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Abstract
The only established technique for intracranial pressure (ICP) measurement is an invasive
procedure requiring surgically penetrating the skull for placing pressure sensors. However, there
are many clinical scenarios where a noninvasive assessment of ICP is highly desirable. With an
assumption of a linear relationship among arterial blood pressure (ABP), ICP and flow velocity
(FV) of major cerebral arteries, an approach has been previously developed to estimate ICP non-
invasively, the core of which is the linear estimation of the coefficients f between ABP and ICP
from the coefficients w calculated between ABP and FV. In this paper, motivated by the fact that
the relationships among these three signals are so complex that simple linear models may be not
adequate to depict the relationship between these two coefficients, i.e., f and w, we investigate the
adoption of several nonlinear kernel regression approaches including kernel spectral regression
(KSR) and support vector machine (SVM) to improve the original linear ICP estimation approach.
The ICP estimation results on a dataset consisting of 446 entries from 23 patients show that the
mean ICP error by the nonlinear approaches can be reduced to below 6.0 mmHg compared to 6.7
mmHg of the original approach. The statistical test also demonstrates that the ICP error by the
proposed nonlinear kernel approaches is statistically smaller than that estimated with the original
linear model (p<0.05). The current result confirms the potential of using nonlinear regression to
achieve more accurate non-invasive ICP assessment.
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I. Introdution
Intracranial pressure (ICP) is a critical physiological variable for managing brain injury
patients because acute cerebral diseases frequently lead to a change in ICP [1-4]. It,
however, can be only measured by surgically penetrating the rigid skull for pressure sensors
placement in either brain tissues or the ventricles. Associated with this invasive procedure
are risks of infection and brain tissue damage, which make the measurement infeasible for
some patients [5,6]. It thus remains highly desirable to have a noninvasive ICP (nICP)
assessment technique as exemplified by several existing attempts to estimate ICP non-
invasively [7,8]. The early trial for non-invasive ICP estimation is exclusively implemented
to monitor ICP for infants having open fontanelles [9], and obviously this approach is not
feasible for the elder children or adults. The dynamic magnetic resonance imaging (MRI)
technique may be a promising tool for non-invasive ICP estimation, which non-invasively
estimates ICP based on the relationship between intracranial elastance and pressure [10,11].
However, the current MRI scanner is rather complicated and expensive if used for this
purpose. Ragauskas proposed a method to estimate ICP using two depth TCDs to monitor
blood flow information of eye arteries, and this method does not need the calibration [9].
Communication of the CSF space through the inner ear has also provided another basis and
technique for further attempts to measure ICP non-invasively [12]. Because various studies
have shown that the change of ICP is not only associated with changes of flow velocity (FV)
in the major cerebral arteries but also tightly associated with arterial blood pressure (ABP)
waveforms [7,13-15], the estimation of ICP using ICP related ABP and FV time series is
another promising solution. This kind of work includes the data-mining based approach
proposed by Hu and the Schmidt's method, which is based on a series of parametric input/
output linearly modeling of ABP and FV, and that of ABP and ICP [7,8].

In the data-mining approach, a simultaneously recorded segment of ABP, FV and invasive
ICP is organized as an entry of a signal database containing large number of such entries.
Each database entry is used to identify an input/output model for estimating ICP from ABP
and CBFV in an offline training phase. In the online running stage, one of those models is
then selected to estimate ICP based on the characteristic feature extracted from the input
ABP and CBFV. Given this operation, this approach is of local nature in the sense that an
optimal input/output model is discovered for different realizations of ABP and CBFV
inputted signals on a case-by-case basis. This data-mining framework is highly flexible and
complex. Therefore, it needs a large amount of data to achieve good performance but at an
enormous computational cost in training the models.

