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Abstract
The effects of nitric oxide in biological systems depend on its steady-state concentration and where
it is being produced. The organ where nitric oxide is produced is relevant, and within the organ,
which types of cells are actually contributing to this production seem to play a major determinant of
its effect. Subcellular compartmentalization of specific nitric-oxide synthase enzymes has been
shown to play a major role in health and disease. Pathophysiological conditions affect the cellular
expression and localization of nitric oxide synthases, which in turn alter organ cross talk. In this
study, we described the compartmentalization of nitric oxide in organs, cells and subcellular
organelles, and how its localization relates to several relevant clinical conditions. Understanding the
complexity of the compartmentalization of nitric oxide production and the implications of this
compartmentalization in terms of cellular targets and downstream effects will eventually contribute
toward the development of better strategies for treating or preventing pathological events associated
with the increase, inhibition or mislocalization of nitric oxide production.
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Introduction
Since 1987, when the endothelium-derived relaxing factor was identified as nitric oxide [1,
2], numerous reports have indicated that this small gaseous molecule, nitric oxide, is a
ubiquitous mediator of many different biological processes, such as vasodilation [3],
neurotransmission [4,5], macrophage-mediated cytotoxicity [6], gastrointestinal smooth
muscle relaxation [5] and bronchodilation [7], through a variety of downstream pathways
(Figure 1). According to Fick’s laws of diffusion, the diffusion coefficient of nitric oxide is
4.8 × 10−5 cm2 in water at 37°C [8,9], similar to that of oxygen under comparable conditions
[10]. It has been estimated that the half-life of nitric oxide varies from about 1 s in blood-free
perfused guinea pig heart to 30 s in physiological buffers [8]. Based on these half-life values,
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the diffusion distances are expected to be in the 120- to 700-μm range [8]. Nitric oxide has
been detected at a distance of 100 to 500 μm from RAW 264.7 macrophages stimulated with
interferon, yielding a diffusion radius of 10 to 50 cells (assuming an average macrophage
diameter of 10 μm) [11]. Thus, theoretically, based on its diffusion coefficient and the
assumption that cells in culture are a representative model for the diffusion of nitric oxide in
vivo, the effects of this gaseous molecule could extend to many cells beyond its production
site.

However, estimations of the half-life of nitric oxide based on its diffusion radius do not apply
to complex biological systems. Factors that limit nitric oxide diffusion and therefore its half-
life in biological systems include its interactions with soluble guanylyl cyclase and other
proteins (e.g., hemoglobin), lipids and free radicals [11–13]. When measured in isolated rat
aorta, for example, its diffusion was shown to be four-fold smaller in an aortic wall than that
in a homogeneous medium such as water [14]. It has also recently been reported that the
cholesterol content in membranes decreases nitric oxide diffusion by 20 to 40% [12]. This
decrease was attributed to changes in membrane fluidity caused by cholesterol. Nitric oxide
efflux produced by activated macrophages was also reduced by 41% in the presence of albumin
and by 53 to 70% in the presence of liposomes, indicating that intracellular structures or
biomolecules could also limit nitric oxide diffusion [11], thereby establishing
compartmentalized effects of nitric oxide within the cells.

Depending on the environment, other factors can affect the half-life of nitric oxide and therefore
its diffusion. When high concentrations of nitric oxide are produced by activated NOS2, and
superoxide anion is present, the formation of peroxynitrite will limit the diffusion of nitric
oxide [8]. In addition, depending on the oxygen gradient near mitochondria, cytochrome c
oxidase can become a target of nitric oxide, resulting in the inhibition of mitochondrial
respiration [13].

In addition to the diffusion of nitric oxide from its production site, the partitioning of nitric
oxide between polar and apolar media could play a major role in terms of localized effects
[15]. Nitric oxide and oxygen have similar partition coefficients in apolar media, being 70-
times more soluble in hydrophobic than in hydrophilic media [16]. Therefore, both molecules
are more concentrated in hydrophobic milieu, such as liposomes, lipoproteins, biomembranes
or within the hydrophobic pockets of proteins, than in polar-based environments [16,17].
Higher concentrations of nitric oxide and oxygen in an apolar environment may result in
chemical reactions favoring the formation of nitrogen oxides with chemical properties different
from those of nitric oxide [18,19].

The fact that nitric oxide encounters diffusion barriers throughout the body to find its targets
and that nitric oxide-mediated responses are cell/tissue specific, the existence of NOS isoforms
and their fine regulation at the pre and post translational levels constitute a sine qua non
condition to accomplish its specific yet diverse functions.

In view of these arguments, we propose that the systemic effects of nitric oxide derive from
the cumulative effects of the autocrine and paracrine levels in specific organs.

