 4.

The 3D GAF model [65,78] can also quantify the magnitude and anisotropy of the local
ordering. However, it requires the prevalence of fast local motions, the availability of MD
trajectories, and it does not provide local potentials (which can be used to calculate
thermodynamic quantities).

SRLS/C++OPPS-based 15N spin relaxation analysis of an entire protein: estimate of
efficiency

Let us consider a representative protein comprising 300 residues, and assume that 10% of the
residues are “flexible”. Example 3 above describes the analysis of a “flexible” residue of
AKeco; this case may be considered as a paradigm for the analysis of the “flexible” residues
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of the representative protein. By analogy it would take about 10.5 hours to least-squares fit the
experimental data for 30 “flexible” residues. Example 2 above describes the analysis of a
“rigid” residue of AKeco; this case may be considered as a paradigm for the analysis of the
“rigid” residues of the representative protein. By analogy it would take about 270 hours to
least-squares fit the experimental data for 270 “rigid” residues. Let us multiply this time by
1.5, to account for the possibility that 50% of the “rigid” residues require a second trial of
starting parameters. Based on these considerations it would take 405 hours to least-squares fit
the experimental data for 270 “rigid” residues, and about 17 days to analyze all the residues of
this protein.

This estimate is based on calculations carried out on a portable HP computer equipped with an
Intel 2.7 GHz Dual Core CPU and 4GB RAM. On a Quad-Core i7 Extreme CPU with a 3.2
GHz clock speed, 1600 MHz 8 MB cache, and 24 GB of 1300 MHz CL6 RAM, the analysis
of the 300 residue protein selected as example will be completed in 4 – 5 days. Utilization of
the parallelized version of C++OPPS in the context of a computer cluster will reduce the
running time significantly.

Problems encountered in some cases and prospects
The present data-fitting scheme of the C++OPPS package features the publicly available
MINPACK minimization package. The pertinent minimizer has not been adapted/optimized,
and other minimizers have not been yet implemented/examined. With “rigid” N–H bonds we
encountered in some cases problems associated with the exit criteria of the MINPACK
minimizer. In the context of SRLS/ESR the Levenberg-Marquardt minimizer has been adapted/
optimized successfully [153]. We might be able to overcome the problem noted by optimizing
the MINPACK minimizer, or employing other minimizers. Such efforts are underway.

It is easy to fit the “rigid” N–H bond data that correspond to strong axial potentials, fast isotropic
local diffusion, and frequent inclusion of conformational exchange contributions. This is
similar to the results obtained with MF analyses. When rhombic potentials or axial local
diffusion were allowed for, with αMD = 90° and βMD = 101.3°, we encountered (in the limited
calculations carried out so far) quite a few cases in which the fitting process led to unphysical
results. It is known that in the presence of strong local potentials one should use the Fokker-
Planck-Kramers (FPK) equation with both orientation and angular momentum included
explicitly [16,154]. This will allow the probe to engage in torsional oscillations in the potential
well, expected on physical grounds, which in the over-damped Smoluchowski treatment are
relaxed instantaneously. Thus, the problems encountered in fitting data for “rigid” N–H bonds
might have a physical reason, which could be tackled by solving the corresponding FPK
equation. The latter includes inertial effects; the dynamic picture of the well-structured regions
of the protein might change by accounting for these effects.

The full two-body FPK model is treated explicitly in Ref. [16]. Efforts to implement it
for 15N spin relaxation in proteins are underway. The additional parameters required are
moments of inertia, which can be derived from 3D structures.

Appendix B: NMR parameters calculated with molecular dynamics methods
NMR relaxation of natural abundance 13C has been treated already in early MD work [155].
Relatively simple models were developed to interpret the experimental data. The models
considered pertain to the continuous diffusion, restricted diffusion and lattice jump categories.
Their accuracy was tested. Stochastic dynamics was used to calculate experimental 13C NMR
relaxation parameters of small alkanes. The results obtained were used to predict NMR
relaxation in proteins. Since then extensive MD studies of proteins have been carried out in
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the context of NMR spin relaxation. At present μs long simulations, which feature explicit
solvent and use constantly improving force-fields, can be carried out for small proteins.

In calculating time correlation functions from MD trajectories it is typically assumed that the
global and local motions are statistically independent, i.e., C(t) = CC (t) × CL (t). Based on this
assumption the global motion is usually eliminated by superimposing the MD frames onto a
reference structure. The time correlation function obtained in this way for internal motion,
CL (t), is often least-squares fitted to the form of the MF time correlation function, and in some
cases to the Extended Model Free (EMF), reduced EMF, or other variants of the MF formula.
This yields order parameters and correlation times that are compared to their MF counterparts.
In some cases the squared order parameter is derived directly as the plateau value of the CL

(t) function, or calculated using the expression developed in Ref. [37], the isotropic
Reorientational Eigenmode Dynamics (iRED) method [25,26], or other methods (see below).

To calculate spectral densities and relaxation parameters with MD the total time correlation
function, C(t), is required. One usually determines CC (t) by calculating the global diffusion
tensor based on experimental 15N T1/T2 ratios. Multiplication by CL (t) (parameterized as
outlined above) yields an analytical form of C(t).

To calculate from the MD trajectory CL (t), or S2 according to Ref. [37], it is necessary to carry
out the frame superposition mentioned above. This procedure depends non-negligibly on the
choice of the reference structure [132,156]. Frame superposition is not required when order
parameters are calculated using the iRED method [25,26].

The network of coupled rotators (NCR) of Abergel et al. [112–115] provides order parameters,
as well as local motional correlation times. NCR is based on interesting physical ideas; it
provides implicitly information on the asymmetry of the local ordering. However, it pertains
to the large time scale separation limit, the local geometry is encoded, and the local motion is
intrinsically isotropic.

Methods for calculating order parameters based on harmonic approximations, such as Normal
Mode Aanalysis (NMA) [99] and Gaussian Network Model (GNM) [27], have been developed.
Contact models for calculating order parameters based on parameterization of the local
structure have been developed by Brüschweiler and coworkers [116–118].

Several representative MD studies, where results are compared with MF analyses of NMR spin
relaxation data, are presented below. The extent of agreement between order parameters,
spectral density values and relaxation parameters obtained with MD and NMR/MF is
discussed.

Chatfield et al. [36] used the force field CHARMM and the TIP3P model for water to generate
a trajectory of 18 ns in length for liganded and 3.75 ns in length for unliganded SNase. Order
parameters were calculated using the expression developed in Ref. [37]. For N–H and Cα–H
the agreement between S2(MD) and S2(MF) was found to be reasonably good. On the other
hand, large discrepancies were found between S2(MD) and S2(MF) for the Cα–Cβ bond of
alanine. While MD yields comparable squared order parameters for Cα–H and Cα–Cβ, as one
would expect, MF yields S2(Cα–Cβ) approximately 30% smaller than S2(Cα-H). This
discrepancy has not been resolved over the years. The Saxis

2 order parameters of eglin c are
still much smaller as compared to their MD-derived counterparts [70].

Showalter et al. [157] used the improved AMBER99SB force field to simulate 13CDH2 methyl
dynamics in calbindin Dk9. After eliminating the global motion, the time correlation function
calculated from the MD trajectory was parameterized according to:
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(66)

CCH3(t) represents the motion about the C–CH3 axis and CCC(t) the motion of the C–CH3 axis.
CCC(t) was parameterized with a sum of 5 exponentials and an offset [65]. The differences
between corresponding simulated and experimental values of J(0), J(ωD) and J(2ωD), obtained
previously [158] and analyzed with MF, were minimized allowing τCH3 to vary. Good
agreement was obtained for J(ωD) and J(2ωD) and poorer agreement for J(0), with the values
obtained with MF analysis of the experimental data [158] smaller than the corresponding MD
values. This is due partly to having varied τCH3, which affects to a larger extent the higher
frequency values of J(ω) [157].

Additional parameterization schemes have been used: (1) CCC(t) was parameterized using Eq.
(34) with CCH3(t) taken as shown in Eq. (66), and (2) CL (t) was parameterized using Eq. (43).
The first protocol led to better agreement between MD and MF; in particular, the differences
between corresponding squared order parameters were less systematic. This indicates that
allowing for two separate local motions for the methyl group is a better approximation to the
actual scenario than Eq. (43), in agreement with the latter not representing intrinsically a
physical scenario (cf. Section 3.2.3.) whereas Eq. (66) might represent one in simple limits.

In general, the agreement between MD and NMR/MF is better using the improved
AMBER99SB force-field [157]. In particular, the agreement between corresponding MD and
NMR/MF methyl-related squared order parameters is still significantly worse than the
agreement between corresponding MD and NMR/MF N–H-related squared order parameters
[160].

Pfeiffer et al. [132] used the AMBER 5.0 force field and the TIP3 model for water to generate
a 7.6 ns trajectory for the β-adrenergic pleckstrin homology (PH) domain of the β-adrenergic
receptor kinase-1. The objective was to study N–H bond dynamics. The global motion was
treated as in Ref. [157]. The time correlation function for local motion was least-squares fit to
a MF-type time correlation function featuring three decoupled local motions. This implies three
squared order parameters and three local motional correlation times entering CL (t). The
generalized order parameter, S2, given by the product of these three squared order parameters,
was calculated according to Ref. [37]; it was then used as a restraint in the fitting process.

For the core of the protein J(0) and J(ωN) from MD were found to be on average lower by 6%
than their MF counterparts. On the other hand, J(0.87 ωH) from MD was found to be lower by
21% than J(0.87 ωH) from MF. The value of J(0.87 ωH) represents J(ωH + ωN), J(ωH) and J
(ωH − ωN) combined into a single spectral density value within the scope of the Reduced
Spectral Density strategy (e.g., see Ref. [8]). The value of S2 from MD was 1% (6%) lower
than S2 from MF for all the N–H bonds (the N–H bonds in the protein core).

This pattern is opposite to the pattern determined by Showalter et al. [157] for methyl dynamics.
This is likely to be associated with using different parameterization schemes, in the context of
different parameter ranges dominated by different factors. Thus, the local ordering is strong
for “rigid” N–H bonds [132]; in this limit the Wigner functions are relatively good
approximations to the eigenfunctions of the local diffusion operator [14,20]. On the other hand,
the local ordering is weak at methyl sites; as shown in Appendix G, even very weak potentials
render the Wigner functions to be poor approximations to the eigenfunctions of the local
diffusion operator.

Reference [160] also employed the improved AMBER99SB force field to study N–H bond
dynamics in ubiquitin. In that study, the MD time correlation function for internal motion was
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parameterized according to Eq. (2), the squared order parameters were calculated with the
iRED method [26], and an axial global diffusion tensor was determined independently based
on 15N T1/T2 data. Good agreement was obtained with this parameterization scheme between
relaxation parameters from MD and MF. On the other hand, the agreement between values of
the corresponding squared order parameters was less satisfactory. A similar picture emerges
from Table 1 below. We found repeatedly that experimental relaxation parameters could be fit
equally well from a statistical point of view with formally analogous SRLS and MF spectral
densities, albeit with different best-fit parameters.

The reason for better agreement between corresponding MD and NMR/MF relaxation
parameters as compared to order parameters is that the principal quantities are the jKK′ (ω)
functions. They comprise intrinsically the best-fit parameters. Agreement between
corresponding best-fit parameters means good reproduction of the actual physical scenario.
Agreement between relaxation parameters means statistical reproduction of the JXY (ω) or
J XX (ω) functions. If the former type of agreement is worse that the latter type, this is an
indication that the force-field is largely accurate, whereas the MF analysis is relatively
inaccurate.

Parameterization renders the derivation of consistent information problematic. Results with
different characteristics are obtained even when the same force-field is used – cf. Refs. [157]
and [160]. It would be useful to calculate the MD counterparts of the SRLS CKK′ (t) functions
instead of parameterizing the MD trajectory in various ways. Deriving consistent physical
information from calculations of the (artificial) generalized order parameter, using various
parameterizing techniques [160], is also problematic. There exist established methods for
calculating potentials in terms of which physical order parameters are defined [161,162]. It
would be useful to apply these methods to study local ordering in proteins.

Discrepancies between corresponding MD and MF-derived order parameters, spectral density
values, and relaxation parameters have been ascribed to force-field imperfections, insufficient
length of the MD trajectories, problematic aspects of the MD protocols, and/or motions
affecting the MD trajectory but not affecting the experimental data [132,133,157,163]. We
suggest adding to this list the oversimplification inherent in MF.

Trbovic et al. [133] used the improved AMBER ff99sb, AMBER ff03 and OPLS AA force
fields to study N–H bond dynamics of the B3 immunoglobulin-binding domain of streptococcal
protein G (GB3). Thirteen trajectories of 2.4 ns generated using OPLS AA were subjected to
simulation using AMBER ff99SB and ff03. The global motion was eliminated from the MD
trajectory. CL (t) was calculated as the time correlation function of the Legendre polynomial
of rank 2, and order parameters were calculated according to Ref. [37]. Final time correlation
functions and order parameters were obtained as averages over multiple trajectories.

Squared order parameters from MD were compared with their MF counterparts. In many cases
S2(MD) was found to be smaller than S2(MF). This was associated primarily with imbalance
between the description of hydrogen bonding and other terms in the force fields employed
[133]. However, the parameterization strategies used in the MD and MF protocols are not the
same; this may also influence the results.

Maragakis et al. [135] generated recently a 1.2 μs trajectory of ubiquitin using the improved
OPLS–AA/SPC force field. After eliminating the global motion S2 was obtained as CL (100
ns) (method 1) or according to Ref. [37] (method 2). The parameter S2 was also calculated
from the original MD trajectory by least-squares fitting the MD time correlation function for
internal motion to the reduced extended MF formula (method 3).
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It was found that in loop regions the correspondence between S2(MD) and S2(MF) is
significantly better using method 3. This was ascribed to the global motion, which is preserved
in method 3, decorrelating local motions slower than it. Thereby the simulated time correlaton
function is brought into better agreement with the experimental time correlation function which
is only affected by local motions comparable to, or faster than, the global motion.

The MD simulations led to τm = 1.98 ns; the experimental τm value of ubiquitin at the relevant
temperature is 4.1 ns [164,165]). Accurate determination of the global diffusion from MD
trajectories is notoriously difficult because the rate constant for the rotational reorientation of
water is overestimated even in the most advanced models for water. It was shown in Ref.
[135] that S2(MD) and S2(MF) agree; then τs, Ss

2 and/or Sf
2 must differ to overcome the

differences in τm. Again, an improved treatment of the spin relaxation might be useful.

Wong and Case [163] studied ubiquitin, binase, GB3 and lysozyme using the AMBER99sb
force field with the TIP4P/EW or SPC/E models for water. Trajectories 6 – 60 times as long
as the mean experimental τm value were generated. For the first time a method for determining
the global diffusion tensor from the MF trajectory was set forth. Site-specific global-motional
correlation times, τm(i), were calculated based on the method of Ref. [166], which is applicable

to . The trace of the RC tensor was 6.6 – 24.6% smaller as compared to its MF
counterpart.

This provided CC (t). The time correlation function CL (t) was calculated from the MD
trajectory assuming reorientation of the probe with respect to a “frozen” protein. The fact that
C(t) and CC (t) × CL (t) agreed was taken as proof that C(t) may be factorized into CC ×CL

(t). However, the important point is whether the parameters entering CL (t) are physically
meaningful, or force-fitted quantities. This is examined below.

Table 2 shows the S2 and τe values obtained in Ref. [163] by fitting the MD CL (t) function to
the MF time correlation function (Eq. (34)), along with their MF counterparts. The MD
parameters are in most cases different from the corresponding MF parameters. This is ascribed
in Ref. [163] to local motions slower than the global motion affecting the MD trajectory but
not affecting the NMR relaxation parameters. However, the local motions detected are on the
order of 2 ns and faster; such motions should have been detected with MF. Yet, MF analyses
of these proteins yielded (with a few exceptions) τe values on the order of several tens of ps
[164,165,167].

