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Abstract
Tandem mass spectrometry, run in combination with liquid chromatography (LC-MS/MS), can
generate large numbers of peptide and protein identifications, for which a variety of database
search engines are available. Distinguishing correct identifications from false positives is far from
trivial because all data sets are noisy, and tend to be too large for manual inspection, therefore
probabilistic methods must be employed to balance the trade-off between sensitivity and
specificity. Decoy databases are becoming widely used to place statistical confidence in results
sets, allowing the false discovery rate (FDR) to be estimated. It has previously been demonstrated
that different MS search engines produce different peptide identification sets, and as such,
employing more than one search engine could result in an increased number of peptides being
identified. However, such efforts are hindered by the lack of a single scoring framework employed
by all search engines.

We have developed a search engine independent scoring framework based on FDR which allows
peptide identifications from different search engines to be combined, called the FDRScore. We
observe that peptide identifications made by three search engines are infrequently false positives,
and identifications made by only a single search engine, even with a strong score from the source
search engine, are significantly more likely to be false positives. We have developed a second
score based on the FDR within peptide identifications grouped according to the set of search
engines that have made the identification, called the combined FDRScore. We demonstrate by
searching large publicly available data sets that the combined FDRScore can differentiate between
between correct and incorrect peptide identifications with high accuracy, allowing on average 35%
more peptide identifications to be made at a fixed FDR than using a single search engine.
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Introduction
High-throughput proteome analyses are now commonplace, allowing researchers to assess
the proteins present in a sample and, by utilising new technologies, to quantify protein
abundance on a large scale. The high-throughput methods can generate large volumes of
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data for which manual verification of peptide and protein identification is not feasible, so
automated methods are required to make correct identifications. It is not yet clear how best
to determine which peptide or protein identifications are correct, and how to optimise
identification pipelines such that false discovery is kept sufficiently low while maximising
the number of proteins that can be identified correctly1.

There are a number of software applications, both commercial and open-source, for
identifying peptides from mass spectra2-6. Each application produces a set of non-standard,
algorithm-dependent measures of the quality of peptide and protein identifications. Several
search engines produce an expectation value (e-value), which relates to the likelihood of a
peptide identification having being made by chance. However it has been recently
demonstrated that e-values are not comparable between different packages7. Without a
search engine independent measure, it is difficult to optimise identification pipelines, and
researchers are likely to set stringent thresholds (often with a limited understanding of the
underlying statistical model), to ensure that the rate of false positives is acceptably low. One
approach for validating identifications involves the use of a decoy database, which allows
statistical confidence to be placed on an identification set, by showing the rate of hits to
decoy sequences (such as reversed or randomised protein sequences), from which an
estimate of the number of false positives can be calculated for a given threshold8.

It has been demonstrated that different software packages do not produce the same peptide
identifications for large sets of spectra7, particularly for peptides scoring close to the
threshold for acceptance or rejection. This means that it should be possible to extract more
identifications from a set of spectra by employing multiple search engines, if there is a
framework for combining the identification sets. In this work, we have developed a search
engine independent scoring system that assigns a score to each peptide-spectrum match
based on the frequency of false discovery for identifications made with such a score or
better. The score is similar to a q-value, which has recently been demonstrated for use in
proteomics [ref] as a search engine independent scoring system for each peptide-spectrum
identification. A q-value is calculated as follows (a graphical example is shown in Figure 3).
First, identifications are ordered according to some metric of quality, such as peptide ion
score from Mascot or XCorr from Sequest. Second, for each score associated with a peptide-
spectrum match, the cumulative FDR is estimated (for example from a decoy database
search) that would result if that exact score was set as the threshold for acceptance or
rejection of identifications. Third, a q-value is assigned to each match as the minimum FDR
at which the identification could be made, i.e. the weakest threshold that could be set to
include an identification without increasing the number of false positive (see Methods
detailed algorithm). Q-values are useful for setting thresholds that guarantee the reported
FDR is less than a given threshold. However, q-values are less useful for further calculations
for the following reason. Q-values follow a stepwise distribution where all target
identifications with no intervening decoy identifications share the same q-value and relative
information about the quality of an identification is lost. Furthermore, within a set of
identifications that share the same q-value, the strongest identification will always be a
decoy identification, such that q-values are biased against decoy identifications. Therefore,
we have adapted the calculation of q-values such that rather than following the stepwise
distribution of q-values, the software uses localised linear regression to estimate the FDR for
the target identifications between each decoy identification (see Methods for algorithm),
called the FDRScore. Each peptide-spectrum identification therefore can have three related
measures: i) the estimated FDR, ii) the q-value and iii) the FDRScore as demonstrated in
Figure 1. Across an entire identification set, all three values are roughly similar however on
a localised scale the FDRScore is more useful for further calculation, since it maintains the
ordering of identification quality (which is lost in both estimated FDR and q-value), and
each FDRScore assigned to a target identification is likely to be closer to the actual FDR
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associated with a peptide-spectrum match than either the estimated FDR or the q-value.
Finally, all target identifications scoring higher than the best decoy hit have an estimated
FDR and q-value = 0, although their probability of being incorrect is not zero. The
regression method used to calculate FDRScores includes the origin (0,0) for the first
calculation and hence no identification has an FDRScore = 0.