In contrary to this complex data-mining based approach, the other approach developed by
Schmidt [7,8] is of global nature where only one model will result from the training and be
applied to all future input signals. In this procedure, two linear models are firstly established
to depict the relationship between ABP and ICP and that between ABP and FV, which will
result in two vectors of model coefficients f and w, respectively. Then another linear model
is learned to map w to f. Utilizing this linear mapping function, non-invasive ICP estimation
can be performed by first estimating f from the coefficients w that can be readily obtained
from ABP and CBFV. An estimate of ICP can then be derived from ABP using this
calculated f. Even though this approach is less flexible than the data mining approach, it has
less complexity and received quite amount of clinical attentions [7,8,16]. Therefore, it is still
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meaningful to further improve this approach. In particular, this approach assumes that
intracranial pressure dynamic system and cerebral hemodynamic system are coupled so that
hemodynamic information as embodied in the coefficient w can be used to infer ICP.
However, intracranial pressure dynamics and cerebral hemodynamics are very complex and
their coupling is most likely to be nonlinear. Therefore, a linear model of the relationship
between w and f may not be adequate [17-20]. Based on the accumulating evidence that non-
linear regressions such as support vector machines [21-23], kernel spectral regression [24]
have been proved to be more powerful for the prediction problem than the linear ones
[25-27], we propose to use the nonlinear approaches to model the relationship between
coefficients f and w, which will consequently be helpful to improve the non-invasive ICP
estimation.

We describe the nonlinear regression based ICP estimation in Section II, and the patient data
set is introduced in Section III. In Section IV, the comparison results among different
estimation approaches are given. Section V gives the discussion and conclusion for this
paper.

II. Methods
A. Linear approach based non-invasive ICP estimation

In [7,8], the ICP value at time k can be obtained by n ABP values before k as

(1)

where ti (0 ≤ i ≤ n − 1) is time for the ith selected point prior to current time k. Its matrix
form is,

(2)

where ABP = [ABP(t0), ABP(t1),⋯ABP(tn_1)] and f = [f(0), f(1),⋯f(n − 1)]. Those n points
are equally spread over three cardiac cycles before time point k, which means that in this
model the current ICP value is determined by ABP over a period of three heart cycles [7,8].
Apparently, when ABP and ICP have enough samples, the n coefficients can be calculated
by solving a linear equation. Considering that each patient's hemodynamic state may be
better represented by a linear model in a relatively short time period, data from 14 cardiac
cycles was used to estimate this linear model. The linear model within 14 cardiac cycles has
a form as the follows [7,8],

(3)

And the least square solution of this equation is,

(4)
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where  is the K ICP values in 14 heart cycles, and

 with ABPk (0 ≤ k ≤ K) being a vector having n points evenly spread
over the three cardiac cycles before time k.

Similar to the linear model between ABP and ICP, a linear model is established to describe
the relationship between ABP and FV, where the linear coefficients (w) are called
Transcranial doppler (TCD) coefficients [7,8]. The ABP value at k can be modeled by the m
FV values after time point k as,

(5)

where ti (0 ≤ i ≤ m − 1) is the selected ith time point after current time k, and this equation
implicitly accounts for the physiological fact that blood pressure causes blood flow [7,8].
These m FV points are evenly distributed within one heart cycle following time point k. The
matrix form of this relationship between ABP and FV is,

(6)

where FV = [FV(t0), FV(t1), ⋯ FV(tm−1)] and w = [w(0), w(1), ⋯ w(m − 1)]. Consistent with
calculation of coefficients between ICP and ABP, TCD coefficients are estimated within 14
heart cycles, too. The least square solution of this model is,

(7)

where  is the K ABP values within 14 heart cycles, and

 with FVk(0 ≤ k ≤ K) being a vector with m points evenly spread over
one cardiac cycle following time k.

After the above two kinds of coefficients have been calculated, a linear regression is used to
model the relationship between f and w as,

(8)

With J pairs of {f, w} calculated for different recordings (patients), we can rewrite the above
formula as,

(9)
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where  and  are the coefficient matrices
for ICP and ABP, ABP and FV, respectively. A with dimension of n × m and B with
dimension of n × J are the linear coefficients to be estimated from those coefficients W and
F, both of which are known from training set. Apparently, A and B can be easily estimated
using a least square approach [28].

In this paper, we adopted n=25 and m=6 as those recommended by authors in [8]. To
estimate the transform matrices A and B, a training dataset including many recordings of
simultaneous ABP, ICP and FV is needed prior to the estimation. With A and B estimated by
solving equation (9), after the TCD coefficients w is calculated from non-invasively
recorded ABP and FV, the coefficients f between ABP and ICP can be estimated by
equation (8) and therefore ICP values can be non-invasively estimated with formula (2).