Thus, even a very careful study, which determined the global diffusion tensor from the MD
trajectory, used improved force-fields and employed high-quality experimental data, led to
best-fit parameters that differ significantly from their MF counterparts.

A recent study used MD methods to investigate structural dynamics of arginine side chains
[168]. It was concluded that side-chain flexibility is concealed from 15Nε spin relaxation
analyzed with MF due to the persistence of salt bridges, while the aliphatic part of the arginine
side chain retains substantial disorder. Improved analysis of the 15Nε relaxation data might be
useful.

Best et al. [71] derived order parameters for methyl dynamics from MD trajectories. Non-
harmonic effects were shown to be important; transitions among local (rotameric) minima were
considered. Hu et al. [70] correlated semi-quantitatively MF Saxis

2 for C–CH3 motion with the
populations of rotameric states associated with the preceding χ angle. However, as outlined
herein (in particular in Section 3.2.3) and in Refs. [34] and [35], Saxis

2 MF is often inaccurate;
this is likely to affect the analysis.
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Vendruscolo and co-workers [169,170] developed an ensemble refinement method that uses
the squared generalized MF order parameter as a restraint. Its calculated counterpart is obtained
mostly using the formula of Ref. [37]. Extensive conformational distributions are predicted by
this method.

The accuracy of the local ordering derived from the MD trajectory can be improved by
developing methods for calculating unambiguously  and . The accuracy of
the local ordering derived from the experimental NMR data can be improved by calculating

 and  using SRLS. The form of the conformational distributions determined might change
when physical order parameters, and consistent frame definitions, are used.

Clore and Schwieters [152,171,172] also derived squared order parameters with MD within
the context of ensemble refinement strategies. These authors found narrow conformational
distributions both in solution and in polycrystalline enviroments, comprising optimally 4–8
members. This is inconsistent with the extensive conformational distributions found by
Vendruscolo and co-workers [169,170] and Griesinger and co-workers (based on values of
RDC) [173–176] in solution, as well as the work of Lorieau et al. [177], who detected large-
amplitude axial motions for Cα, Cβ and several side-chain carbons in polycrystalline ubiquitin.

The significant differences in the extent of the conformational distributions derived might stem
from the way in which Peq is obtained (often implicitly) in the various studies. As pointed out
above, since the actual local ordering frame is rhombic, Peq depends on the definition of the
ordering frame.

Operating within physically well-defined theoretical scenarios and abiding by the assumptions
underlying the equations/expressions used is important in practice. For example, overlooking
the premises underlying MF, and considering the limiting expression of Ref. [37] (criticized
in Ref. [178]) to be exact, led in Ref. [54] to an altogether oversimplified analysis. Methyl
dynamics was modeled in terms of jumps (or diffusive motion) among three unequally
populated rotamers. This highly asymmetric motion corresponds necessarily to rhombic local
ordering. Yet, a single order parameter – S MF – was used to interpret this ordering scenario,
with the objective of proving that this strategy is appropriate. Rhombic ordering is to be treated
in the context of properly defined order parameters  and  [32,33], e.g., as done in Refs.
[179,180].

The MD trajectories calculated for proteins are becoming increasingly longer and the force-
fields become increasingly better. It is timely to develop methods for extracting from the MD
trajectory mesoscopic parameters that can be compared with experimental counterparts based
on stochastic models. As pointed out above, this could be accomplished by devising methods
for computing the MD analogues of the CKK′ (t) functions obtained with SRLS analysis of
NMR spin relaxation parameters.

Appendix C: Protein dynamics in the solid state
Reference [181] summarizes this topic until the end of 2004. The main methods include
lineshape analysis, T1 relaxation and exchange experiments, using primarily 2H and 13C.
Recent developments are summarized below.

Giraud et al. [182] acquired 15N T1 data at 293K from a polycrystalline powder of the 21 kDa
dimeric Crh protein. The dynamic model used consists of wobble-in-a-cone in the presence of
a square-well potential. It includes the time correlation functions for K = 0, 1 and 2, required
by the powder averaging. Wobbling correlation times, 1/(6Dw), of 50 – 500 ns, and a semi-
cone angles of 10 – 15°, were determined.
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Qualitative observations on rocking backbone motion in Crh have been reported. To quantify
them, and eventually detect additional dynamic and structural features, it would be useful to
acquire T1 data and powder patterns at lower temperatures. Slow-motion lineshapes, affected
by motional rates on the order of the magnetic anisotropies, can detect μs motions. T1 relaxation
times can detect motions approximately 10 times faster. Both can be analyzed with the
microscopic order macroscopic disorder (MOMD) approach [183], which is the SRLS limit
wherein the protein is immobile.

Lorieau and McDermott [177] acquired motionally averaged powder patterns of Cα, Cβ and
side-chain carbons from polycrystalline samples of 13C-labeled ubiquitin. These spectra have
been analyzed assuming complete axial motional averaging (although some of the patterns
observed had a rhombic appearance). Order parameters ranging from 0.44 to 0.94 have been
reported. Here too lowering the temperature to enter the slow motional regime will be very
useful, in particular to reveal the nature of the rhombic powder patterns. To enter the relevant
time-window one can monitor, besides the temperature, the NMR nucleus type, its chemical/
magnetic surroundings, and (except for auto-correlated dipolar relaxation) the external
magnetic field.

Additional examples of bio-macromolecular dynamics in the solid state studied with NMR
appear in Refs. [76,184–193]. Echodu et al. [188] investigated furanose ring puckering in DNA
fragments. T1, and motionally averaged powder patterns from 2H nuclei within the furanose
ring were analyzed in concert. A previously developed model [185] for restricted motion in
the presence of a harmonic potential was used. The rate for internal motion was determined to
be 1.8×107 s−1 at 300K, and the coefficient of the axial potential was determined to be 2.5
kBT.

T1 from samples labeled with 13C at furanose ring positions was measured in solution [185].
Mode-decoupling, i.e., C(t) = CC (t)×CL (t), was assumed. CL (t) was taken the same as the
time correlation function used to analyze the solid-state 2H data. CC (t) was determined with

hydrodynamic calculations, which yielded  and .

The 13C T1 data [185] could be reproduced satisfactorily in this manner, although the
factorization of C(t) into the produc CC (t)×CL (t) requires that RL ≫ RC, while in actual fact

RL = 1.8×107 s−1 and . Because the local motional rate,
RL (adopted from the solid-state work) is 2.8 times smaller than the global motional rate, the
overall tumbling (see Figs. 5 – 7 of Ref. [188]) dominates the analysis. Thus, within a good
approximation one has C(t) ~ CC (t).

Skrynnikov, Reif and co-workers carried out conjoint analysis of 15N T1, T2 and 15N–{1H}
NOE data from glycerol-containing solutions and 15N T1 data from polycrystalline powders
of the SH3 domain of α-spectrin to elucidate N–H bond dynamics [191]. The analysis is based
on the hypothesis that the motion in the solid-state is the same as the local motion in solution.
The return to equilibrium of the magnetization in the T1 measurements in the solid state was
taken to be mono-exponential.

An enhanced form of the EMF formula, from which the global motional term has been removed,
was used [191]. As pointed out in Section 3.2.3., this entails force-fitting. The conjoint analysis
yielded markedly unusual results which feature Ss

2 ~ 1, 0.77 < Sf
2 < 0.90, 0 < τf < 31 ps, 0.7

< τs < 54 ns and 11.0 < τm < 17.4 ns. Ss
2 is approximately 1 while τs ranges from 0.7 to 50 ns.

Adjacent residues are often associated with τs values that differ by factors of 50. Mode-coupling
is ignored; this is inappropriate when τs and τm are comparable.
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Figure S2 of the Supporting Information of Ref. [191] shows that the solid-state data dominate
the analysis. If the solid-state data are excluded, the remaining solution data will be amenable
to analysis with the original MF formula [191]. It is very likely that separate analyses would
have produced different results, especially given that 15N T1 values in the solid state are on
average 100 times longer than 15N T1 values in solution. Motions of approximately 10−7 s or
faster may affect the solid-state data; the liquid-state data may be affected by motions of several
ns or faster. It is unlikely that N–H motions slower than ns do not exist in the polycrystalline
samples of the SH3 domain of α-spectrin (also, see the results of Ref. [182]). It is more likely
that the analysis conducted did not detect them.

Methyl dynamics of the SH3 domain of α-spectrin were also studied in solution and in the
solid-state using 13C T1 relaxation [192]. One of the valine and leucine methyl groups in
deuterated protein samples was labeled with 13C. New experimental methodologies, which
constitute a significant advance in the field, were developed. The 13C T1 values measured in
the solid state and in solution were found to be similar [192]. The straightforward implication
was that methyl dynamics is the same in the two states of matter; hence conjoint analysis was
pursued.

The term (1 − S2)exp(−t/τe), obtained by omitting the global motional term from Eq. (34), was
used as the time correlation function. This expression does not converge to the appropriate
physical limits: when τe → 0 then C(t) → 0 and when S2 → 1 then C(t) → 0. The time correlation
function given by Eq. (34) does converge to the appropriate physical limits: when τe → 0 then
C(t) → S2, and when S2 → 1 then C(t) → 1. This function represents the K = 0 component of
wobble-in-a-cone in a square-well potential. As pointed out in Ref. [182], where the very same
motional model was used, all three time correlation functions corresponding to K = 0, 1 and 2
are required to properly analyze T1 relaxation times from polycrystalline powders.

The average local motional correlation time was determined to be 50 ps. This value agrees with
local motional correlation times determined in solution for many proteins using Eq. (43) [6,
8]. It does not agree with other NMR studies of methyl dynamics in the solid state. For example,
surface-located methionine methyls groups of the Streptomyces subtilisin inhibitor have been
studied with 2H NMR in the ligand-free protein, and in its complex with subtilisin. Powder
patterns and T1 relaxation parameters from polycrystalline samples, and 2H spectra from single
crystals, were acquired from selectively labeled mutants. All the experimental data were
analyzed in concert. Asymmetric motions with correlation times ranging from 100 ps to 10 ns
have been detected [193].

An important recent study focuses on a leucine residue of HP36 residing in the core of this
protein. Its methyl groups were found to exhibit complex dynamics in the solid state [76]. 2H
lineshapes from polycrystalline powders of 5,5,5 d3-leucine-79 of HP36 were acquired in the
temperature range of 233–298K. 2H T1 and T1Q (quadrupolar order) relaxation times were
acquired in the temperature range of 112–298K. Combined analysis of all of these data was
carried out. The dynamic model determined includes the following components. (1) Woessner-
type methyl rotation, with a rate in the extreme motional narrowing limit, occurs about Cγ–
Cδ. (2) Motion of the Cγ–Cδ bond on an arc in the presence of a potential U(φ) = −λφ2 occurs
at rates ranging from 1.5×103 rad/sec at 233.15K to 7.3×104 rad/sec at 298.15K. (3) Rotamer
jumps of the Cβ carbon occur at a temperature-independent rate of 4.0×104 s−1.

Based on references [76,193], methyl groups do experience slow motions in the solid state.
However, temperature-dependent relaxation parameters and temperature-dependent powder
patterns from polycrystalline proteins, and eventually NMR spectra from single crystals, are
required to elucidate them. A single 13C T1 data point from a polycrystalline sample [192] does
not suffice because the primary motion is still rotation about the C–CH3 axis, which partially
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averages effectively the quadrupolar interaction. All the other motions occur in addition to this
motional mode; detecting them requires more extensive experimental evidence and appropriate
analysis. Reaching general conclusions about methyl dynamics in the solid state based on
scarce data and problematic analysis is premature [192].

We mentioned above the MOMD approach [183] as a general method of NMR lineshape
analysis in the solid-state. MOMD was developed for nitroxide ESR applications and applied
successfully to liposomes [194], proteins [18,43,45] and DNA fragments [44]. It can be adapted
relatively easily to NMR spin relaxation in polycrystalline proteins. In its original form,
MOMD treats diffusive motion; specific jump-type or other restricted motional models
typically occurring in solids can be implemented as well. Experimental methodologies for
obtaining high-quality dynamic NMR lineshapes in the solid state are in the course of being
developed [189,190,192]. With a large body of appropriate experimental data available from
both solution and solid-state samples, analyses based on SRLS treatment of the former and
MOMD treatment of the latter are expected to be useful.

Appendix D: Residual Dipolar Couplings of nuclei in internally mobile
proteins

SRLS applied to anisotropic solvents is developed in Refs. [15,17]. The contribution to the
spin Hamiltonian from the dipolar interaction between two nuclei, i an j, is given by the
following expression:

(67)

where  denote the components of the magnetic dipolar tensor in the D frame, and 
denote the components of the relevant spin operators in the space-fixed laboratory frame, L.
We refer below to the particular case in which the nuclei i and j represent the 15N–1H pair;
hence the indexes ij will be omitted. For uniaxial media the liquid crystal director (LC) is
parallel to the lab frame. The global ordering frame, A, is typically taken the same as the global
diffusion frame, C.

In studies of small molecules dissolved in liquid crystals, the emphasis is usually on
determining both the ordering tensor and the molecular geometry [161,162]. If the latter is
known, i.e., one knows the values of the Euler angles αCD and βCD, five RDCs (between pairs
of dipolar-coupled NMR nuclei in the molecule) have to be measured in the general case to
determine the molecular alignment tensor.

In the field of protein NMR one is interested primarily in the geometry of the molecule, i.e.,
the angles αCD and βCD [195]. The following strategy is employed. The global diffusion frame,
C, is taken the same as the inertia frame (of the X-ray or NMR structure). The global diffusion
tensor, RC, determined predominantly by the shape of the protein, is considered to be
independent of the LC medium. On the other hand, the global ordering tensor, A, is considered
to depend on the medium (and to be affected primarily by electrostatic interactions). Based on
experience both RC and A are rhombic tensors [66,173–176,195–198].

The situation is significantly more complex when the probe experiences restricted local motion.
Two additional frames have to be considered: the local ordering/local diffusion frame, M, fixed
in the probe, and the local director, C′, fixed in the protein. C′ is taken along the equilibrium
orientation of the probe. Local order parameters,  and , are defined in terms of a local
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potential, u(ΩC′M). Since the M frame is not necessarily the same as the D frame the (time-
independent) Euler angles ΩMD = (αMD,βMD,0) also enter the analysis; they can often be
specified based on stereochemical considerations.

Let us assume that all the conditions underlying Eq. (31) are valid. In this case one may carry
out separately the averaging over ΩLA to yield  and , and the averaging over ΩC′M to yield

 and . In this limit, the contribution to the spin Hamiltonian from the dipolar interaction
between two nuclei, i and j given by eq. (67), is now given as (cf. Fig. 1):

(68)

Note that since the global ordering is very small one may assume that Peq(ΩLA) = exp(−u
(ΩLA)/<exp(−u(ΩLA)> ~ 1 − u(ΩLA)/<exp(−u(ΩLA)>.

For at least 2-fold symmetry around A and at least 3-fold symmetry around LC the following
expression represents the measurable RDC when the moiety comprising the nuclei i and j is
attached rigidly to the protein [14,30–33,66]:

(69)

μ0 is the permeability of vacuum, γi and γj are the magnetogyric ratios of the nuclei i and j, h
is Planck’s constant, and rij is the distance between i and j.  and

 are (in irreducible tensor notation) the principal values of the
molecular alignment, A tensor. These parameters are defined in terms of the mean-field
potential, u(ΩLA), exerted by the LC onto the protein. The form of this potential is usually
given by Eq. (52); the order parameters  and  are given by Eq. (59) [32,33].