The assignment of an FDRScore to each identification allows the identification sets
produced by different search engines to be compared using a single metric, and enables the
combination of the total identification set across all spectra searched with each engine. We
have integrated the results from Mascot9, and two open source applications Omssa4 and X!
Tandem3, and the process can be followed relatively simply by any laboratory using the
search engines that are available to them.

Our results demonstrate that the FDR is far higher for peptides identified by only a single
search engine. In contrast, if a peptide has been identified by all three search engines, it is
highly unlikely to be a false positive. As such, we have developed a system for calculating a
second metric using a similar basis to the FDRScore, called a combined FDRScore, which
re-assesses the rates of false discovery for identifications made by only one search engine,
by each distinct pair of search engines, or by all three search engines after data have been
combined (see Methods for details). The combined FDRScore appears to be a highly
effective discriminator between a correct and incorrect peptide identification, and as such,
for a fixed false discovery rate, e.g. 1% FDR, on average gains of 35% total peptide
identifications are possible over the best individual search engine.

Methods
Data sets searched

Proteome data sets from the public data repository PeptideAtlas10, shown in Table 1, were
downloaded in mzXML format and converted to Mascot Generic format (MGF) using the
RAMP parser (http://tools.proteomecenter.org/TPP.php). The majority of the data sets were
from yeast (Saccharomyces cerevisiae), selected to cover a range of contributing
laboratories, experimental approaches and data set sizes. The data sets were searched using
Omssa (version 2.1.1), Mascot (version 2.0) and X!Tandem (version 07-07-01) using a
parameter set matching the original search parameters as closely as possible: parent ion
tolerance 2Da, fragment ion tolerance 0.8Da and average mass setting. Data sets contained
different types of variable and fixed modification, e.g. ICAT, carbamidomethyl of cysteine
and oxidation of methionine. The system was also tested using searches of human and
mouse data from PeptideAtlas, and validated by data sets released by ABRF (Association of
Biomolecular Research Facilities [ref]). ABRF have generated a standard protein set
containing 49 known proteins, which allow the actual false discovery rate to be calculated
and compared to the estimates from the decoy search approach. ABRF data sets were
searched with parent ion tolerance 1.2Da, fragment ion tolerance 0.6Da and monoisotopic
mass, to reflect more closely the setting used by the laboratories that produced the data.

The following databases were searched: Yeast SGD ORFs (http://www.yeastgenome.org/),
IPI human and IPI mouse (http://www.ebi.ac.uk/IPI/). ABRF data sets were searched against
a database constructed specifically by ABRF containing a combination of UniProt human,
SwissProt human and additional contaminant proteins expected to be in the sample [ref].
Decoy databases were created by reversing all the protein sequences, and adding the set of
reversed sequences to the standard sequences in the same database file. While there is still
some discussion in the field, this method of creating a decoy database has been
demonstrated to be a robust model for calculating FDR8. By searching the forward and
reverse database simultaneously, standard and decoy sequences can compete equally to be
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the highest ranking identification for each spectrum, adequately representing how normal
false positive identifications are made.

In the results set, only the top ranking peptide identification for each spectrum is included.
We compared the results sets including only the top ranking identification with those
including the top three ranking identifications and discovered that there is no significant
increase in the number of peptides identified for a fixed FDR (data not shown).