B. Non-linear regression based approach to estimate coefficients between ICP and ABP
B. 1. Motivation to use non-linear approach—As shown in Section II-A, the key to
estimate ICP non-invasively using this approach is the indirect estimation of the coefficients
f between ABP and ICP from the TCD coefficients w calculated from ABP and FV by
equation (8), which means that the ICP estimation is largely dependent on whether the
coefficients f are accurately estimated. In the original approach, the author assumed that the
relationship between the TCD coefficients w and coefficients f are linear. However, the
physiological association between these two kinds of coefficients may be very complex so
that a nonlinear model is more appropriate [17-19]. Accordingly, we propose to use more
sophisticated models to estimate the f coefficients from the w coefficients, which may be
helpful to improve the quality of estimated ICP. The difference in ICP estimation procedure
between using linear model and using non-linear regression model can be succinctly
depicted in Fig. 1.

As seen from Fig.1, the basic flow chart of these two approaches are the same except for the
different functions used to estimate the coefficients between ABP and ICP based on the
TCD coefficients calculated from ABP and FV.

B.2. Non-linear kernel based regression approaches—Generally, the regression
problem can be denoted with this equation [22,26],

(10)

where f(·) is the map function and θ is the noise. If f(·) is linear, it is a linear regression,
otherwise the regression problem will be extended to a nonlinear sense. The nonlinear
function can be assumed to have different forms, among which the Gaussian function is one
of the useful nonlinear realizations [22,26,27,29]. The Gaussian function usually has form
as,

(11)

After the form of nonlinear function is determined, such kernel regression methods as kernel
spectral regression [24], support vector regression [22,23,30] can be used to establish non-
linear function f(·) to map TCD coefficients w to the coefficients f between ABP and ICP. In
this work, we used the KSR and two versions of support vector regressions, i.e., SVM-
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eplison and SVM-nu, to estimate the possible non-linear function. In the following
subsections, we will briefly introduce these nonlinear regression approaches.

B.2.1. Kernel spectral regression: Kernel spectral regression is an extension of original
spectral regression. The spectral regression is a recent method for regression or dimension
reduction combined with spectral graph analysis and standard linear regression [24]. The
main idea of spectral regression is to find a regression model, which has similar predictions
yˆi ∈ Y for those inputs xˆi ∈ X that are close to each other. With optimal predictions y = [yˆ1,
yˆ)2 ⋯, yˆn], the objective function is [24],

(12)

where .

With some mathematical transformation, solution of the objective function (12) can be
found by solving this eigen problem [24],

(13)

where D is a diagonal matrix with . After solving the eigen-problem in equation
(13) to get y, the following norm-2 problem is solved to find the transformation f(·),

(14)

When f(·) is linear, it is just the original linear spectral regression, and when f(·) is some non-
linear forms, the procedure is the kernel spectral regression. In this work, we adopt the
Gaussian (Radial basis function) kernel.

B.2.2. Support vector machine regression: SVM is a supervised approach usually used for
classification and regression problems [22,29]. For nonlinear regression problem, SVM
approach performs first a mapping from the input space onto a high-dimensional feature
space, and then performs linear regression in the high-dimensional feature space using ε -
insensitive loss. SVM approach enables efficient model complexity control using a special
structure on a set of high-dimensional linear models in the feature space. For the regression
problem denoted by formula (10), dependent on the definition of objective function, the
SVM has two implementations, one is the SVM-nu [30] and another is SVM-eplison
[21,22]. The SVM-eplison approach has the following objective function,
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(15)

where ϕ(xi) is the kernel function, w is the linear hyper plane parameters, ε is the tolerated
parameter, ζi,  1 ≤ i ≤ N are the slack variables introduced in SVM to account for those
observations having deviation larger than tolerance ε, and C is the regularization parameter
to determine the trade-off between the flatness and the amount of deviations larger than
tolerance ε. C and ε are two important tunable parameters to be decided before regression for
SVM-eplison regression [22,29].