Let us denote the Euler angles that transform the Ai frame, associated with medium i, into the
C frame by ΩACi = (αi,βi,γi). Methods for determining , αi, βi and γi have been
developed [66]. Once this information is available the angles αCD and βCD can be determined
by measuring RDCs in two independent alignment media.

When the moiety comprising the nuclei i and j is engaged in local motion one has to calculate
averages over the trigonometric functions P2(cosβCD) and (3 2)1/2 (sin2(βCD)cos(2αCD) which
appear in Eq. (69) [66] (for non-spherical global diffusion tensors one has to calculate averages
over P2(cosβC′D) and (3 2)1/2 (sin2(βC′D)cos(2αC′D)). The averaging procedure can be deduced
for specific cases from Eq. (68). The angles ΩCC′ in Eq. (68) represent the “structural’
information inherent in the RDC. It can be seen that the parameters , αCC′ and βCC′ are
common to RDC – cf. Eq. (68), and SRLS spin relaxation analysis – cf. Eq (58). The
eigenmodes which comprise the functions jKK′ (ω) in Eq. (58) depend on  and ; through
Eqs. (59) and (52) they depend on  an . For rhombic global diffusion tensors the
eigenmodes also depend on αCC′ and βCC′. The information on global ordering only enters the
RDC analysis, and not the NMR relaxation. The latter is normally obtained in isotropic solution,
so that the information on global ordering is in principle irrelevant; relaxation in a liquid
crystalline medium with 0.001 ordering, as empoyed in RDC studies, would be virtually the
same.
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Thus, one may combine the two analyses within the scope of the same physically sound
framework, as done in the past for small molecules [14,21,32,33]. If the RDC analysis is carried
out independently then four different alignment media will be required to determine αCC′,
βCC′,  and .

This paradigm applies to methyl groups, for which the local ordering is weak. It may apply,
within a good approximation, to “rigid” N–H bonds, where the local ordering is very strong;
this has to be checked. For N–H bonds (and other probes) located in flexible chain regions Eq.
(69) is likely to be oversimplified. For local motion much slower than the global tumbling and
much faster than the typical RDC (which is on the order of 10 – 20 Hz) the extra reduction in
the RDC may be converted into an order parameter provided that these motions can be replaced
by an effective axial motion.

A number of methods for calculating RDCs in the presence of local motions have been
developed [173–176,196–198]. They are based, in principle, on the rationale outlined above.
In practice they differ significantly from the approach described above. Thus, separate
averaging over ΩLA and ΩC′M is considered appropriate for ps – ms local motions. The RDC
and MF spin relaxation analyses are combined by using the generalized MF order parameter,
S(MF). The angle ΩMD is implicitly (0,0,0) in the MF spin relaxation analysis. It is
(αMD,βMD,0) in RDC analyses through the utilization of concepts such as “amplitude of
anisotropy” and “direction of anisotropy” [173,174], which require a rhombic M frame. When
the M frame has rhombic symmetry, one should have two order parameters,  and . Yet,
only a single order parameter, S(MF), is available. The angles ΩCC′ are (0,0,0) in the MF
analysis because in the present context the global diffusion frame, C, is taken as isotropic. In
the RDC analysis they are clearly (αCC′,βCC′,0), i.e., the C frame is rhombic, to derive the
desired structural information. Finally, a generalized order parameter, S(RDC), analogous to
the generalized MF order parameter, S(MF), is used. S(RDC) < S(MF) is interpreted as
prevalence of local motions slower than the global motion.

Clearly, there are inconsistencies, and the validity limits of MF-type equations formally
analogous to Eq. (68) are exceeded. The RDC-derived dynamic information of interest pertains
to the μs – ns time scale, which is outside the scope of both spin relaxation and chemical
exchange scenarios. In this time-regime neither RL ≫ RC, nor RL ≪ RC with on average axial
ordering, which are the conditions that underlie Eq. (68), are fulfilled. Therefore the value of
S(RDC), derived by ignoring these considerations with equations formally analogous to Eq.
(68), might be inaccurate. For example, the large distributions of structural ensembles based
on RDC analysis [170,175] might be over-rated.

Appendix E: 15N–1H bond dynamics

1. Geometric effects
In the extreme motional narrowing limit for the local motion, the only difference between SRLS
and MF for axial local potentials is the relative orientation of the 15N–1H dipolar and the 15N
CSA frames. We utilized a 17° tilt [149]; this angle is implicitly zero in MF. Based on
published 15N spin relaxation data of the villin headpiece helical subdomain (VHHS) fitted
with the MF model 1 [199], where the local motion is in the extreme motional narrowing limit,

we found that MF S2 underestimates SRLS  on average by 4.5% [20]. This should be
compared with reported S2 precision of 1% [200], and in some cases 0.2% [201].

The error in S2 has significant implications for the accuracy of conformational entropy derived
from it. For high ordering typical of N–H bonds located in the protein core 4.5% error in S2
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implies over 20% error in the coefficient, , of a Legendre polynomial of rank 2 potential

[20] (Table 3). This is due to the functional form of the  versus  dependence for high

, illustrated in Fig. 3.

A previous report maintains that the tilt ΩD–CSA = (0, βD–CSA,0) between the axial D and CSA
frames has a negligible effect on the analysis [36]. However, to evaluate this effect one has to
calculate JCC (ω) from JDD (ω), or assemble it directly from the jKK′ (ω) functions. In both
cases the functions j11 (ω) and j22 (ω), which are not provided in MF, are required. Hence, the
effect under consideration cannot be evaluated within the scope of MF.

2. Local motional effects
15N relaxation data of some VHHS residues were analyzed in Ref. [199] with MF model 2
which utilizes Eq. (2). Fifteen such residues were also subjected to SRLS analysis using the
spectral density formally analogous to model 2 MF [20]. The average SRLS and MF results
are shown in Table 3 (along with the model 1 data discussed above).

SRLS yielded <τ/τm> = 0.1 whereas MF yielded <τe/τm> = 0.02 (data not shown). Using for

SRLS τren with , which corresponds to , yielded <τren/τm> = 0.027, which is

significantly different from <τe/τm> determined by MF. S2 overestimates  by nearly 7%
in model 2 and underestimates it by approximately 4.5% in model 1 (first row of Table 3).

 overestimates  by 20% in model 2 and underestimates it by 23% in model 1
(second row of Table 3).

For <τ/τm> = 0.1, but also for <τren/τm> = 0.027, mode-coupling is important [16]. This leads
to an actual SRLS spectral density that is significantly more complex than Eq. (2). Ample
comparison between SRLS and MF, illustrating the various aspects with regard to which these
approaches differ, appears in Ref. [20]. Note that the actual local ordering is rhombic rather
than axial [20,48,50]. Therefore, the data shown in Table 3, based on axial potentials, should
be considered as merely illustrative. If the asymmetry of the local potential were accounted
for, the differences between SRLS and MF would be much larger.

3. Global diffusion
In the extreme motional narrowing limit for the local motion one may determine τm from 15N
T1/T2 ratios [202,203]. N–H bonds located in elements of secondary structure approach this
limit at low magnetic fields. Precision can be estimated by scanning the vicinity of τm to
determine the range in which the χ2 value is largely preserved. With this strategy, we evaluated
the precision of τm to be on the order of 5 – 6%. For VHHS the accuracy of τm was increased
by approximately 4% when SRLS was used instead of MF (Fig. 9 of Ref. [20]).

In MF analyses the global diffusion tensor, RC, is determined from filtered (to eliminate local
motional effects) 15N T1/T2 data. Different methods for determining RC have been developed.
Traditional approaches are described in Refs. [202,203]. An effective approximate approach
is described in Refs. [166,204]. Recently MF fitting schemes have been integrated with
hydrodynamics-based approaches for calculating RC from 3D structures [205,206]. A separate
hydrodynamics-based method for calculating RC was also developed [207]. Our recently
developed fitting scheme for SRLS [90] has been integrated with the hydrodynamics-based
approach of Barone et al. [98], which determines RC from 3D structures and can account for
internal torsions as well.
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15N T1/T2 data sets considered free of local motional effects according to MF might comprise
significant local motional effects according to SRLS [20]. Unaccounted for local motional
effects, in particular the asymmetry of the local ordering, can be absorbed by an apparently
axial global diffusion tensor (see below). To ascertain that RC is a genuine axial tensor the
methods outlined in Ref. [204,208,209] are useful (see below).

4. Asymmetry of the local motion
In the literature, this term refers usually to axial or rhombic symmetry of the local diffusion,
or to jumps among unequally populated sites (e.g., Ref. [54]). Yet, the symmetry of a restricted
local motion is determined by the symmetry of the local potential, or the local ordering tensor
[32,33]. We found that the rhombicity of the local potential has a dominant effect on the analysis
[20,48,90]. The effect of potential rhombicity versus global diffusion axiality on the 15N
relaxation parameters is illustrated below.

Table 4 illustrates the high sensitivity of the analysis to the asymmetry of the local potential.
It can be seen that the 15N–{1H} NOE value is affected to a particularly large extent when the
local potential is rhombic rather than axial, which is most likely because the NOE represents
a ratio of two relaxation rates [28], each depending intricately (through the jKK′ (ω) functions
and their coefficients in the expressions for JDD (ω)) on the local ordering. Note that in MF
the local ordering enters the calculation through the factor S2. In the extreme motional
narrowing limit S2 cancels out in the expression for the NOE; for fast local motion its effect
on the NOE is expected to be small [20].

The rhombicity of the local ordering, which affects the NOE to such a large extent, is quite
limited. This can be appreciated by calculating the Cartesian ordering tensor components from

 and . These components are given by Sxx = −0.382, Syy = −0.454 and Szz = 0.836,
yielding (Sxx − Syy)/Szz = 0.09 on a scale extending from −1 to +1.

Table 5 illustrates limited sensitivity of the analysis to small global diffusion axiality, given

by , as one would expect (we show the results of calculations carried out for
the extreme values of the angle between the equilibrium N–H orientation and the principal axis
of the global diffusion tensor). This is inconsistent with the large effect NC = 1.18 has on the
MF analysis of 15N spin relaxation data from DHFR [208]. Fifty percent of the residues of this
protein require substantial conformational exchange contributions, Rex, when an isotropic
RC is used instead of an axial RC with NC = 1.18 [208]. If, however, RC is allowed to be axial,
then the Rex contributions disappear, and the unaccounted for rhombicity of the S tensor is
absorbed by an apparent axiality of the RC tensor [48].

Strong evidence that Rex can also absorb unaccounted for asymmetry of the local potential/
local ordering is provided in Ref. [48], where ribonuclease H (RNase H) and AKeco have been
studied in this context. It is also shown in that study that using axial potentials instead of the
actual rhombic potentials, and an axial global diffusion tensor instead of the actual isotropic
global diffusion tensor, imply inaccurate best-fit order parameters obtained with data fitting.
The findings of Ref. [48] are based on extensive predictive calculations, and back-calculations
of experimental data, carried out in the context of a conjoint analysis of the auto-correlated
relaxation parameters 15N T1, T2 and 15N–{1H} NOE, and the transverse 15N–1H dipolar/15N
CSA cross-correlated relaxation rate, ηxy. The fact that the experimental value of 1/T2 depends
on Rex, whilst ηxy does not, is a key element in the analysis.

That 15N spin relaxation is sensitive to the asymmetry of the local ordering was also
demonstrated by the 3D GAF model [65,78], an elaborate RDC study which provided
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anisotropic probability density functions of N–H orientations [210], and MD simulations which
revealed asymmetric N–H fluctuations [131].

5. Applications
5.1. E. coli adenylate kinase: domain motion

5.1.1. Background—The 23.6 kDa enzyme E. coli adenylate kinase catalyzes the reaction
ATP*Mg+2 + AMP ↔ ADP*Mg+2 + ADP [211]. AKeco is made of a single chain intertwined
into the domains AMPbd, LID and CORE [212]. The domain AMPbd is associated with the
binding of the AMP substrate. The domain LID “folds over” the binding site for the
ATP*Mg+2 substrate, so that the two-substrate binding site becomes sequestered, and the
catalytic reaction can take place.

The ligand-free enzyme was crystallized into the “open” conformation 4ake (Fig. 4a). A two-
substrate mimic inhibitor, AP5A, where AMP and ATP are linked by a fifth phosphate group,
was prepared. The complex AKeco*AP5A was shown to be a transition state mimic [213,
214]. The crystal structure of the “closed” AKeco*AP5A form is 1ake [215] (Fig. 4b). There
are clear indications that in the ligand free form (AKeco) the domains AMPbd and LID execute
large-amplitude motions, which come to a halt upon substrate binding. These mechanical
movements are thought to be associated, in a more or less direct manner by different research
groups, with the catalytic event. On the other hand, the CORE domain is preserved structurally
in this process [212,216].

The AKeco/AKeco*AP5A system is considered as paradigm for correlation between dynamic
structure, in particular domain motion, and biological function [216]. AKeco and
AKeco*AP5A have been studied extensively with many methods and in many contexts.
Straightforward MD [218,219], weighted masses MD [220], the exploration of the roles of the
various AKeco domains for stability and catalysis [221], MD/PCA [222], a 100 ns molecular
dynamics study of subdomain motion and mechanics [223], hydrogel-mediated translation of
substrate recognition into macroscopic motion [224] were used. Graph theory [255], in-parallel
SRLS and GNM analysis [226], a plastic network model exploring large-amplitude
conformational changes [227], a coarse-grained model that considers ligand interactions
approximately [228], various elaborate coarse-grained methods [229–232], and an MD-based
method exploring the pathways between the “open” and “closed” states of AKeco at atomic
detail [233] have also been employed. Finally, optical methods [234,235], single molecule
fluorescence resonance energy transfer [236], 15N relaxation dispersion [237], studies
associated with protein folding [238,239] and 15N spin relaxation [20,46,47,240–242] have
been used.

From the NMR point-of-view, ligand-free AKeco prevails in solution as a conformational
ensemble inter-converting rapidly on the chemical shift time scale [241]. This is consistent
with the energy landscape of ligand-free AKeco shown by the dotted barrier-less curve in Fig.
5. According to this picture, conformational interconversion should be detected with spin
relaxation methods provided its rate is faster than the global tumbling.

Experimental 15N T1, T2 and 15N–{1H} NOE data acquired at 14.1 and 18.8T and 303K [46]
are shown in Fig. 6. It can be seen that the experimental values of the 15N–{1H} NOE are
significantly lower within the AMPbd and LID domains as compared to the CORE domain.
This is clear indication that AMPbd and LID, but not CORE, are engaged in ns local motions
[13]. We focus below on the study of these motions with NMR spin relaxation, which we have
pursued for several years [46–50,241].
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5.1.2. MF analysis—In our first attempt, we used the model-free method [11] to analyze the
experimental data acquired at 14.1T, 303K [241]. The traditional 15N R2/R1-based (R1 ≡ 1/
T1, R2 ≡ 1/T2) analysis [202,203] for determining the global diffusion tensor yielded

 and RC (eff) = 15.05 ± 0.5 ns. As expected based on the large experimental 15N–
{1H} NOE values, the N–H bonds of the CORE domain could be analyzed with the MF spectral
density of Ref. [11], which is usually used to analyze “rigid” N-H bonds. The latter are typically
associated with large S2 values and small τe values. Based on the 15N–{1H} NOE pattern shown
in Fig. 6, and previous results obtained for flexible loops in proteins [6,8], we expected the N–
H bonds of the AMPbd and LID domains to be amenable to analysis with the EMF spectral
density of Ref. [13], which is usually used to analyze “flexible” N-H bond. The latter are
typically associated with smaller S2 and Ss

2 values, and τs values of several ns.