Calculating false discovery rate for peptide identifications
A method has been published by Elias and Gygi for calculating false discovery rate (FDR)
using decoy databases [ref]. Assuming a search is made against a database constructed from
equal sized target and decoy database, the number of false positive peptide identifications is
calculated for a given threshold by doubling the number of hits to the decoy database,
following the logic that for every hit to a decoy sequence, there will be a “silent” incorrect
hit in the standard database. However, we believe this measure of false discovery rate can be
misleading, since it does not reflect the false discovery rate within the targets, which
ultimately is the measure that researchers are interested in. It is trivial to remove the decoy
identifications from a set of peptide identifications (since they are flagged with a particular
identifier). In the remaining set of targets, it can be assumed on average that the number of
targets which are false positives is approximately equal to the number of decoy hits that
have been removed. The calculated value is different from the measure of FDR using the
equation of Elias and Gygi.

Method from Elias and Gygi

False positives (FP) = 2 * decoy hits

True positives (TP) = All targets above threshold - FP

False discovery rate (FDR) = FP / FP + TP

Example for 1000 identifications, 20 decoy identifications.

FDR = 40 / 1000 = 4%

Alternative method used here

All targets = Target hits only (above threshold)

False positives (FP) = Decoy hits

True positives (TP) = All targets above threshold - FP

False discovery rate (FDR) = FP / FP + TP

Example for 1000 identifications, 20 decoy identifications.

All targets = 980 (1000-20)

FP = 20

TP = 960 (980-20)

FDR = 2.04% (20 / 980)

Assigning FDRScore
Mascot, Omssa and X!Tandem each produce an e-value for each identification, which
relates to the frequency at which such match would have been expected to be made by
chance. Low e-values indicate that an identification is unlikely to have been made by
chance. As has been demonstrated previously [ref], the e-values produced by the three
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search engines are not comparable. Table 2 displays the e-value threshold that produces a
50% FDR for the different test Yeast data sets (all searched against the same database, since
e-values are proportional to database size). Clearly, there are significant differences in the
threshold at which 50% FDR is achieved in different experiments, and as such an e-value
should not be used except to rank the quality of matches within a single experiment for a
particular search engine.

Identifications produced by the three search engines are treated independently by the
software. For each search engine, the identification set is ordered by increasing e-value
(decreasing quality of match). The estimated FDR, q-value and FDRScore are calculated for
each peptide-spectrum match as follows (illustrated graphically in Figure 1).

For each set of peptide identifications made by one search engine:

1. Order identifications according to e-value

2. Traverse identifications from lowest e-value to highest

a. Calculate the estimated FDR for each identification according to the
equation above.

3. Traverse identifications from highest e-value to lowest, storing the lowest estimated
FDR (FDRmin) that has been observed so far.

a. For each identification, retrieve the assigned estimated FDR value
(FDRest).

b. If FDRest > FDRmin, q-value = FDRmin.

c. Else, q-value = FDRest and FDRmin = FDRest.

4. Traverse identifications from lowest q-value to highest, identifying step-points,
where the q-value changes.

a. At step-pointi, perform linear regression between previous step-pointi-1 (e-
valuei-1, q-valuei-1) and current step-pointi (e-valuei, q-valuei).

b. Calculate intercept i and gradient g between step-pointi-1 and step-pointi.

c. For each identification with e-value ex between, step-pointi-1 and step-
pointi assign FDRScore = ex * g + i

Recalculating FDRScores to reflect search engine agreement
For each peptide-spectrum identification the calculated FDRScore approximates the
frequency of false positives that would be observed if a particular score was set as a
threshold for an individual search engine. However, we observe that peptide-spectrum
matches that are made by all three search engines tested have a far lower actual FDR than
the general distribution. Indeed in certain data sets, decoy identifications are never observed
in the set of identifications made by all three search engines, even if the individual scores
from each search engine are weak. Conversely, the distribution of peptide-spectrum
identifications made by only a single search engine shows that the FDR is high, even for
identifications with strong scores from the source search engine.