The objective function for SVM-nu is,

(16)

where ν is a parameter correlated with the number of support vector and other parameters
including w, ε, ζi,  and C are same as those in above SVM-eplison. C and ν are two
important tunable parameters and need to be decided before regression when using this kind
of SVM for regression [30].

In this work, Gaussian (Radial basis function) kernel was used in both forms of SVM
regression as implemented in the LIBSVM toolkit [31].

III. Patient Dataset and Evaluation Protocol
The database used in this work contains data from 9 hydrocephalic and 14 brain injury
patients. Each patient had a 5-25 minutes long recording of ABP, ICP and FV. FV was
obtained at the right middle cerebral artery, ipsilateral to the ICP measurement location, with
ultrasonography transducers fixed to a headband to prevent motion artifacts. ABP was
measured through radial arterial-lines while ICP was measured using ventricular catheter
connected to an external strain gauge for brain injury patients. A noninvasive tonometric
ABP device (Colin Medical Instruments Corp, Model 7000) was used to measure ABP at the
radial artery and ICP was invasively measured using the Codman intraparenchymal pressure
monitor. The recording of these signals were conducted after IRB approved consents were
signed by either the patients or their next-of-kins. All three signals were obtained in analog
form from the corresponding monitoring devices and were then simultaneously sampled at
400 Hz using the Powerlab data acquisition system. Each recording was decomposed into
short segments of 100 heart beats long, each of which is saved as a database entry. Because
the lengths of recordings are different for those 23 patients, the different patient may
contribute different number of entries to dataset. The total number of database entries is 446.
The value information of ABP, FV and ICP for those patients is listed in Table I.
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In this paper, as the main aim in the following sections is to compare the differences
between linear approach and non-linear approaches, we used the same original parameters
proposed by authors in [8] to implement non-invasive ICP estimation. The used setup for
those parameters have been defined in Section II-A, and the detail about those parameters
could refer to [8]. We evaluate the performance of different approaches using leave-one-out
strategy. The leave-one-out strategy consists of 23 separate runs for the 23 patients. During
every run the samples from the same patient will be regarded as the testing set and the
samples from the remaining 22 patients will be used to train the model. For 23 patients, the
similar approach will be run for 23 times with different testing and training sets in every run.
The parameters of three non-linear approaches as denoted in Section II are simply decided
by 80 short segments from the first 4 patients, where the number of entries is 20 for each
patient. In this algorithm tuning phase, we still used the leave-one-out strategy to find the
optimal parameters. The ‘optimal’ parameters are determined within the predefined
searching range to achieve the minimum ICP estimation error for this small tuning dataset
with 80 entries. To ensure a relatively optimal parameter, we precisely search the parameters
in a relatively local range after the parameters are roughly searched in a relatively wide
coarse range, which is the usually adopted strategy in machine learning [29]. Table II lists
the parameters used for each nonlinear approach in this paper. After ICP is estimated, nICP
was quantitatively compared with original ICP using mean absolute errors,

(17)

where N is the number of samples.

IV. Results
Table III gives the overall mean EICP for each estimation approach. The paired t test was
used to test the null hypothesis that the ICP error as assessed using linear approach is not
significantly different from that achieved with the corresponding nonlinear regression based
approach. An asterisk is used in Table III to indicate that that the null hypothesis can be
rejected at a significance level of 0.05. The statistical results show that the kernel regression
based approaches can statistically lower the ICP errors. Table IV lists the EICP
corresponding to 25%, 50%, 75% and 90% percentiles, respectively.

Fig.2 shows the continuous EICP vs ratio curves for these four approaches, and we can see
that approximately 90% of results estimated with non-linear approaches have smaller EICP
than that of linear approach.

The 95% confidence limits for the ICP errors are shown in Table V for the four approaches.

The exemplary ICP waveforms having the error corresponding to different error percentiles
in Table IV for different approaches are shown in Fig.3.