The expectation concerning the “flexible” N-H bond was not borne out, as shown by the empty
circles in Fig. 7. The squared order parameters S2, obtained mostly with the MF formula, are
high throughout the protein backbone; they do not discriminate between AMPbd/LID and
CORE. In a few cases, the EMF formula yielded τs mostly below 1 ns, not necessarily associated
with N–H bonds located within the AMPbd and LID domains. A relatively small number of
conformational exchange terms, Rex, was also obtained.

Similar results were obtained for the local motional parameters using combined 14.1 and 18.8T
data and taking the global diffusion to be isotropic [46,47]. In this case additional
conformational exchange terms, Rex, were obtained. N-H bond dynamics of AKeco and a
thermophylic variant of this enzyme were studied recently with the MF method [240]. The
overall picture obtained for the local motion is very similar to the picture obtained by us

[241]. Instead of  and quite a few Rex contributions determined by [241], the

authors of Ref. [240] determined  with very few Rex contributions. This scenario
is similar to the one described earlier for DHFR [90]. Namely, unaccounted for rhombicity of
the local ordering can be absorbed by artificial RC axiality, and/or artificial Rex terms.

Let us consider the global diffusion tensor from a physical point-of-view. In the absence of
rigorous methods for determining RC in the presence of slow internal motions of large chain
segments, taking it to be on average isotropic appears to be a good approximation. Evidence
that this is a better approximation than taking the solution structure the same as the crystal
structure [240] is given in Ref. [46].

That RC axiality, as well as Rex terms, can absorb unaccounted for rhombicity of the local
potential has been shown not only for DHFR [90], but also for the rigid parts of AKeco and
RNase [48]. For the mobile domains of AKeco an additional important factor enters the scene.
The experimental 15N–{1H} NOE profiles shown in Fig. 6c indicate than the AMPbd and LID
domains experience ns internal motion. MF does not even single out the domains AMPbd/LID
(Fig. 7) because it does not account for mode-coupling, implied by ns internal motions, in
addition to not accounting for potential rhombicity. The various MF-based analyses of AKeco
differ by these important factors having been absorbed by RC axiality [240], Rex contributions
[46,47], or both [241]. The results of these studies differ because differently filtered 15N R2/
R1 data sets were used to determine RC. When RC tensors that are nearly isotropic are analyzed
as if they were significantly axial, the analysis is very sensitive to the filtering of the 15N R2/
R1 data [50,90].

With large intertwined chain segments not treated properly (note that common globular
proteins have a small number of relatively short flexible loops), severe force-fitting occurs
within AMPbd and LID. For isotropic (axial) RC the statistics are good but the S2 values are
too high, the τs value are too small, and an artificial conformational exchange contribution
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[241] (apparent global diffusion axiality [240]) is obtained. We considered these results
unacceptable. To improve the analysis we developed SRLS [19]. The analysis of the
experimental data of Fig. 6 with SRLS is discussed in Sections 5.1.3 and 5.1.4.

In contrast to our approach, the authors of Ref. [240] accepted the MF analysis. We show in
Fig. 8 their experimental data along with their S2 values. Both the experimental 15N–{1H}
NOE profiles (Fig. 8a) and the calculated S2 profile (Fig. 8b) are very similar to our
corresponding data (relevant parts of Figs. 6 and 7). Literal interpretation of the force-fitted
S2 profile led to the conclusion that AKeco does not experience domain motion on the ns time
scale [240]. Somewhat lower than average S2 values at some of the hinges of the crystal
structure [212] were taken to represent ps fluctuations which facilitate catalysis-controlling
ms domain motion in the system where AKeco is Mg2+/nucleotide-saturated and substrate–
saturated [237].

The free-energy profile of coexisting AKeco and AKeco*AP5A (which is a transition state
mimic [213,214]) is shown by the solid curve in Fig. 5. It comprises a 12.5 kcal/mol barrier
consistent with ms domain motion detected with 15N relaxation dispersion from Mg2+/
nucleotide–saturated and substrate–saturated AKeco [237], where both AKeco and the
transition state co-exist. The free-energy profile of ligand-free AKeco is shown by the dashed
curve in Fig. 5. It consists of a barrier-less curve consistent with ns domain motion detected
with SRLS-based 15N spin relaxation of ligand-free AKeco [46,47].

5.1.3. SRLS analysis using axial potentials—The fitting scheme for SRLS developed
in Ref. [19], based on pre-calculated 2D grids of spectral densities, features (for practical

reasons) axial local potentials and assumes that . By applying it to the data shown in

Fig. 6 we obtained the  and τ⊥ values shown in Fig. 7 (filled circles) [46]. The
corresponding MF parameters obtained with the program DYNAMICS [97] are also shown
(empty circles). The τ⊥ values are on average 8 times larger than the corresponding τs values;

τ|| SRLS (not shown) is on average 4 times larger than τf MF. The average value of  is 0.3
whereas the average value of Ss

2 is 0.97. The local geometry is given by 10° < βMD < 20°, i.e.,
0.9 > [P2(cosβMD)]2 > 0.76, which corresponds to 0.9 > Sf

2 > 0.85 (Sf
2 → [P2(cosβMD)]2).

Clearly, the SRLS and MF results differ substantially.

SRLS detected ns τ⊥ values for all the N–H bonds within AMPbd and LID. The average value
is <τ⊥> = 8.2 ± 1.3 ns, to be compared with τm = 15.1 ± 0.5 ns. Practically all the N–H bonds
within CORE move locally with correlation times below 130 ps, in agreement with the large
values of the 15N–{1H} NOE shown in Fig. 6. It may be concluded (see Ref. [46] for details)
that the ns correlation time τ⊥ represents domain motion. With mode-coupling accounted for,
the analysis bears out the information imprinted in the experimental 15N–{1H} NOE profile
(Figs. 6 and 7).

However, several features of the SRLS results are problematic from a physical point of view.

 values between 0.2 and 0.45, and a local ordering/local diffusion axis tilted at 10 – 20°

from the N–H bond, were obtained for AMPbd and LID. The  values are unduly low,
representing a broad distribution of N–H bond vector orientations, unlikely to prevail in tightly
packed protein cores. An axis tilted at 10 – 20° from the N–H bond does not correspond to a
structural element that might serve as main local ordering/local diffusion axis. Clearly
important effects are not accounted for. We proceeded by further improving the analysis as
follows.
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5.1.4. SRLS analysis using rhombic potentials—Semi-quantitative analysis showed
that rhombic potentials prevail at N–H sites in proteins and affect the analysis significantly
[48]. To allow for rhombic potentials we developed a fitting scheme for SRLS where the

spectral densities are calculated on the fly. The restriction that  was also removed
[20]. In applying this fitting scheme to the experimental data shown in Fig. 6 we varied the
potential coefficients , the angle βMD, the time scale separation RC = τ⊥/τm, and the local
diffusion anisotropy, N = τ||/τ⊥. This parameter combination is formally analogous to the
parameter combination features by the Extended Model Free formula, except for the extra
parameter, .

In Table 6 we show the results obtained for residues G46 and K47 of the AMPbd domain. The
components of the Cartesian ordering tensor, Sxx, Syy and Szz, calculated from the potential
coefficients  and , are also shown. Let us analyze these parameters in terms of the physical
picture they provide.

The principal values of a physical ordering tensor specify the extent to which the axes of the
coordinate frame in which the ordering tensor is diagonal orient preferentially with respect to
the local director frame, C′. As originally defined, the main ordering axis lies along the axial
dipolar frame, i.e., ZM is parallel to ZD (hence to the instantaneous N–H orientation). It can be
seen that the M frame is highly rhombic, and that XM is the main ordering axis.

This information can also be deduced from the magnitudes and signs of the potential
coefficients  and  [14]; based on details specified in Ref. [14], we determined XM as the
main ordering axis. The best-fit value of βMD is approximately 100°, while the theoretical value
of the tilt angle between  and N–H is 101.3° [65]. It may be concluded that XM lies
along , as illustrated in Fig. 9. The Sxx values are relatively high, indicating that the
ordering is high about , in agreement with the high  values.

 estimates the degree of axiality of the local diffusion tensor. Attempts to derive

activation energies from the temperature-dependences of  and  were made. They were
mostly unsuccessful. On the other hand, well-defined activation energies were obtained from

. Also, the fitting process was very tedious for N ≠ 1, and significantly more robust
for N = 1. We interpreted these results to indicate that N ≠ 1 causes overfitting and proceeded
by setting N equal to 1.

In Table 6 presents results obtained with N = 1 for the representative residue L35 of AMPbd.
Results obtained for all the residues within AMPbd and LID are reported in Ref. [50]; the
average value of τm/τ is 2.5. The absolute values of the parameters differ for the N = 1 and N
≠ 1 scenarios. However, the overall picture is similar. Thus, high and moderately rhombic
ordering prevails about , and the domains move on the ns time scale. This description
is compatible with the sensitivity of the experimental data used.

The asymmetry of the local ordering plays an important role in various aspects of NMR spin
relaxation in proteins. Further insight into this important property is provided by the probability
of the main ordering axis having an orientation in the infinitesimal range βCM ± ΔβCM and
γCM ± ΔγCM for any αCM (since the C′ frame is uniaxial). It is conveniently given by a relative
(or unnoormalized) probability as Prel = exp(−u)sinβCMΔβCMΔγCM [243], plotted as a function
of the spherical coordinates (βCM,γCM). Note u is the actual potential divided by kBT, rendering
u dimensionless.
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The average rhombic local N–H potential within AMPbd and LID at 302 K is
.

This potential is depicted in Fig. 10c as a function of the coordinates βCM and γCM in units of
radians. Its rhombic symmetry is borne out by the significant difference between the extreme
values along the γCM coordinate. In Fig. 11c we show a representation of the function
Prel(βCM,γCM), by plotting ZC = R cosβCM vs XC = R sin βCM cos γCM, YC = R sin βCM sin
γCM, where R = exp(−u) sin βCM. The figure axes have been scaled as indicated by the attached
labels to make possible the illustration of this highly peaked drawing (consistent axes scaling
in Fig. 11 enables comparison among its various drawings). Fig. 11c exhibits peaks along
XC, in accordance with XM orienting preferentially perpendicular to ZC (both exp(−u) and the
solid angle (sinβCM ΔβCM ΔγCM) are large for this type of ordering).

We show in Fig. 10a the average potential, u = −4.74×(1.5cos2βCM − 0.5), obtained with SRLS
for AMPbd and LID at 302K using axial potentials ( ). This potential is weak, as shown
by its shape, given by a shallow well. The corresponding Prel function is shown in Fig. 11a.
While the ratio between the scaling of the XC axis and the scaling of the YC and ZC axes is 10
in Fig. 11c, the ratio between the scaling of the ZC axis and the scaling of the XC and YC axes
is 2 in Fig. 11a. It can be seen that the axial potential is associated with a broad distribution of
instantaneous N–H orientations about the equilibrium N–H orientation whereas the rhombic
potential is associated with a narrow distribution of instantaneous N–H orientations about

, which is approximately perpendicular to the equilibrium N–H orientation. The solid
angle sinβCM ΔβCM is small for βCM values close to zero. This creates the void in the middle
of the Prel function shown in Fig. 11a. Obviously, the rhombic scenario (Figs. 10c and 11c) is
very different from the axial scenario (Figs. 10a and 11a). Detailed information on data fitting
based on rhombic potentials appears in Ref. [50].

If the labels of the M frame axes are permuted twice counterclockwise (upon each permutation
the potential coefficients change according to the relations  and

 (see Ref. [243]) to render XM the main ordering axis, one obtains
a potential with an axial coefficient of , and a rhombic coefficient of , shown in
Fig. 10d. The associated Prel function is shown in Fig. 11d; the latter illustrates relatively
narrow slightly rhombic distribution of instantaneous N–H orientations about .
Obviously, the physical scenario underlying Figs. 10d and 11d is the same as the physical
scenario underlying Figs. 10c and 11c, only the geometric perspective is different.

The average S2 MF value obtained in Ref. [240] for AKeco at 20 °C is 0.88 (Fig. 3a of Ref.
[240]). This corresponds to  and , yielding the potential shown in Fig. 10b. This
is a strong axial potential along N–H. The associated Prel function is shown in Fig. 11b. Limited
excursion from ZC, as shown by the small amplitudes along XC and YC, are illustrated. This
N–H distribution is inconsistent with the dashed curve in Fig. 5.

5.2. Ribonuclease H: loop dynamics
Ribonuclease H (RNase H) is a single-domain enzyme comprising 155 residues. It features the
flexible loop αD/β5. 15N spin relaxation data have been analyzed previously with MF [96,
244,245] and by us with SRLS [20,48]. Similar to AKeco, it was necessary to allow for rhombic
symmetry of the local potentials to obtain physically meaningful results. The main difference
between the flexible loop of RNase H and the mobile domains of AKeco is the magnitude of
the time scale separation. We obtained τ/τm = 0.23 for residue H124 pertaining to the loop
αD/β5 of RNase H as compared to τ/τm ~ 0.5 for N–H bonds within the mobile domains of
AKeco. Further details appear in Ref. [20].
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5.3. Xenopus Ca2+-calmodulin: SRLS versus MF analyses
Ca2+–ligated calmodulin (Ca2+–CaM) is made of an N-terminal domain and a C–terminal
domain connected by a helical linker, which is flexible in the middle. In the crystal Ca2+–CaM
adopts an elongated dumb-bell structure with the N–, and C–terminal regions of the helical
linker parallel to one another (Fig. 12). Since the middle linker region is flexible, the N–, and
C–terminal domains may adopt various relative orientations in solution. The helical target
peptide, essential for Ca2+–CaM recognition and regulation, binds in-between the domains.
Hence molecular shape, linker flexibility, and domain mobility are related to function, and
deriving a reliable dynamic picture is important.

15N spin relaxation analyzed with MF was used to study backbone dynamics of Ca2+–CaM.
The first study of Ca2+–saturated Drosophila CaM used data acquired at 11.7 T, 35 °C [246].
These data have been analyzed with the MF spectral density of Ref. [11], which considers the
global diffusion tensor to be isotropic. This assumption is consistent with a nearly
uniform 15N T1/T2 profile, corroborated by comparing N–H orientations in the solution and
crystal structures. Isotropic correlation times on the order of 6 – 8 ns were assigned to the N–,
and C–terminal domains. Except for the flexible residues D78 –S81 of the central linker and
two loops, the Ca2+–CaM backbone was found to be “rigid”, with S2 ~ 0.85 and τe < 100 ps.

At low magnetic fields, the local motion makes a relatively small contribution to the MF
formula; hence, some features might have been missed in view of low sensitivity. If the MF
spectral density is appropriate, the addition of higher field data will increase accuracy and
precision. If it is oversimplified, then inconsistencies will arise. The Ca2+–free Xenopus
calmodulin study of Tjandra et al. [247] identified such inconsistencies when 11.7T and 14.1T
data were analyzed in concert. They were reconciled by using the reduced EMF formula [13].
With Sf

2 fixed at 0.85, τf set equal to zero, and uniform parameters within the N–, and C–
terminal domains, the fitting yielded τm = 12 ns, Ss

2 ~ 0.7 and τs ~ 3 ns. Unlike previously
reported [246], the local motions appear to be slow in Ca2+–CaM. The parameters Ss

2 and τs
were interpreted to represent wobble-in-a-cone in the presence of a square-well potential. The
half-cone angle was determined to be approximately 30° (this angle can be calculated from
Ss

2, τs and an estimated value of the wobbling rate, Dw [11]).

15N spin relaxation data of Ca2+-saturated Xenopus CaM were acquired by Baber et al. [248]
at 8.5, 14.1 and 18.8T, 308K. The model used was similar to the model of Tjandra et al.
[247]. New aspects included removal of the restrictions that τf = 0 and Sf

2 = 0.85, and the
determination of an axial global diffusion tensor, RC. The analysis of the local motion has been
enhanced in this study; this may be ascribed to the contribution of the 18.8T data. However,
the global diffusion tensor is field-independent. Therefore, adding data acquired at additional
magnetic fields is not expected to change significantly the analysis of the RC tensor. However,
as shown in the next section, a substantially axial RC tensor was determined using the combined
data set.