In order to quantify the effect of search engine agreement, all peptide-spectrum
identifications are divided into seven sets according to which search engines have identified
them (Figure 2): 1) Tandem only, 2) Mascot only, 3) Omssa only, 4) Omssa and Tandem, 5)
Mascot and Tandem, 6) Omssa and Mascot, and 7) Mascot, Omssa, and Tandem. The same
algorithm as above is used to re-assign FDRScores calculated within each of the seven
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distinct sets. Instead of identifications being ordered by e-value, they are ordered by the
FDRScores calculated in the first stage. In sets 4-6 all peptide-spectrum matches have an
FDRScore assigned from each of the two search engines, and in set 7, the peptide-spectrum
matches have three FDRScores, one assigned from each search engine. As such, an average
FDRScore is assigned to each identification. For the average FDRScore, the geometric mean
is used (calculated as the nth root of the product of n numbers) as we found empirically that
a geometric mean is a better differentiator between correct and incorrect identifications than
an arithmetic mean, since an arithmetic mean can mask the contribution of low FDRScores
(data not shown).

For each of the seven sets of peptide-spectrum matches, the same algorithm as above is used
to re-calculate the FDRScore for each identification, but rather than using the e-value
produced by a single search engine to order identifications, identifications are ordered within
each set by the average FDRScore. Each identification is assigned a second FDRScore,
called the combined FDRScore which reflects the estimated false discovery rate within the
set.

For each set of peptide identifications made by a particular combination search engine:

1. Calculate average FDRScore (AFS) as

a. AFS = FDRScore (sets 1-3)

b. AFS = square root of FDRScorese1 * FDRScorese2 (sets 4-6)

c. AFS = cube root of FDRScorese1 * FDRScorese2* FDRScorese3 (set 7).

2. Order identifications according to AFS

3. Traverse identifications from lowest AFS to highest

a. Calculate the estimated FDR for each identification according to the
equation above.

4. Traverse identifications from highest AFS to lowest, storing the lowest estimated
FDR (FDRmin) that has been observed so far.

a. For each identification, retrieve the assigned estimated FDR value
(FDRest).

b. If FDRest > FDRmin, q-value = FDRmin.

c. Else, q-value = FDRest and FDRmin = FDRest.

5. Traverse identifications from lowest q-value to highest, identifying step-points,
where the q-value changes.

a. At step-pointi, perform linear regression between previous step-pointi-1
(AFSi-1, q-valuei-1) and current step-pointi (AFSi, q-valuei).

b. Calculate intercept i and gradient g between step-pointi-1 and step-pointi.

c. For each identification with AFS ax between, step-pointi-1 and step-pointi
assign FDRScore = ax * g + i

This process is performed independently for each of the seven sets of identification and is
demonstrated in Figure 3 for an example experiment from Peptide Atlas. We can observe
that the peptide spectrum matches made by only a single search engine have a considerably
higher estimated FDR (represented by the combined FDRScore on the y-axis) than those
made by a pair of search engines. In the set of identifications made by all three search
engines (set 7), the estimated FDR is low, and false positives are rarely observed. In certain
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data sets, decoy hits are not observed at any score threshold for identifications made by all
three search engines. To correct for the size of the result set, an artificial decoy hit is added
at the end of each data series, such that no identification has a combined FDRScore = 0.

The combined FDRScore also has the property that it can be used to set a threshold x,
returning a set of identifications with FDR ~= x (in practice almost always < x). The seven
identification sets are distinct, as such a final set of peptide identifications is made by
accepting all identifications with say combined FDRScore < 0.05. Each of the seven sets
returns a certain number of identifications with no more than 5% FDR. In practice sets 1-3
(single search engine only) may return few, if any, identifications. This is demonstrated by
the dashed line on Figure 3. All identifications with a combined FDRScore below 0.05
would pass the threshold.

The advantage of this approach is that it extracts the maximum number of peptide-spectrum
matches that have the profile of being “correct” while excluding those that have the profile
of being incorrect.