V. Discussion
As shown in Table III, the mean absolute ICP errors (<6.00 mmHg) when using non-linear
regression approaches are smaller than that (6.76 mmHg) calculated with linear approach in
a statistically significant sense (p<0.05). Table IV shows that EICP is smaller than 8.56
mmHg, 8.10 mmHg and 7.81 mmHg for SVM-eplison, SVM-nu, and KSR in 75% of the
evaluated recordings, which for the linear approach is 10.02 mmHg. The curves in Fig.2 also
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indicate that 90% of the recordings have smaller EICP than the original linear approach.
Table V consistently revealed that the 95% confidence limits for the three non-linear
approaches are smaller than that for the linear approach. The above results did not show too
much difference among those three different non-linear approaches, and the reason may be
that the non-linear kernel functions for these three regression methods were all realized in
Gaussian forms.

The non-invasive ICP estimation procedure in Section II includes three linear models, i.e.,
the first one to model the relationship between ICP and ABP with coefficients f, the second
one to calculate TCD coefficients w to model the relationship between ABP and FV, and the
third one to describe the relationship between coefficients f and w. The third model plays a
role to map the TCD coefficients w that is non-invasively calculated with ABP and FV to
the coefficients f, which is finally used to estimate ICP from ABP non-invasively.
Apparently, the quality of f estimated from w directly affects the ICP estimation. The simple
linear model may be incapable of adequately capturing the relationship between w and f, and
therefore a nonlinear model was proposed as a more accurate alternative in this paper. The
results reported in Section IV indeed confirm the feasibility of non-linear regression based
approach for a better ICP estimation.

In [7], the author improved the original linear-model-based ICP estimation approach using
additional information about the state of cerebral blood flow autoregulation. The enhanced
approach in [7] divides the training dataset into two groups: one with good autoregulation
and the other with relatively poor autoregulation. These two data sets are then used to obtain
two separate copies of matrices A and B. Then during the online running stage, after the
efficiency of CBF autoregulation is first quantified by processing ABP and CBFV signals,
this autoregulation information is taken into account to estimate a more accurate coefficients
f by combining individual f coefficients that are separately obtained from the two sets of A
and B matrices. A more accurate estimation of ICP has been confirmed with this enhanced
approach. As reported in [7], this enhanced approach can decrease error by an approximate
0.7 mmHg as compared to the original approach, where EICP were 7.6 mmHg and 6.9
mmHg for original linear estimation approach and the enhanced one, respectively. In our
results, the nonlinear approach reduced error by 0.8 mmHg, which is similar to what was
achieved in [7]. However, this comparison should be treated cautiously because the two
approaches were tested on two different datasets.

Among three possible undertakings of non-linearizing the original non-invasive ICP
approaches, we only partially chose to build a nonlinear model between f and w. This effort
has already been demonstrated effective for improving non-invasive ICP estimation. This
result may indicate that the other two linear models used to account for the relationship
between ABP and ICP and that between ABP and FV can be potentially replaced with some
similar nonlinear models. This future effort is supported by recent findings that the
hemodynamic relations among ICP, ABP and FV are more than linear and need more
complicated nonlinear methods for their characterization [17-19]. Therefore, utility of
nonlinear models to account for the relationships among ABP, ICP and FV may be a choice
to further improve the ICP estimation performance. In current work, the nonlinear function
is realized in the Gaussian version. Solving the non-linear model is more difficult than the
linear cases, and we used the mature kernel regression approaches like SVM and KSR to
solve this non-linear problem. Certainly, other nonlinear functions and solving methods can
be considered in future.

Compared to the linear model, the training procedure of nonlinear model consumes more
computational time. However, the obtainment of this nonlinear model needs to be done only
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once at the training stage. It will not influence the online running where the computational
speed is of a major concern.