Chang et al. [249] acquired additional experimental data. The ultimate data set included 15N
T1, T2 and {15N–1H) NOEs at 8.5, 14.1 and 18.8T, at 294, 300, 308 and 316K. These data were

combined and analyzed using the EMF formula, assuming that (1) Sf
2, τf and  are

the same for all the residues within a given domain and are independent of temperature, and

(2) the temperature dependence of  is given by the Stokes-
Einstein formula. With this analysis a sudden decrease (increase) in Ss

2 (τs) was observed upon
increasing the temperature from 308 to 316K. This was interpreted as ‘melting’ of residues
R74 – K77 of the central linker (which are actually not present in the experimental data), which
is considered important from a biological point of view. We focus below on the process that
led to these conclusions.
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5.3.1. Global diffusion—The global diffusion tensor, RC, was determined from a combined
multi-field multi-temperature 15N T1/T2 data set, which is supposed to be free of local motional
effects. Since the analysis of the local motion was based on using the EMF formula that detected
slow local motions throughout the protein, this assumption cannot be valid.

Based on the coordinates of the crystal structure [250], the analysis has yielded 
and a tilt angle of Θ = 67° (69°) between ZC (the principal axis of RC) and ZI (the principal
value of the inertia tensor of the crystal structure), for the C-terminal (N-terminal) domain (Fig.

12). The extent of axiality, , is the same in the crystal and in solution. The effective
correlation time, 1/(6τm(app)), was found to be 10.1 ns at 308K.

Since the 15N T1/T2 data contain local motional effects, one may suspect force-fitting. This is
supported by the experimental 15N T1/T2 data (filtered according to traditional criteria [202,
203]) shown in Fig. 13. The width of the distribution in 15N T1/T2 divided by the average error
is an empirical estimate of the extent to which the global diffusion tensor is axially symmetric.
The value of this parameter is 6.0, 8.5 and 13.0 for 8.5, 14.1 and 18.8T, respectively, at 294K,
and 4.0, 9.0 and 14.0 for 8.5, 14.1 and 18.8T, respectively, at 316K. It can be seen that the
shape of this distribution is temperature-dependent although RC was assumed to be
temperature-independent (the temperature-dependent τm values do not affect the shape of
the 15N T1/T2 profile). It is also strongly field-dependent, although it definitely should not
change with the external field.

If the combined multi-field multi-temperature analysis described above is appropriate, it should
agree with single-field single-temperature analyses. Using the filtered 15N T1/T2 data shown
in Fig. 13 we determined (using the program QUADRIC [204]) the axial global diffusion
tensor, RC, for each magnetic field and temperature separately, using a simplified method

appropriate for  developed in Ref. [166]. This method provides local diffusion
constants, γCM RC (θi) (θi is the angle between the bond vector (N–H)i and ZC). If RC is axially
symmetric RC (θi) will depend linearly on P2(cosθi) [204,208,209].

We show in Fig. 14RC (θi) as a function of P2(cosθi) for 8.5, 14.1 and 18.8T, 294 and 316K.
The expected linear dependence is not borne out. The largest distribution of points is obtained
for 8.5T, 316K, although in this case χ2 assumes the smallest value (χ2 = 2). This is not expected
for models matching the data to which they are applied, but can occur when force-fitting is in
effect. All four parameters defining the global diffusion tensor are field-dependent. In all the
cases except for 8.5T, 316K, the angle Θ of the individual analyses is much closer to 0° than
to 67° or 69°, obtained with the combined multi-field multi-temperature analysis.

It can be concluded that the axiality of RC absorbed unaccounted for factors. Based on
experience acquired with AKeco, which also comprises internally mobile domains, these
factors are mode-coupling and the anisotropy of the local potential, which are not accounted
for in the EMF formula. The EMF spectral density is based on C(t) = CC (t)×CL (t). In this
section we examined CC (t); in the next section we focus on CL (t).

5.3.2. Local motion: MF analysis—Figure 15 shows the Ss
2 and τs temperature-dependent

profiles obtained by Chang et al. [249]. The squared generalized order parameter Ss
2 exhibits

very limited temperature dependence between 294 and 308K and decreases abruptly upon
increasing the temperature from 308K to 316K. The slow local motional correlation time, τs,
is temperature-independent between 294 and 308K and increases abruptly upon increasing the
temperature from 308K to 316K. Within the scope of the cone model τs depends analytically
on Ss

2 and Dw. The respective expression is used to show that the abrupt increase in τs is due
to the abrupt decrease in Ss

2, while Dw increases with temperature, as expected. However,
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inspection of the absolute values of Dw shows that 1/(6Dw) is equal at 316K to 8.3 (6.8) ns for
the N-terminal (C-terminal) domain, while the apparent global motional correlation time is
6.88 ns. Within the scope of spin relaxation, local motions may not be slower than the global
motion.

The discontinuities in Ss
2 and τs between 308 and 316K in Fig. 15 are likely to result from

the 15N T2 values changing significantly between 308K and 316K at 8.5T (Fig. 16), while all
the other experimental parameters change monotonically [20]. This implies a different
parameterizing scenario at 316K, evidenced by τm being outstandingly small and the angle
Θ outstandingly large for 8.5T, 316K (Fig. 14).

The local motional parameters obtained with MF are likely to be also force-fitted. To test this
assumption we analyzed the 15N spin relaxation data from Ca2+–CaM with the SRLS model.

5.3.3. Local motion: SRLS analysis—Separate analyses were carried out for each
temperature and magnetic field using our fitting scheme for SRLS based on axial potentials
[19]. In view of the large-amplitude motions executed by the N-terminal and C-terminal
domains we assumed that RC is (similar to the global diffusion tensor of AKeco) on average
isotropic. This is consistent with the 15N relaxation analyses of Ca2+–CaM in Ref. [246],
AKeco in Ref. [46], and the ribonuclease binase in Ref. [251].

The 15N relaxation data from Ref. [249] were analyzed in SRLS with the parameter
combination including , βMD and τ⊥/τm. This corresponds formally to “model 5” MF [96,

97]. The SRLS parameter  (obtained from ) and τ⊥ are shown in Fig. 17 as a function
of temperature for magnetic fields of 8.5, 14.1 and 18.8T. The correlation time τ⊥ decreases
monotonically from approximately 6 ns at 294K to roughly 3 ns at 316K. The value of τ⊥ is

on average twice larger than τs, and  SRLS is approximately half of Ss
2 MF; unlike Ss

2,
it decreases monotonically with increasing temperature. No sudden change is observed

between 308 and 316K in either  or τ⊥. The fact that  and τ⊥ are field-dependent,

and the unduly small value of , are ascribed to the utilization of axial potentials. These
inappropriate features are expected to be eliminated in future work, where rhombic potentials
will be used.

5.3.4. The MF picture—In the crystal Ca2+–CaM prevails as an elongated dumb-bell shaped
molecule comprising an N-terminal domain and a C-terminal domain. Its shape is preserved
in solution but the molecular symmetry axes are tilted with respect to one another by 67° –
69°.

In solution, the Ca2+–CaM domains experience ns wobbling motions in the temperature range
of 294 – 308 K. These motions occur within cones with constant half-cone angles of 22.5° for
the N-terminal domain and 27° for the C-terminal (calculated from Ss

2, τs and Dw [11]). The
wobbling rates, Dw, are very close to, and in some cases slower than, the rate for global
diffusion. Nevertheless, the motions are assumed to be decoupled.

Between 308 and 316K the half-cone angles change abruptly from 22.5° to 27° for the N-
terminal domain and from 27° to 37° for the C-terminal domain. This reflects ‘melting’ of the
residues R74 – K77. The process detected has biological implications for target peptide binding
by prolonging the flexible part of the central linker by 50%.

5.3.5. The SRLS picture—Ca2+–CaM comprised two domains connected through a central
linker flexible in the middle. In the crystal, the central linker is extended rendering the overall
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shape cylindrical. In solution, the domains move with respect to one another, rendering the
molecular shape on average spherical. This agrees with a nearly constant experimental 15N
T1/T2 profile at 11.7T. AKeco and ribonuclease binase, which experience extensive internal
mobility as well, exhibit similar scenarios.

The perpendicular component for local N–H motion, τ⊥. is 6.2 – 2.2 times faster than the
correlation time for global tumbling and decreases monotonically with increasing temperature.
Based on its geometric context the correlation time, τ⊥, may be associated with domain motion.
Based on its absolute value of 6 ≥ τ⊥ ≥3 ns in the temperature range of 294 – 316K, while 11.6
≥ τm ≥6.9 ns in this temperature range, τ⊥ must be coupled dynamically to τm; SRLS accounts
for this factor.

The squared axial order parameter, , is 0.2 – 0.35 in the 294 – 316 K temperature range,

and  decreases monotonically with increasing temperature. The form of the local potential
(hence of the local ordering tensor) is oversimplified because axial symmetry was imposed.
An improved analysis allowing for rhombic local potentials is expected to yield the realistic
picture of high local ordering about the  axis with different extent of rhombicity at
the various N–H sites [20,50]. Despite the simplified potentials used, the SRLS analysis
of 15N spin relaxation from Ca2+–CaM is significantly better than the MF analysis.

6. Domain motion
6.1. Mode coupling

We presented above SRLS analysis of domain motion in AKeco and in Ca2+–CaM. Let us
consider in general slow internal motions in proteins that occur on the same (ns) time scale as
the global motion. The body engaged in global motion exerts spatial restrictions on the body
engaged in the somewhat faster internal motion. Consequently, their rotational degrees or
freedom become statistically inter-dependent. We call this “mode- coupling”.

In SRLS “mode-coupling” is brought into effect by a local potential [16]. In its absence, the
protein and the probe would be freely reorienting rotators. Each (axial) rotator is associated
with three degrees of freedom or modes, with decay constants given by (τm,K) −1 for the protein

and (τK)−1 for the probe, where K = 0,1,2 . The solution of the two-
body SRLS Smoluchowski equation leads to an eigenvalue spectrum, (τi)

−1, i = 1,…∞. Each
eigenvalue is associated with a weighting factor or “eigenmode”, which represents the relative
contribution of the corresponding eigenfunction to the time correlation function. The
eigenmodes are determined by the parameter set considered, e.g., RC/RL = τ/τm (in full notation
τ0/τm,0) and the coefficients of the coupling potential,  and .

Each degree of freedom is represented by a set of basis vectors that span the (infinite
dimensional) vector space. The complete set of degrees of freedom is represented in the product
space of these basis vectors. The eigenmodes are linear combinations of the vectors in the
product space representation. The basic degrees of freedom, or modes, are thereby “mixed’ by
the potential giving rise to coupled modes, i.e., “eigenmodes” [16]. The tensors RC and RL

obtained by data fitting may represent more complex global and local rotators, and not just
simple rotators [45].

A Smoluchowski equation of the form of Eq. (49), where the SRLS diffusion operator Γ̂ is
written in two equivalent forms given by Eq. (50) or Eq. (51), is solved. In Eq. (50) the
orientation of each body is referred to the lab (inertial) frame, in the presence of a potential
coupling them, which depends on their relative orientation. Simple products of basis functions
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of the two rotators are utilized to provide a matrix representation of the operator Γ̂. This is a
convenient basis set when the potential is relatively small, i.e., the coupling is weak. In Eq.
(51) only the global motion of the protein is referred to the lab frame, whereas the local motion
of the probe is referred to the local director frame fixed in the protein. The product basis
functions for the overall motion and the relative internal motion are used to provide the matrix
representation of the operator Γ̂. This is a more natural choice when the coupling potential is
large. Since these two approaches are mathematically equivalent, one may use either choice.
In our past work we have utilized Eq. (50) [19,40,46–50] whereas in recent work we utilized
Eq. (51) [20,34,35,90].

According to the Eq. (50) perspective on mixed modes, as a coupling potential is added, the
eigenmodes of Γ̂ become linear combinations of the product functions of the two free rotors.
This is a point of view where there are two types of “mixed-modes”. The first type results from
the coupling between the two rotors so that the motion of the internal rotor becomes more that
of its motion relative to the protein. This is a feature that exists even when there is time-scale
separation, i.e., RC/RL ≪ 1. The second type of “mixed modes” arises when there is no longer
a significant time-scale separation. In that case the diffusive reorientation of the internal rotor
becomes a mixture of the global and local motions.

When Eq. (51) and its convenient basis set are used, the intuitive picture changes somewhat,
but the final analyses are equivalent. In simple mathematical terms this means that the
eigenvalues of Γ ̂ are unchanged, but the eigenmodes are represented in (or referred to) different
basis sets. For very high axial ordering and RC/RL ≪ 1 there are, within a good approximation,
two eigenmodes that represent the overall motion and the relative internal motion. The
eigenvalues are 1/τm and , respectively, and the eigenfunctions are given in Refs. [14,
31]. As the coupling potential is reduced (but RC/RL ≪ 1), the time correlation functions for
the relative motion (i.e., for the ) become more complex, involving several
eigenmodes of this motion. As RC/RL increases, there will be “mixed modes” of the two coupled
dynamic processes.

The notion of “mode-coupling” has its origin in theoretical approaches for treating deviations
from Brownian motion of Debye particles in solution. A summary of early theories addressing
this problem appears in the Introduction of Ref. [16]. Thus, coupling between the degrees of
freedom of a particle engaged in restricted motion, and the degrees of freedom of the entity
that imposes the restrictions, is a general concept.

The “diffusive mode-coupling” theories [121,122] do not belong to the category discussed in
the previous paragraph. These are single-body theories that treat the effect of fast local bond-
vector fluctuations on the eigenfunctions of the global diffusion tensor, in the context of a
numerical solution of the diffusion equation. Here “mode-coupling” is conceived as a change
in the global diffusion tensor by fast local motions.

It was pointed out in an earlier MD study that macromolecular tumbling and side-chain motions
are “coupled” when the internal motions change significantly the dimensions or size of the
protein [252]. A similar comment appears in Ref. [26] in the context of NMR spin relaxation
in proteins. This perception of “mode-coupling” is in the spirit of “diffusive mode-coupling”;
it differs in essence from the conceptualization of “mode-coupling” in liquid dynamics theories,
including SRLS, which was outlined above. In practice, it implies a change in τm on the part
of τe. In this case τm ≫ τe is no longer valid; neither are C(t) = CC (t)× CL (t) and 1/τe

| = 1/
τm + 1/τe ~ 1/τe. This is not always realized – for example, see Ref. [120]. Similarly the
parameters τc2 and τc3 in the relations 1/τc2 = 1/τc1 + 1/τc and 1/τc3 = 1/τc1 + 4/τc in Woessner’s
model have been considered in some cases to represent a change in the shape of the protein,
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τc1, by the local motion, τc. This is inconsistent with τc1 ≫ τc, which underlies Woessner’s
model.

We found with SRLS calculations that as long as τ ≤ τm/2 the value of τm does not change as
compared to its input value, i.e., the “diffusive-mode-coupling” effect is small.

“Non-separability” between the global and local motions is invoked in Refs. [25,26]. This
geometric parameter does not represent correlation between the rotatational degrees of freedom
of the protein and the probe.

6.2. SRLS analysis: activation energies
We consider the rate for domain motion in AKeco, RL, obtained with rhombic local potentials
for the N–H bonds located within AMPbd and LID and examine its temperature-dependence
[50]. For completeness, we also examine the temperature-dependence of the potential
coefficients and related order parameters obtained with the calculations that yielded RL.
Average values of these quantities, obtained at 288, 296.5 and 302K for the AMPbd and LID
domains, are shown Table 7.