Results
Improvement in peptide discovery

The method outlined above was used to combine results and weight the contribution of
different search engines. The number of peptides identified by each search engine with FDR
< 0.01 and FDR < 0.05 was calculated, and compared with the number of peptides identified
using the combined FDRScore to set threshold for data combined from the three search
engines. Table 3 displays the percentage improvement using combined FDRScores over the
best individual search engine (defined as the search engine that returns the highest number
of peptide identifications at particular q-value threshold) in columns 2 and 3. On average the
combined scoring method identifies 35% more peptides than the best individual search
engine at FDR < 0.01. There is quite a large difference in the percentage gain between the
lowest PA66 (7%) and the highest PA162 (68%). It is interesting to note that in the
experiments where only modest gains in the number of peptides are made (PA66, PA77,
PA93 and PA146) that X!Tandem performs poorly, identifying only a fraction of the
number of peptides as Omssa and Mascot (see supplementary data). As such, data are
effectively being combined from two search engines only. In other experiments, Omssa, X!
Tandem and Mascot all perform similarly well, with either Omssa or X!Tandem identifying
the highest number of peptides at 1% FDR.

Validation with standard data sets
The Association of Biomolecular Research Facilities (ABRF) have generated an artificial
mixture of 49 known proteins to allow proteome technologies to be validated in laboratories.
Data sets generated by several laboratories have been released, and are publicly available,
although detailed analyses of the data sets has yet to be published. From the different
laboratories, we selected the highest quality data set (laboratory 12874) that was available
from ProteomeCommons [ref] to test that the software was correctly differentiating true and
false positive peptide identifications. According to ABRF preliminary data from ABRF [ref]
laboratory 12874 correctly identified 45 out of 49 of the proteins with 0 false positive
identifications.

The data set was searched with the three search engines and combined FDRScores
calculated. At a threshold of combined FDRScore < 0.01, 2451 peptide-spectrum matches
were made combining results from the three search engines as outlined above from 6027
spectra. There were 10 decoy identifications within the list of 2451 which were removed. Of
the remaining peptides 16 could be matched to proteins not expected in the analysis and the
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resulting peptide FDR is thus 0.0066 (16/2441). Of the 16 target false positive peptides, it is
not possible to distinguish whether these are false positives caused by the search method or
contaminants in the sample. However, it is clear that setting an combined FDRScore < 0.01
results in an acceptably low false positive rate, and that the method does not introduce a
major bias to identify targets over decoys.

Since the complete data sets have yet to be published for the ABRF data sets it is not
feasible to make a detailed comparison of the total number of peptide identifications made
by our method. However, laboratory 12874 submitted 442 non-redundant peptide
identifications. The combined scoring methods identifies 677 non-redundant peptides
identifications (from the 2451 total redundant set), an increase of 53%.

Discussion
Large scale proteome analyses produce significant quantities of data but they are time-
consuming and costly to run. Running more technical replicates can lead to larger numbers
of identifications, but is not always practical or cost-effective. Furthermore, software has
been developed to determine absolute protein quantitation by counting the frequency of
peptides identified by mass spectra16,17. Any methods that can greatly increase the number
of peptide identifications from a single study are therefore significant, as they can reduce the
number of replicates required, and reduce the overall cost and time to run an experiment. It
has been previously suggested that by using multiple search engines, a higher proportion of
the proteome can be sampled18, but such efforts have been hampered by the lack of
consensus on a software independent score.

We have re-searched considerable volumes of data, downloaded from PeptideAtlas, with
Mascot, Omssa and X!Tandem. Each of the search engines produces an e-value that can be
used within an experiment to score the relative quality of peptide-spectrum matches.
However, the e-values have little correlation across different search engines and are not a
reliable indicator of identification quality. By using a decoy database search, in each
experiment a threshold can be set that ensures the rate of false discovery is sufficiently low.
In this work, we introduce the concept of an FDRScore, which reflects the predicted rate of
false discovery for an identification made with a particular score, reported by a single search
engine on a specific data set. The FDRScore has a similar basis to the statistical measure of
a q-value but incorporates simple linear regression to maintain the order of identification
quality which is lost in the calculation of q-values. Crucially, FDRScores allow
identifications from different search engines to be combined within the same scoring
framework. It has previously been demonstrated that due to differences in how search
engines score identifications, there are differences in the sets of peptides discovered. By
analysing false discovery rates, we are able to demonstrate that if different search engines
agree on identifications, the frequency of false positives is low. However, even in the sets of
peptides identified by a single search engine, true positives can still be found. The combined
FDRScore allows identifications to be extracted from identifications made by one, two or
three search engines, maximising the number of peptide identifications while ensuring that
the minimum number of false positives pass the threshold.