It should be emphasized that noninvasive ICP assessment approach is still at an early
development stage. The minimum 90% error achieved in this enhanced approach as reported
in Table IV is 13.86 mmHg offering a statistically significant improvement over the original
linear approach. However, the improvement is not clinically significant and neither of the
original and the improved approaches can be recommended for clinical use as a 10% error in
terms of mean ICP usually exists in the current invasive ICP devices, which amounts to a
tolerable error of 2 mmHg for mean ICP of 20 mmHg. Given that 20 mmHg is usually a
threshold for starting treatment of elevated ICP, as far as we know, none of the existing
techniques can reliably establish this threshold non-invasively yet. Therefore, the
contribution by the improved method proposed in the present work should be appreciated in
a relative sense, and the current work shows that the nonlinear regressions are promising for
the estimation problem of biomedical signals. However, common to both the original
approach and this improved approach is that they are all data-driven. Hence, adequate
amount of data is critical. Considering that data from a small set of 23 patients are used in
the present work, for those patients having different dynamics far from those patients
included in current dataset, it may be difficult to estimate their ICPs accurately. Herein, we
expect that a larger and more diverse data set can help significantly improve the absolute
performance of noninvasive ICP assessment for both approaches. Because ICP fluctuations
for hydrocephalus and TBI patients are due to different physiological origins, CSF
circulation for hydrocephalus patients and vasogenic for TBI patients, it needs to point out
that it may be a more reasonable manner to treat these two kinds of patients separately,
which may give better results. In current work, due to the lack of the corresponding patients
to construct the training database, we didn't specifically compare the difference existing
between these two kinds of patients. With accumulation of data, we are able to build
different databases to deal with the patients under the different pathological conditions such
as TBI, hydrocephalus, stroke, etc.

It is still a challenge to monitor ABP and FV accurately, and the uncertainty of ABP and FV
data will definitely influence the non-invasive estimation of ICP, which may be part of the
reason that current reported non-invasive ICPs are still not clinically accepted. Actually,
about 4 mmHg errors will be induced in the current non-invasive ICP recordings [32]. Due
to lacking of the gold standard, the invasive ICPs recorded in a clinically established way
are still regarded as the referenced signals in this paper and other published works
[2,7,9,13,16]. However, it needs to point out that the use of inaccurate ICPs as the reference
signals to evaluate non-invasive approach may be unreasonable. The uncertainties derived
from the inaccurate ABP, FV and ICP measurements can be somewhat reduced with the
rapid development of the bio-sensors in the near future.
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Fig.1.
Block diagrams for the linear/nonlinear noninvasive ICP estimation approaches. The
nonlinear approach is highlighted by a green dotted square in the diagram where ϕ(·) is used
as a general nonlinear function form.
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Fig.2.
Percentiles curves for different approaches. The point on the curve means that the x axis
defined percent of estimated entries have ICP errors below the value defined by the y
component of point. Approximately 90% of the tested database entries have smaller
estimation error if nonlinear regression approaches were used to estimate noninvasive ICP.
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Fig.3.
Representative ICP and noninvasive ICP waveforms at different estimation error percentiles
in Table IV. The waveform in each subplot denotes the estimation having error mostly close
to the corresponding error value in Table IV. (a) linear approach; (b) SVM-eplison
regression; (c) SVM-nu regression; (d) KSR regression

Xu et al. Page 17

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xu et al. Page 18

TABLE I

The values of ABP, ICP and CBFV included in the database

NPH(n=9) SAH(n=14) n=23

ABP [mm Hg] 105.6±22.1 97.2±23.5 100.5±22.9

ICP [mm Hg] 14.8±5.6 12.8± 8.3 13.6±7.3

CBFV [cm/s] 64.4±33.7 68.2±36.9 66.7±34.9
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TABLE II

Optimal parameters found in the tuning stage for various nonlinear approaches

Approach Optimal Parameters

SVM-eplison
C 0.003

ε 0.003

SVM-nu
C 0.001

ν 0.8

KSR
T 15

α 520
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TABLE III

Mean ICP estimation errors for different approaches

Approach Linear SVM-eplison SVM-Nu KSR

EICP
(mean±std) 6.76±5.39 5.98±5.61* 5.97±5.73* 5.99±5.49*
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TABLE IV

ICP estimation errors at different percentiles of different approaches

25%
(mmHg)

50%
(mmHg)

75%
(mmHg)

90%
(mmHg)

Linear 2.83 5.56 10.02 14.44

SVM-eplison 1.74 4.03 8.56 14.42

SVM-Nu 1.90 4.48 8.10 14.13

KSR 1.88 4.93 7.81 13.86
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TABLE V

The 95% confidence limit of ICP errors

Linear SVM-eplison SVM-Nu KSR

95% confidence limit
(mmHg) 8.38 7.68 7.59 7.61

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2011 July 1.