Except for  the general trend is a decrease in parameter magnitude with increasing
temperature. The non-monotonic change in  is assigned to its value being very sensitive to
changes in the local ordering in the high ordering regime – see Fig. 3. Since various potential
forms can lead to the same order parameter components, we consider Sxx, Syy and Szz as the
principal descriptors of the local spatial restrictions. It can be seen that the order parameters
are very similar within AMPbd and LID, and their temperature-dependence is small.

The local motional correlation times within AMPbd and LID, τ = 1/(6 RL), are shown in Fig.
18d-f. As expected, τ decreases with increasing temperature. This parameter discriminates
among secondary structure elements and loops. The correlation time for local motion is, on
average, larger for the helices α2 and α3 of the AMPbd domain than for the loops α2/α3 and
α3/α4 of this domain. Based on comparable τ values the “block” comprising β7, loop β7/β8,
β8 and loop β8/α7 appears to be engaged in collective motion not necessarily identical to the
motion of the entire LID domain. Fig. 18a-c show the analogous results obtained with axial
potentials. The absolute values are not the same, and the discrimination among secondary
structure elements is reduced significantly.

Activation energies, Ea, were calculated with the Arrhenius equation, RL = A exp(−Ea/RT)
(Table 8). They are nearly twice as large as their counterparts obtained with axial potentials.
This indicates that rhombic potentials are required to obtain accurate activation energies.
Allowing for potential asymmetry led to activation energies for domain motion of 63.8 ± 7.0
and 53.0 ± 9.1 kJ/mol for AMPbd and LID, respectively (Table 8). These values are
approximately 1.5 times smaller than typical activation energies of reactions catalyzed by
multidomain enzymes, which are on the order of 80 – 90 kJ/mol [253,254]. The activation
energies obtained for several elements of secondary structure within AMPbd (helix α3) and
LID (strands β5, β6 and the β7/β8 block) are close to 80 – 90 kJ/mol.

Note that deriving activation energies for internal motion in proteins from 15N spin relaxation
is not trivial. To our knowledge, there are very few, if any, reports in the literature on this
important physical quantity because in many cases the temperature-dependence of the MF
parameter τe is qualitatively inconsistent with Arhhenius’s equation [200,255].

6.3. MF analysis
The MF treatment of domain motion in Ca2+–CaM has been outlined in Appendix E.
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In Refs. [256] and [257] monomer motion in di-ubiquitin is modeled as two-site exchange
which is decoupled from the global motion. A mode-decoupling-type time correlation function
is used. Data fitting yielded exchange rates that are comparable to 1/(6τm) at pH 6.8 and on
average 3.5 slower than 1/(6τm) at pH 4.5. Within the scope of spin relaxation, local motions
may not be slower than the global motion.

In reference [258] a model that involves jumps between discrete conformers with different
overall diffusion tensors, and a master (rate) equation to describe the transitions between these
conformers, is presented. For two conformers the time correlation function is formally
analogous to Eq. (2), with the parameters keff, Deff and S2 formally analogous to τe, 1/(6τm)
and S2, respectively. The quantities keff and Deff are given by algebraic expressions of the
physical exchange rates, k1 and k2, from site 1 to site 2 and vice-versa, and the overall diffusion
constants of the two sites, D1 and D2. The quantity S2 depends in addition on P2(n1 · n2), where
n1 and n2 denote the orientations of the exchanging vectors with respect to similarly oriented
global diffusion axes.

This represents a more intricate change in protein shape on the part of internal motions. The
time correlation function is of the C(t) = CC (t)× CL (t) type, i.e., the global and internal motions
are statistically independent. It is pointed out that the model developed in Refs. [256,257] is a
limiting case of this model.

In Ref. [259] stochastic simulations were performed on a dual vector system “to drive
hydrodynamics and domain coupling”. Two vectors, A and B, with common origin, reorient
with respect to the vector A–B. The motions of A and B are correlated via a potential, u, which
is either a squared-well potential, kcosθ, −kcosθ2 or kcosθ3, where θ is the inter-vector angle.
The equilibrium orientation of θ is 180°, and its minimum allowed value is 90°; this results in
wobbling motions of A and B within opposite cones with common tip.

A Langevin equation is solved for this system. An order parameter S is defined in terms of the
potential u. The correlation time for the correlated motions of A and B (the motion of A–B) is
denoted τs (τm). When S = 1 then the vectors A and B reorient with correlation time τ0 = 10
ns, and the vector A–B reorients with correlation time 2τ0. The time scale separation, τs/τm, is
restrained to lie within the range of 0.25 to 1.

The Langevin trajectory is reproduced by one exponent when S → 1 and by two exponents
otherwise within the scope of the reduced EMF formula. The order parameter is given by S ≡
<P2cos(π/2 − θ/2)>. This model has CL (t) given by wobble-in-a-cone in the presence of the
potential u; C(t) is given by exp(−t/τm)× CL (t). The vector A–B is the local director, C′, fixed
in the protein with respect to which the local ordering frame M ≡ A and M ≡ B (by cone
duplication) are moving. The rotational degrees of freedom of the probe, ΩC′M, defining CL

(t), are independent of the rotational degrees of freedom of the protein, ΩLC, defining CC (t) =
exp(−t/τm).

6.4. RNA elongation
When the local and global motions occur at comparable rates, one can no longer distinguish
between them. Al-Hashimi and co-workers [260,261] developed a strategy whereby the global
motion of an internally mobile RNA molecule is slowed down selectively by elongating it with
an NMR invisible segment. The implied increase in time scale separation renders detectable
previously undetected slow internal motions.

This method has been applied to a particular RNA fragment [260]. NMR peak intensities
and 13C R2/R1 ratios measured for this molecule were uniform. Upon elongation they became
non-uniform, singling out segments expected to experience slow internal motions.
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The qualitative evidence is unambiguous. However, the quantitative analysis, which is based
on 15N imino [260] and 13C base and sugar [261] relaxation data analyzed with the EMF
formula, can be improved significantly. The deficiencies of the EMF formula have been pointed
out above. Furthermore, merely increasing the time scale separation between the global and
local motions does not render MF-type treatments valid. One must also account for the effect
of the local potential on the eigenfunctions of the uncoupled diffusion operators, the rhombicity
of the local potential, and realistic local geometry.

An effort was made in Ref. [261] to account for the asymmetry of the nucleobase 13C CSA
interaction, and the non-collinearity between the 13C CSA tensor frame and the frames of
the 13C–13C and 13C–1H dipolar tensors. To account for these aspects one has to calculate
JCC (ω) and JDC (ω). This requires the spectral density components j00 (ω), j11 (ω) and j22
(ω) for axial 13C CSA tensors and also cross terms, jKK′ (ω), for rhombic 13C CSA tensors (see
paragraphs after Eqs. (57) and (58)). MF provides only j00 (ω). Hence, it is not possible to
account adequately for these aspects of the analysis within the scope of MF.

Appendix F: Methyl dynamics by SRLS

1. The SRLS model
The probe considered in this article is 13CDH2, with the 2H nucleus being observed. Typical
experimental data sets comprise 2H T1 and T2 acquired at two magnetic fields. The only
anisotropic interaction causing spin relaxation is the quadrupolar interaction. The linewidths
are large, with 1/T2 being often quite similar at different magnetic fields. Only jKK′ (0), jKK′
(ωD) and jKK′ (2ωD) (ωD is the 2H Larmor frequency) enter the expressions for T1 and T2. The
experimentally accessible region of the jKK′ (ω) functions is limited even when data acquired
at several magnetic fields are combined, and/or rank 2 coherences are included in the
experimental data set used [35]. For N–H bonds the spectral density functions are better defined
due to the presence of the dipolar interaction with the proton which render accessible
experimentally high-frequency values of the jKK′ (ω) functions.

Methyl dynamics are intrinsically more complex than N–H bond dynamics because of the
flexibility of the side chain to which all the methyl groups except for alanine are attached.
Therefore one has to conceive of a model that is simple enough not to overfit the experimental
data, but elaborate enough to capture the dominant factors that determine methyl dynamics.

We found that the parameter combination that is necessary but still compatible with the
sensitivity of typical data sets consists of , and RC = τ/τm. A rhombic mean-field potential,
which is given by  and , accounts simply and economically for the effect of the dynamic
local structure on the manner in which the methyl group occupies the conformational space
while moving locally. In this scenario, one has only one additional free variable ( ) as
compared to Eq. (43), with the benefit of analyzing the experimental data with a physical model.

The local geometry, i.e., the relative orientation of the local ordering/local diffusion frame (M)
and the magnetic frame (Q), is treated as follows. We assume that ZM lies along the C–CH3
axis; this implies βMQ = 110.5°. Setting αMQ = 90° [90] leads to a physical picture in which
ZD is tilled at 110.5° from ZM, at 90o from XM and at 159.5° from YM. This is as close as one
can get without invoking additional parameters to the M frame being consistent with the
tetrahedral carbon geometry. In most cases we fixed ΩMQ at (90°, 110.5°, 0°); in some cases
we allowed βMQ to vary in the vicinity of 110.5° to account empirically for the complexity of
methyl dynamics.
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We present below SRLS analyses of methyl dynamics in the complex of Ca2+-calmodulin
(CaM) with a peptide smMLCKp corresponding to the calmodulin-binding domain of the
smooth muscle myosin light chain kinase (Ca2+–CaM*smMLCKp) [262], and in the B1
immunoglobulin binding domain of Peptostreptococcal protein L (in short, protein L) [24].
Sections 6.2 – 6.4 illustrate general features; Section 6.5 presents SRLS analysis of all the
experimentally accessible methyl groups of protein L.

The following comment is in order. The statistical measure used in our calculation is the
percentile value for a χ2 distribution. For two degrees of freedom χ2 has to be below 5.99, and
for one degree of freedom χ2 has to be below 3.84, for a commonly used 5% threshold [150].
In most cases our results have complied with this requirement. We also require physical
viability of the best-fit parameters. In the present case, we required the temperature dependence
of RL to be given by the Arrhenius equation. To ascertain that over-fitting is not occurring we
typically check the effect of lowering the symmetry of the various physical quantities involved.
For methyl dynamics we found that allowing the tensor RL to be axially symmetric led in many
cases to overfitting; therefore we used isotropic local diffusion. This is justified in the large
time scale separation limit.

2. Typical spectral densities
SRLS spectral densities calculated for typical rhombic potentials at methyl sites in proteins are
illustrated in Figs. 19–21[35]. Fig. 19 shows the jKK′ (ω) functions calculated using the best-
fit parameters obtained for methyl 23T of protein L using combined 2H T1, T2 and rank 2
coherence experimental data acquired at 11.7 and 14.1T, 25 °C [24], and setting βMQ = 110.5°
and γMQ = 90°3. These parameters are  and RC = 0.017.

The insert shows a compressed ω-range extending from zero to 4000 MHz. It can be seen that
the portion of the jKK′ (ω) functions sampled consists of a relatively narrow region outside of
which these functions are not defined experimentally. Note that the magnetic field range
scanned is almost as large as feasible with currently available technology. Fig. 20 shows the
jKK′ (ω) functions calculated for  and RC = 0.05, and Fig. 21 shows the jKK′
(ω) functions of Fig. 20 assembled into the measurable spectral density JQQ (ω) for βMQ =
110.5° and γMQ = 90°.

The following important point is illustrated in Figs. 20 and 21. Let us assume that the six
jKK′ (ω) simulated functions shown in Fig. 20 represent an actual scenario. Using SRLS one
can reproduce them with  and RC = 0.05. The JQQ (ω) function comprising
the jKK′ (ω) functions will also be reproduced if βMQ and γMQ are supplied. 2H T1 and T2 will
also be reproduced if the magnetic interactions are supplied.

Let us now consider analyzing this scenario with MF. The functions jKK′ (ω) cannot be
reproduced because such functions do not exist in MF. However, Eq. (43) might reproduce the
function JQQ (ω) with good statistics, obviously with different best-fit parameters, which are
perforce physically vague. Quite a few variants of Eq. (43) might also parameterize JQQ (ω) –
see, for example, Refs. [24,192]. Similarly quite a few simple functions can parameterize MD
time correlation functions (e.g., see Ref. [132,157,159]). This situation generates ambiguity
and leads to inaccurate parameters.

3. Conformational entropy
The squared order parameter, Saxis

2, has been used extensively to calculate conformational
entropy [55–57]. This calculation requires an equilibrium probability density function
(Boltzmann factor), which is obtained in MF as follows. It is assumed that Saxis

2 (obtained with
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data fitting) is an axial physical order parameter defined in terms of a local potential, u(c). The
form of this potential is guessed, and it is assumed that it depends exclusively on the rotational
degrees of freedom of the probe [55,57]. The coefficient of the potential, c, is derived based
on the axial form of Eq. (59), determining thereby the Boltzmann factor.

In SRLS the local potential, , hence the Boltzmann factor, are available at the
completion of the fitting process which determines  and . The form of  is intrinsic
to the theory (Eq. (50)). By definition this potential depends only on the rotational coordinates
of the probe relative to the protein, ΩC′M.

We calculated the conformational entropy for 45 methyl groups of Ca2+–CaM*smMLCKp.

The expression , as defined in Ref. [57], was used. The parameter
q denotes coordinates of the probe, kB is the Boltzmann constant, and p(q) is the equilibrium
probability density function.

The coefficients  and  (and local motional rates, RL) were obtained by fitting with
SRLS 2H T1 and T2 data acquired at 14.1 and 17.6T, 295K. We obtained  and 
in the range of −0.26 to −0.94 for the 45 methyl groups studied (with βMQ and γMQ set equal
to 110.5° and 90°, respectively). These data were used to calculate Sp/kB.

In Figs. 22c-e we show Sp/kB as a function of  and  for  equal to −0.26,
−0.51, −0.87 and −0.94. For comparison, we show in Fig. 22aSp/kB as a function of  with

, as in MF. In Fig. 22b we show Sp/kB as a function of the  values that correspond to
the  values shown in Fig. 22a. Since MF analyses feature 0 < Saxis < 1 [6], we show in Figs.
22dSp/kB as a function of , for the  values given above. In Figs. 22c we show Sp/
kB as a function of the  values corresponding to the  values shown in Figs. 22d, for the

 values given above.

In Fig. 22e we show Sp/kB as a function of  for the  values given above. With this
presentation (used to facilitate comparison between the axial and rhombic potential scenarios),
the variations in Sp/kB as a function of  are suppressed in Figs. 22c,d. However, they are
conspicuous in Fig. 22e, which does not have an axial counterpart.

The following picture emerges. (1) The diversity of the experimental data is interpreted in
SRLS as variations in the shape of the local potential. In MF it is interpreted as variations in
the amplitude of axial fluctuations presumably executed by the C–CH3 bond. (2) The
conformational entropy Sp/kB does not vary much throughout the protein according to SRLS;
it varies a great deal according to MF [6]. This result has significant implications for the
characterization of methyl sites in proteins in terms of conformational entropy [6]. (3) Sp/kB
from SRLS has a well defined physical meaning. No assumptions are made beyond the basic
tenets of the SRLS model. Once the coefficients  and  have been determined with fitting
of the experimental data, one can readily calculate Sp/kB,  and . Several assumptions are
made in the MF scenario and Saxis

2 is also problematic in nature.

Yang and Kay considered rhombic potentials in the context of MF [57]. A new method for
calculating conformational entropy has been developed recently; it was associated with the
generalized MF order parameter [263].
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4. Local potentials and relative probability
To gain further insight into the local ordering at methyl sites in proteins we present below local
potentials, , and associated relative probability, Prel, for typical potential shapes
obtained with SRLS analysis. The methyl groups of residues 10A and 85Iγ of Ca2+–
CaM*smMLCKp have been selected as examples. The experimental 2H T1 and T2 data
acquired at 11.6 and 17.7T, 295K [262], have been subjected to data fitting. The best-fit
parameters obtained in these calculations are , βMQ = 109° and τ/τm =
0.0054 for A10, and , βMQ = 112° and τ/τm = 0.01 for 85Iγ. The errors in
the various best-fit parameters are estimated to be on the order of 10%.