The benefits of combining multiple search engine results has also been demonstrated by the
Scaffold software21. Scaffold does not rely on rates of false discovery but instead works on
a related metric: the probability of a peptide being correct or incorrect. Identification
probabilities can be calculated for each search engine, and Scaffold calculates a combined
probability of correct identification if more than one search engine has identified the same
peptide from a spectrum. The relationship between identification probability (or error
probabilities) and FDR has been examined recently by Käll et al.22. They argue that error
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probabilities are more relevant where the presence of a specific peptide or protein is being
considered. In large scale proteome scans, setting thresholds by FDR appears to provide a
better measure for balancing the trade-off of between false positives and sensitivity. In the
data presented for Scaffold21, a 33% gain in peptide identifications is reported over the best
performing single search engine in an 18 protein sample, and a 14% increase in a more
complex sample, at a 1% FDR. On average, our method identifies 35% more peptides than
the best single search engine at 1% FDR in complex data sets. It appears that analysing FDR
rather than identification probability allows larger gains in sensitivity, and that the Scaffold
software could be further improved by incorporating an FDR-based score.

In summary, we present a proposal for a software-independent measure of the quality of an
identification, the FDRScore, which can be assigned to all identifications when a decoy
database search has been performed. We have utilised the FDRScore to combine data across
search engines, and estimated the total number of true positive proteins that could be
detected. We have demonstrated how the FDRScore can be re-assessed to reflect the
contribution of evidence from different search engines. The combined FDRScore is an
effective discriminator between correct and incorrect identifications, allowing considerable
gains in the number of peptides that can be identified for a fixed FDR.
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Figure 1.
An example to demonstrate the estimation of FDR and the calculation of q-values and
FDRScore, from a set of peptide-spectrum matches ordered by increasing e-value.
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Figure 2.
A flow chart of the stages in the calculated of FDRScores for each individual search engine,
and combined FDRScores across search engines. The combined FDRScore can be used to
set a single threshold to return identifications from each distinct set with estimated FDR
approximately equal to the threshold.
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Figure 3.
Relationship between average FDRScore and combined FDRScore from a single experiment
with data set Peptide Altas PAe000162.
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Table 1

Data sets from PeptideAtlas re-searched in the analysis. ICAT new corresponds with the newer form of the
Isotope coded affinity tag (227.13 Da mass); ICAT old is the original form (442.2 Da mass)

Experiment Study
authors

Species Variable
modifications

Fixed modifications

PA66 Omenn et al. Human Oxidation (M) None

PA77 Raught et al. Yeast Oxidation (M), ICAT
new (heavy)

ICAT new (light)

PA93 Flory et al. Yeast Oxidation (M), ICAT
old (heavy)

ICAT old (light)

PA98 Omenn et al. Human Oxidation (M) Carbamidomethyl (C)

PA138 Marelli et al. Yeast Oxidation (M), ICAT
new (heavy)

ICAT new (light)

PA146 Raught et al. Yeast Oxidation (M), ICAT
new (heavy)

ICAT new (light)

PA157 Marelli et al. Yeast Oxidation (M), ICAT
new (heavy)

ICAT new (light)

PA158 Breci et al. Yeast Oxidation (M), ICAT
new (heavy)

ICAT new (light)

PA160 Breci et al. Yeast Oxidation (M) Carbamidomethyl (C)

PA162 Breci et al. Yeast Oxidation (M) Carbamidomethyl (C)

PA165 Breci et al. Yeast Oxidation (M) Carbamidomethyl (C)

PA166 Breci et al. Yeast Oxidation (M) Carbamidomethyl (C)

PA167 Aebersold and
Kregenow

Yeast Oxidation (M) None

PA292 Rong Wang Mouse Oxidation (M) None
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Table 2

The e-value threshold at which 50% peptide FDR is achieved in the three search engines

Experiment
identifier

Mascot
50%
FDR

Omssa
50%
FDR

X!Tandem
50% FDR

PA77 4 200 0.3

PA93 4 60 0.125

PA138 0.6 35 0.175

PA146 5 80 0.125

PA157 0.9 35 0.07

PA158 3 500 1.5

PA160 4 200 1.5

PA162 0.8 60 0.125

PA165 4 500 1

PA166 2 100 1.5

PA167 0.9 25 0.4

Mean 2.65 163 0.62
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