The rhombic potential prevailing at the site of methyl A10, given by  and ,
is shown in Fig. 23a; the corresponding Prel function in shown in Fig. 23b. The Cartesian tensor
components given in Table 9 indicate that Z-ordering prevails at this methyl site. The shape
of Prel in Fig. 23b corresponds to |Sxx| > |Syy|; the depression in the center is due to small solid
angles close to (βC′M,γC′M) = (0,0). The rhombicity of the potential may be estimated by

 that is equal to 0.36; this represents substantial asymmetry.

The rhombic potential prevailing at the site of methyl Iγ85, given by  and ,
is shown in Fig. 23c; the corresponding Prel function is shown in Fig. 23d. The Cartesian tensor
components given in Table 9 show that X-ordering prevails at this methyl site. The  ratio
is 0.65. This represents very high rhombicity.

The MF analysis gives values of Saxis
2 of the A10 methyl as 0.84 and the Saxis

2 value of the
Iγ85 methyl as 0.303 at 295K [262]. Thus, according to MF the C–CH3 bond of A10 is highly
ordered; this is expected. On the other hand, the C–CH3 bond of Iγ85 is involved in large-
amplitude axial fluctuations. As pointed out above, this is incompatible with the local
stereochemistry and the packing properties of protein cores.

According to SRLS the A10 and Iγ85 methyl groups, and in general all the methyl groups in
proteins, reorient in the presence of rhombic local potentials. Different methyl groups
experience different potential forms in agreement with the structural differences in their
immediate surroundings. Correlations between the SRLS potentials and the local structure will
be established in future work.

5. Protein L: application
Kay and co-workers studied 2H spin relaxation of 13CDH2 groups in protein L with MF [24].
Auto-correlated relaxation rates and relaxation rates associated with rank 2 coherences were
acquired at 9.4, 11.7, 14.1 and 18.8T, in the temperature range of 288 – 318K. We analyzed
these data, kindly provided by Prof. Lewis E. Kay, with SRLS, and compared results with the
MF analysis of Ref. [24]. Detailed information appears in Ref. [35]. Selected results are
presented below.

Table 10 shows methyl groups ordered approximately according to the Saxis
2 values obtained

using Eq. (43) [24]. Data obtained at 298K were used in these calculations; τe from Ref. [24]
was also used. The  values were calculated assuming that Saxis represents . The SRLS
results shown in Table 10 were obtained from the same experimental data by fixing βMQ at
110.5° and γMQ = 90°, and allowing  and RC to vary in the data fitting process [35].
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The penultimate and ultimate columns on the right show  and R(τ) =
τ (SRLS)/τe(MF), respectively. It can be seen that these ratios are larger than unity and in many
cases vary considerably within a given group of similar Saxis

2 values.

For relatively small values of Saxis
2, which are the most useful ones in MF analyses, Saxis

2

taken as  is approximately linear in  (Fig. 3). Therefore the qualitative disagreement
between the trends exhibited by  and  implies qualitative disagreement
between the trends exhibited by  and Saxis

2.

Since  is a physical parameter whereas Saxis
2 is a composite parameter with a vague

physical meaning, caution is to be exerted in MF analyses in interpreting variations in Saxis
2

in terms of biological phenomena. A new term called, “polar dynamics”, based on relative
Saxis

2 values, was set forth recently [264]. Small differences in Saxis
2 and τe have been used to

elucidate communication pathways in proteins and detect manifestations of allostery [265–
267]. Such inferences should be based on physical parameters.

The parameter τe is problematic not only because of its mathematical definition and the
associated unspecified validity ranges, but also because of its multiple inconsistent roles in Eq.
(43). Such a parameter typically does not obey physical laws, e.g., Arrhenius-type temperature-
dependence. In quite a few temperature-dependent studies, τe values are not even reported (e.g.,
Ref. [262]). Occasionally τe might exhibit Arrhenius-type temperature-dependence over
narrow temperature-ranges. Nevertheless, one should be cautious in interpreting such trends
in terms of physical activation energies. This has been attempted in Ref. [268] for selected
methyl groups of the SH3 domain of α-spectrin for a temperature range of 17K.

Appendix G: SRLS eigenmodes: methyl dynamics
The SRLS time correlation functions comprise sums of weighted exponents with decay
constants given by the eigenvalues of the SRLS solution, and weighting factors, or
“eigenmodes”, determined by the eigenvectors of the SRLS solution. We depict below the
eigenmode composition of a hierarchy of SRLS time correlation functions associated with
methyl dynamics. Gradual enhancement of relevant tensorial properties is carried out. Within
the scope of this scheme, we search for a physical scenario that Eq. (43) might represent.

The 2H T1 and T2 relaxation times of the 13CDH2 methyl group of alanine A10 of Ca2+–
CaM*smMLCKp, acquired at 14.1 and 17.6T, and 295K (Ref. [262]), have been selected as a
representative example. They were subjected to SRLS-based data fitting for several different
parameter combinations. The best-fit parameters determined thereby, and those kept fixed in
these calculations, were used as input to calculate SRLS time correlation functions, CKK′ (t).
The eigenmodes contributing to these functions are delineated below, and the emerging picture
is discussed.

The results of the MF analysis of methyl group A10 are illustrated in Fig. 24a. Saxis
2 is equal

to 0.84; hence the weighting factor of the global motional mode is S2 = 0.084 (circled point in
Fig. 24a). The decay constant associated with the effective local motion is not available since
τe values are not reported in Ref. [262]. For example, a value of 12 ps would yield RC = 0.006
(in units of RL), using τm = 11.81 ns (taken from Ref. [262]). The eigenmode associated with
the effective local motion is (1 – S2) = 0.916; the corresponding eigenvalue is 6 (in units of
RL).

The generic MF spectral density used for methyl dynamics analysis is Eq. (2), where S2 and
τe are varied; Saxis

2 is obtained as S2/0.1. The formally analogous SRLS parameters are  and
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RC. The best-fit values obtained for methyl A10 with a SRLS calculation where these

parameters were varied are  (corresponding to ) and RC = 0.0015. These
values were used as input to the calculation of the functions CKK (t), KK = 00, 11, 22. The
eigenmodes comprising these functions are shown in Table 11. We compare below Figs. 24a
and 24b.

The angle βMQ is implicitly zero in MF and set equal to zero in the SRLS calculation. Therefore
only C00 (t) (j00 (ω) in the frequency domain) is relevant in the present context. The function
C00 (t) comprises three dominant local motional eigenmodes given by 0.350, 0.509 and 0.094,
corresponding to eigenvalues of 5.96, 5.63 and 6.93, respectively. The global motional
eigenmode is 0.0376 and the corresponding eigenvalue is 0.0355. A large number of small
eigenmodes (not shown) makes the remaining fractional contribution of 0.0094. The
eigenmodes contributing to C00 (t) are shown in Fig. 24b.

The eigenmode compositions shown in Figs. 24a and 24b differ significantly. The spectral
density underlying Fig. 24a is a simple limit of the spectral density underlying Fig. 24b. The
physical scenario examined in these calculations is diffusive local motion in the presence of a
small axial potential in the large time scale separation limit. Clearly, the spectral density given
by Eq. (2) does not represent this physical scenario properly; if it did, the results shown in Figs.
24a,b would have been similar.

The calculation illustrated in Fig. 24b does not account for the 110.5° tilt between the magnetic
and local ordering/local diffusion axes, which is an important geometric feature in methyl
dynamics; hence, it must be enhanced to do this. We repeated the SRLS-based fitting of the
data of methyl group A10 with βMQ fixed at 110.5° instead of 0°. The best-fit parameters

obtained are  (corresponding to ) and RC = 0.0009. Using these parameters
as input (with βMQ = 110.5°) we calculated the time correlation functions C00 (t), C11 (t) and
C22 (t). Since βMQ = 110.5° all of these functions contribute to C(t) with coefficients of 0.1,
0.323 and 0.577, respectively. The properly scaled (according to the local geometry)
eigenmodes contributing to the various CKK(t) functions are shown in Fig. 24c; the unscaled
eigenmodes are shown in Table 12.

The (scaled) global motional eigenmode is 0.0329 and  is 2.97 when βMQ = 110.5° (Fig. 24c).
The (scaled) global motional eigenmode is 0.0376 and  is 0.87 when βMQ = 0° (Fig. 24b).
Instead of three dominant (unscaled) eigenmodes of 0.350, 0.509 and 0.094 in C00 (t) (j00
(ω)), corresponding to eigenvalues of 5.96, 5.63 and 6.93, respectively, for βMQ = 0 (Table
11), one has two (unscaled) local motional eigenmodes of 0.378 and 0.130, corresponding to
eigenvalues of 7.65 and 6.93, respectively, for βMQ = 110.5° (Table 12). Eigenmodes of C11
(t) (j11 (ω)) and C22 (t) (j22 (ω)) dominate JQQ (ω) for βMQ = 110.5°; they do not contribute to
JQQ (ω) for βMQ = 0°. The very large differences in eigenmode composition, implied by
different local geometries, are associated with very different best-fit parameters. Clearly the
βMQ = 110.5 ° geometry is correct.

We compare these parameters with their counterparts in Eq. (47), which is the physical

representation of Eq. (43). Equation (47) features . The K = 0 term of this equation

(Eq. 46a) comprises a global motional eigenmode of  with eigenvalue of 6 RC, and

a local motional eigenmode of  with eigenvalue of 6. The C11 (t) and C22 (t)
functions contribute eigenmodes of 0.323 and 0.577, respectively, both with eigenvalue of 6.
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The actual case features . Table 12 shows that the dominant eigenmodes are 0.419
with eigenvalue of 1.21 contributed by C11 (t), and 0.735 with eigenvalue of 4.47 contributed
by C22 (t). Additional eigenmodes with eigenvalues in the range of 6 – 10 are contributed by
all the CKK (t) functions. The difference between the eigenmode composition of Fig. 24c (Table
12) and the eigenmode composition of Eq. (47) is large.

The physical scenario examined in the latter comparison is diffusive local motion in the
presence of an axial potential with a “diffusion tilt” of 110.5° in the large time scale separation
limit. Clearly, the spectral density given by Eq. (47) does not represent this physical scenario
either.

We showed in previous work that SRLS analysis of methyl dynamics based on axial potentials
yields results which have several problematic aspects [34,35]. Many of these problems could
be resolved by allowing for rhombic potentials. We therefore proceeded by subjecting the
experimental data of A10 to SRLS analysis where rhombic potentials were allowed for.

The parameter combination including , βMQ and RC was used in this calculation. The best-
fit parameters obtained are , RC = 0.0054 and βMQ = 109° (similar results
were obtained by fixing βMQ at 110.5°). Note that for rhombic potentials the functions j00 (ω),
j11 (ω), j22 (ω), j20 (ω), j1–1 (ω) and j2–2 (ω) contribute to JQQ (ω) with coefficients of 0.14,
0.354, 0.474, −0.095, 0.045 and 0.082, respectively. For simplicity we only display in Figure
24d the dominant eigenmodes of C00 (t), C11 (t) and C22 (t) (which correspond to j00 (ω), j11
(ω) and j22 (ω), respectively).

Let us compare the rhombic and axial potential scenarios. C00 (t) of Table 13 (Table 12)
comprises a global motional eigenmode of 0.079 (0.329) corresponding to an eigenvalue of
0.042 (0.006). The local motional eigenmodes contributing to C00 (t) of Table 13 correspond
to eigenvalues spanning the range of 5.20 – 8.93. This should be compared to the eigenvalues
of 7.65 and 6.93 shown in Table 12. C11 (t) of Table 13 (Table 12) comprises “faster” local
motional eigenmodes corresponding to eigenvalues in the range of 5.23 – 8.00 (7.65 – 8.93)
and two “slower” local motional eigenmodes (one “slower” eigenmode) corresponding to
eigenvalues (an eigenvalue) of 1.82 and 1.37 (1.21). C22 (t) of Table 13 comprises quite a few
local motional eigenmodes corresponding to eigenvalues in the range of 2.93 – 8.93. C22 (t)
of Table 12 comprises only three local motional eigenmodes corresponding to eigenvalues of
4.47, 8.94 and 10.1.

The eigenmode/eigenvalue patterns for the axial and rhombic potential cases are very different.
The time scale separation is 6-fold smaller in the rhombic potential case due primarily to a
larger number of “slower” eigenmodes (corresponding to smaller eigenvalues). Such
eigenmodes are also missing in MF calculations yielding inaccurate τe values. There are reports
in the literature that τe MF is often too small [269].

All the calculations illustrated in Fig. 24 are associated with sufficiently low χ2 values [150].
Only the calculation illustrated in Fig. 24d, featuring a rhombic potential, is appropriate from
a physical point-of-view. Ample evidence that rhombic potentials underlie methyl dynamics
in proteins appear in Refs. [34,35,38,71,76,193]. Figure 24d indicates that the mixed modes
implied by rhombic potentials make comparable contributions to C(t). Axial potentials generate
a dominant eigenmode contributed by the C22 (t) function – cf. Fig. 24c. A uniform eigenmode
distribution agrees better with a potential representing non-specifically the complexity of
methyl dynamics.

Note that mode-coupling has a small effect on methyl dynamics because the local motion of
the methyl group is much faster than the global tumbling of the protein. The analysis presented
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above illustrates the importance of allowing for rhombic symmetry and arbitrary orientation
of the local ordering tensor. It also illustrates that Eq. (43) does not represent a physical
scenario. Saxis

2 is physically vague, as pointed out in Section 3.2.3. As already shown, trends
in Saxis

2 may be misleading. As an additional example we note that for methyl group A10

 whereas Saxis
2 = 0.84; for methyl group M76  where Saxis

2 = 0.11. Based
on extensive calculations we found that the parameterizing values, Saxis

2, span a significantly

larger range than the physical values, . The relation between  and Saxis
2 is not linear.
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Fig. 1.
(a) Various reference frames that define the SRLS model. L is the laboratory frame; C is the
global diffusion frame associated with protein shape; C′ is the (uniaxial) local director frame
(with ZC′ along the equilibrium orientation of the N–H bond) and XC′ = YC′; M denotes the
local ordering/local diffusion frame fixed in the N–H bond; D is the magnetic 15N–1H dipolar
frame and CSA the magnetic 15N chemical shift anisotropy frame, both fixed in the N–H bond.
ΩLC are ΩC′M are time-dependent angles associated with the global motion and the relative
local motion, respectively. (b) Schematic drawing showing the peptide plane and the ZD axis
of the 15N–1H dipolar (D) frame. The YD axis (not shown) is perpendicular to the peptide
plane, and the axes XCSA, YCSA and ZCSA (not shown) are defined to be aligned with the most
shielded (σ11), intermediate (σ22) and least shielded (σ33) components of the 15N shielding
tensor, respectively [19]. The orientation of the M frame with respect to the D frame is given
by the best-fit value of βMD, and γMD = 90° (γMD was fixed at 90° based on stereo-chemical
considerations [20]). The orientation preferences of the M frame axes in the local director
frame, C′, are determined by the relative magnitudes and signs of  and  [14].
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Fig. 2.
(a) Same as the captions of Fig. 1a, except for the magnetic frames; Q denotes the axial
quadrupolar tensor. (b) Methyl group schematic corresponding to a rhombic local ordering
scenario. ZQ denotes the principal axis of the quadrupolar tensor. XM denotes the main ordering
axis lying along the C–CDH2 bond.
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Fig. 3.

Squared order parameter, , as a function of the potential coefficient,  (see Eqs. (52) and
(59)).
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Fig. 4.
Ribbon diagrams of the molecular structures from X-ray crystallography of (a) AKeco [212]
and (b) AKeco in complex with the two-substrate-mimic inhibitor AP5A [215]. The diagrams
were drawn with the program Molscript [217] using the PDB coordinate files 4ake for AKeco
and 1ake (complex II) for AKeco*AP5A.
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Fig. 5.
(a) The one-dimensional free energy profile along the ΔDrmsd reaction coordinate in the ligand-
free (dotted line) and AP5A-bound (solid line) adenylate kinase pathways. The intersection
region of the two profiles locates the transition state of the conformational transition, which is
associated with a free-energy barrier of 12.5 (kcal/mol). The stabilities of the open unbound
and closed bound states are assumed to be the same (Fig. 6 of Ref. [233], reproduced with
permission).
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Fig. 6.
Experimental relaxation parameters (a) 15N T1 (ms), (b) 15N T2 (ms), and (c) 15N–{1H}
NOE of AKeco acquired at 14.1T (filled circles) and 18.79T (empty circles) and 303K, as a
function of residue number. The black bars denote the mobile domains AMPbd and LID [46].
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Fig. 7.
Best-fit parameters obtained with SRLS-based fitting (filled circles) and MF-based fitting
(empty circles) of the experimental data of AKeco shown in Fig. 6 [46]. The SRLS analysis
used the fitting scheme described in Ref. [19], and the MF analysis used the program
DYNAMICS [97]. The parameters on the ordinate of Fig. 7a represent the SRLS squared axial

order parameter,  (filled circles), and the MF squared generalized order parameter, S2

(empty circles). In Fig. 7b the SRLS parameter, τ⊥ (filled circles), represents the perpendicular
correlation time for local motion, and the MF parameter, τs (empty circles), represents the
effective correlation time for slow local motion. Further details are given in Ref. [46].
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Fig. 8.
(a) Fig. S1C of the supplementary information of Ref. [240] (reproduced with permission).
The blue circles represent experimental 15N–{1H} NOEs obtained from AKeco at 11.7 T, 293
K. (b) Fig. 3a of the supplementary information of Ref. [240] (reproduced with permission).
The blue circles represent S2 values obtained by analyzing with MF the experimental data
shown in Fig. 8a. The error bars represent standard deviations. The solid blue curve represents
the profile of the squared order parameter obtained with straightforward MD [240].
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Fig. 9.
Equilibrium orientation of the backbone fragment comprising a given peptide bond and the
adjacent Cα atoms, in the context of the SRLS frames of reference. ZC(equil. N–H orient.) is
the uniaxial local director fixed in the protein, which lies along the equilibrium orientation of
the N–H bond. ZD(inst. N–H orient.) is the principal axis of the dipolar tensor, which lies along
the instantaneous orientation of the N–H bond. XM is the main ordering axis that lies along the

 axis, as implied by βMD ~ 100°. The D and M frames are fixed in the N–H bond.
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Fig. 10.
(a) The potential u = −4.74×(3/2 cos2βCM − 1/2) as a function of βCM given in radians. (b) The
potential u = −16.1×(3/2 cos2βCM − 1/2) as a function of βCM given in radians. (c) The potential
u = 4.57×(3/2 cos2βCM − 1/2) − 16.11×(3/2)1/2sin2βCMcos2γCM as a function of βCM and
γCM given in radians. (d) The potential shown in Fig. 10c recast by permuting twice the labels
of the M frame so that XM becomes the main ordering axis [243]; u = −22.0×(3/2 cos2βCM −
1/2) + 5.21×(3/2)1/2sin2βCMcos2γCM as a function of βCM and γCM given in radians. The X
axis is shown in the front and the Y axis is shown on the left.
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Fig. 11.
(a) The relative probability Prel of the N-H bond having an orientation in the infinitesimal range
βCM ± ΔβCM, for any α and γ, given by exp[4.74×(3/2 cos2βCM − 1/2)] sinβCMΔβCM, as a
function of the spherical coordinates (βCM,γCM). (b) The relative probability of the N-H bond
having an orientation in the infinitesimal range βCM ± ΔβCM, for any α and γ, given by exp
[16.1×(3/2 cos2βCM − 1/2)]sinβCMΔβCM as a function of the spherical coordinates
(βCM,γCM). (c) The relative probability of the  axis having an orientation in the
infinitesimal range βCM ± ΔβCM and γCM ± ΔγCM, for any α, given by exp[−4.57× (3/2
cos2βCM − 1/2)] + 16.11×(3/2)1/2sin2βCMcos2γCM]sinβCMΔβCMΔγCM as a function of the
spherical coordinates (βCM, γCM). (d) The relative probability of the  axis having an
orientation in the infinitesimal range βCM ± ΔβCM and γCM ± ΔγCM, for any α, given by exp
{[22.0×(3/2 cos2βCM − 1/2)] − 5.21×(3/2)1/2sin2βCMcos2γCM}sinβCMΔβCMΔγCM as a
function of the spherical coordinates (βCM,γCM). The principal axes of the uniaxial local
director frame are XC, YC and ZC, with ZC parallel to the equilibrium N–H orientation, and
XC = YC. The axes have been scaled consistently to make possible comparison among
drawings, and the illustration of highly peaked Prel functions.
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Fig. 12.
Ribbon diagram of Ca2+–CaM reproduced from Ref. [248]. The data depicted describe the
global diffusion tensor as determined in Ref. [248]. ‘N’ and ‘C’ denote the N–, and C–terminal
domains of Ca2+–CaM.
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Fig. 13.
Experimental 15N T1/T2 ratios based on 15N T1 and T2 from Ca2+–CaM acquired at 8.5, 14.1
and 18.8T, 294 and 316K, taken from Ref. [249]. The program QUADRIC [204] was used to
obtain the global diffusion correlation time, τm, at the various temperatures studied.
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Fig. 14.
The results of analyzing the experimental data from Ca2+–CaM depicted in Fig. 13 in terms of
an axial global diffusion tensor, RC, with the program QUADRIC [204]. The straight lines
were obtained with linear regression.
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Fig. 15.
Best-fit Ss

2 and τs values obtained with EMF-based fitting of the experimental 15N relaxation
parameters from Ca2+–CaM [249]. The empty squares correspond to the N–terminal domain
and the filled circles correspond to the C–terminal domain. Additional best-fit parameters are

<Sf
2> = 0.86, <τf> = 15 ps. The global diffusion tensor was determined as , Θ =

67° (69°), Φ= 146° (94°) for the C–terminal domain (N–terminal domain), and τm values of
11.55, 9.87, 8.12 and 6.88 ns at 294, 300, 308 and 316K, respectively [249].
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Fig. 16.
Experimental 15N T2 relaxation times of Ca2+–CaM acquired at 294K (black), 300K (red),
308K (green) and 316K (blue), and 8.5, 14.1 and 18.8T [249]. The region between the vertical
dashed lines represents the central linker (residues 74 – 78).

Meirovitch et al. Page 93

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 17.

Average best-fit  and τ⊥ values obtained with SRLS-based fitting of the same data used
to obtain the results shown in Fig. 15 [20].  was calculated from the best-fit values of . The
best-fit angle βMD is on average 15°. The τm values of 11.55, 9.87, 8.12 and 6.88 ns at 294,
300, 308 and 316K, respectively, were taken from Ref. [249].
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Fig. 18.
Best-fit correlation times for domain motion, τ⊥, obtained with axial-potential-based fitting
for (a) the P-loop (residues G7 – A13), (b) the AMPbd domain and (c) the LID domain of
AKeco [49]. Best-fit correlation times for domain motion, τ, obtained with rhombic-potential-
based fitting for (d) the P-loop, (e) the AMPbd domain and (f) the LID domain [50]. Empty
circles, filled circles, empty triangles and filled triangles denote results obtained at 288, 296.5,
302 and 310K, respectively. Elements of secondary structure are shown on the top.
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Fig. 19.
jKK′ (ω) functions for KK′ = (0,0) − solid line, (1,1) − dashed line, (2,2) − dotted/dashed line,
(2,0) − dotted line, (2,−2) − double-dotted/dashed line, and (1,−1) − dotted/double-dashed line,
calculated using Eq. (55a). These calculations used  and RC = 0.017,
obtained as best-fit parameters with SRLS-based fitting of the experimental 2H T1 and T2 data
from methyl T23 of protein L acquired at 11.8 and 14.1T, 298K [24]. The inset shows a
compressed ω range extending from 0 to 4000 MHz. jKK′ (ω) is given in units of 1/RL and ω
is given in units of RL. The first four values above the dashed vertical lines are the 2H Larmor
frequencies (ω values) at 9.36, 11.7, 14.1 and 18.8T, i.e., ω = 400, 500, 600, 800 MHz. The
last four values are 2ω values at 9.36, 11.7, 14.1 and 18.8T, i.e., 800, 1000, 1200 and 1600
MHz.
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Fig. 20.
jKK′ (ω) functions for KK′ = (0,0) − solid line, (1,1) − dashed line, (2,2) − dotted/dashed line,
(2,0) − dotted line, (2,−2) − double-dotted/dashed line, and (1,−1) − dotted/double-dashed line,
calculated using Eq. (55a). The parameter combination including  and RC =
0.05 was used as input to these calculations. The first four values above the dashed vertical
lines are the 2H Larmor frequencies at 9.36, 11.7, 14.1 and 18.8T, i.e., ω = 400, 500, 600, 800
MHz. The last four values are 2ω at 9.36, 11.7, 14.1 and 18.8T, i.e., 800, 1000, 1200 and 1600
MHz. The values above the dashed vertical lines are the same as in Fig. 19.
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Fig. 21.
The JQQ (ω) function assembled from the jKK′ (ω) functions shown in Fig. 20, using βMQ =
69.5° (Eq. (62)).
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Fig. 22.
Conformational entropy Sp/kB = −∫vp(q)ln[p(q)]dv [57]. The probability density function, p
(q), is defined in terms of , with  and  obtained with SRLS-based fitting of the
experimental data of CaM*smMLCKp from Ref. [262]. Figs. (a) and (b) illustrate the
functional dependence of Sp/kB on  and , for  P2(cosθ). Figs. (c), (d) and (e) show
Sp/kB as a function of  and , respectively, for  (solid line), −0.51 (dashed
line), −0.78 (dotted/dashed line) and −0.94 (dotted line).
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Fig. 23.
(a) The potential u = −1.76×(1.5cos2βCM − 1/2) + 0.59×(3/2)1/2sin2βCMcos2γCM as a function
of βCM and γCM given in radians. The potential coefficients are best-fit values obtained by
fitting with SRLS the experimental data of methyl group A10 of Ca2+–CaM*smMLCKp (see
text for details). (b) The relative probability Prel of the C–13

CDH2 axis having an orientation in
the infinitesimal range βCM ± ΔβCM and γCM ± ΔγCM, for any α, given by exp[1.76×(3/2
cos2βCM − 1/2) − 0.59×(3/2)1/2sin2βCMcos2γCM]sinβCMΔβCMΔγCM, as a function of the
spherical coordinates (βCM,γCM). The principal axes of the uniaxial local director frame are
XC, YC and ZC, with ZC parallel to the equilibrium C–13CDH2 orientation, and XC = YC. (c)
The potential u = −0.73×(3/2 cos2βCM − 1/2) + 0.48×(3/2)1/2sin2βCMcos2γCM as a function of
βCM and γCM given in radians. The potential coefficients are best-fit values obtained by fitting
with SRLS the experimental data of methyl group 85Iγ of Ca2+–CaM*smMLCKp (see text for
details). (d) The relative probability of the C–13CDH2 axis having an orientation in the
infinitesimal range βCM ± ΔβCM and γCM ± ΔγCM, for any α, given by exp[0.73×(3/2
cos2βCM − 1/2) − 0.48×(3/2)1/2sin2βCMcos2γCM]sinβCMΔβCMΔγCM, as a function of the
spherical coordinates (βCM,γCM)
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Fig. 24.
SRLS eigenmodes (ordinate) and corresponding eigenvalues (abscissa) of C00 (t) (circles),
C11 (t) (triangles) and C22 (t) (diamonds). The parameters within the panels (except for the

 values which were calculated from corresponding  values) are best-fit values obtained by
analyzing with SRLS-based fitting (Figs. 24b–d) or MF-based fitting (Fig. 24a) the
experimental 2H R1 and R2 data of methyl group A10 of Ca2+–CaM*smMLCKp, acquired at
14.1 and 17.6T, and 295K (Ref. [262]). The parameters on the top were fixed in the respective
data fitting calculation. The various panels correspond to different parameter combinations
used. The boxes mark clusters of eigenvalues comparable in magnitude.
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Table 2

Squared order parameters, S2, and local motional correlation times, τ, obtained from the total MD time correlation
function as outlined in Ref. [163], and from MF applied to the corresponding experimental 15N relaxation data
[164,167]; “ubi” is a shorthand notation for ubiquitin.

MD MF

residue S2 τ/ns S2 τe/ns

63 of ubi 0.90 0.07 0.82 0.037

11 of ubi 0.56 0.64 0.71 0.058

73 of ubi 0.46 2.00 0.57 0.071

49 of GB3 0.82 0.01 0.82 NA

13 of GB3 0.60 1.30 0.67 NA

41 of GB3 0.34 2.10 0.50 NA
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Table 4

Percent difference [var(axial) − var(rhombic)]/var(axial)×100, where “var” denotes “variable”, between 15N
T1, T2 (ms) and 15N–{1H} NOE values calculated with τm = 15 ns, RC = 0.01, and an axial potential with 
and  or a rhombic potential with  and . Calculations are shown for magnetic fields of 11.7, 14.1
and 18.8T [20].

11.7T 14.1T 18.8T

T1 −2.4 −1.0 +1.5

T2 −7.6 −7.5 −7.6

NOE +31.6 +39.3 +46.3
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Table 5

Percent difference [var(βCC′ = 0°) − var(βCC′ = 90°)]/[var(βCC′ = 0°)]×100 between 15N T1, T2 (ms) and 15N
−{1H} NOE values calculated with τm = 15 ns, an axial potential given by , and an axial global diffusion
tensor. The latter was given by RC (eff) = 0.01, , and βCC′ (the angle between the equilibrium
orientation of the N–H bond and the principal axis of the RC tensor) set equal to 0° or 90°. Calculations are shown
for magnetic fields of 11.7, 14.1 and 18.8T [20].

11.7T 14.1T 18.8T

T1 +7.4 +7.1 +6.1

T2 −9.0 −9.0 −9.2

NOE −2.7 −3.5 −4.0
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Table 8

Average activation energies and pre-exponential factors for domain motion obtained from the rate constant RL

= 1/(6τ) using the Arrhenius equation. Data for the domains AMPbd and LID, and the P-loop (residues G7 –
A13) of AKeco, are shown. RL was obtained with SRLS-based fitting of the 15N relaxation parameters from
these domains. The parameters varied in these calculations include , βMD and τ/τm; the correlation time
τm was determined independently [50]. Results obtained using axial potentials, where the parameters varied in
the data fitting process include , βMD, τ⊥/τm and τ||, are also shown [49].

Domain Ea (kJ/mol) ln A Correlation coefficient

Axial local potential [49]:

P-loop 30.4 ± 4.3 29.1 ± 1.7 − 0.981

AMPbd 29.7 ± 3.3 29.0 ± 1.3 − 0.989

LID 32.1 ± 4.3 29.9 ± 1.7 − 0.984

Rhombic local potential [50]:

P-loop 16.5 ± 6.4 23.5 ± 2.6 − 0.930

AMPbd 63.8 ± 7.0 43.8 ± 2.9 − 0.987

LID 53.0 ± 9.1 39.3 ± 3.7 − 0.966
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