Isoforms of nitric oxide synthase and their cell specificity
Nitric oxide is synthesized by nitric oxide synthase (NOS). The enzymatic synthesis of nitric
oxide is accomplished by three NOS isoforms: the neuronal NOS (NOS1), the endothelial NOS
(NOS3) and the inducible NOS (NOS2) (see Table 1). The activation of the first two enzymes
depends on calcium, whereas NOS2 is independent of calcium [20]. It has been reported that
NOS1 and NOS3 are constitutively expressed, whereas NOS2 is induced only during the
immune response [21,22]. However, more recently, it has been shown that NOS2 is
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constitutively expressed in neurons [23,24], kidney [25], liver [26], lung [27], colon [28] and
keratinocytes [29], whereas NOS3 can be expressed at a level higher than the constitutive one
under various conditions such as exercise [30], estrogen stimulation [31], hyperthermia [32]
and shear stress [33,34]. Thus, in lieu of the most current research reports, the expression and
activity of the NOS isoforms appear to be cell-specific. In the case of vasodilation, nitric oxide
produced by endothelial cells diffuses to the smooth muscle cells to activate soluble guanylate
cyclase, and by doing so it causes vascular relaxation [20], even when both cell types have the
capability of expressing the same isoform, NOS3. This difference has been attributed to the
heavy methylation of the NOS3 promoter that results in the inhibition of NOS3 transcription
and consequently the nitric oxide production in vascular smooth muscle cells (but not
endothelial cells) from murine aorta [35].

Nitric oxide synthesis and its ensuing effects depend not only on the types of cells in which
nitric oxide is produced but also on the particular conditions experienced by the cells, the organ
and the whole organism at the time of its production. For example, nitric oxide production by
vascular endothelial cells is usually continuous and in relatively small amount, contributing to
the maintenance of normal blood pressure and blood homeostasis [20]. During septic shock,
however, NOS2 expression is induced in vascular endothelial cells, which in turn release high
concentrations of nitric oxide, a process associated to vasoplegia, persistent hypotension and
decompensation [20,36,37]. In another example, metabolically controlled production of nitric
oxide can be affected by the distribution and expression of arginases (enzymes that catalyze
the production of L-ornithine and urea from L-arginine) and dimethylargininases [38–40],
limited substrate concentration (L-arginine) or local concentrations of citrulline (a competitive
inhibitor of dimethylarginine dimethylaminohydrolase [41]) and asymmetric dimethylarginine
(a noncompetitive inhibitor of NOS1 with a Ki = 0.4 μM [42]; Figure 2). Interactions of NOS
isoforms with other trafficking proteins at the cellular and subcellular levels may also alter the
fate of nitric oxide [43–46].

Our hypothesis is that the compartmentalized production and effects of nitric oxide define its
role in pathophysiology, and therefore modulating its localized production might be the key
for effective pharmacological interventions and for understanding genetic differences in
pathophysiology. This hypothesis is based on the fact that compartmentalization of nitric oxide
production within the cells explains its different functions and roles in different clinical
conditions (Figure 3).

Compartmentalization of nitric oxide synthases in different organs
In this section, we present and discuss how differential compartmentalization of the NOS
isoforms in different organs relates to clinical examples based on the current literature and
some recent results from our group.

Lung
The lung is composed of at least forty different cell types including vascular smooth muscle
cells, endothelial cells, bronchial smooth muscle cells, neurons, pneumocytes, epithelial cells
and macrophages [47]. Each one has the ability to produce nitric oxide via one or more NOS
isoforms [48–52]. Blood vessels irrigate all the structures in the lung including every alveolus
[53]. Endothelial cells, essential components of blood vessels, express NOS3 [3,20]. Nitric
oxide in the lung is involved in many different processes originating in different cell types:
vasodilation at the endothelium, bronchodilation at the inhibitory non-adrenergic/non-
cholinergic nerve terminals, participation of macrophages in phagocytosis and production of
mucin by the bronchial epithelial cells [48,51,54]. These diverse functions have to be
coordinated and controlled to support adequate blood flow and air flow under normal
conditions as well as when allergens or immunogens trigger an inflammatory response [51].
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Nitric oxide and reactive species derived from it (known as nitrogen reactive species) play an
important role in diverse inflammatory pulmonary diseases [55]. In asthma patients, elevated
levels of nitric oxide have been found in their exhaled air [52,56], consistent with the increased
expression of the NOS2 gene [52,57]. In chronic obstructive pulmonary disease (COPD)
[52], a pathological lung condition associated with pulmonary hypertension [58], the nitric
oxide level in patients’ exhaled air has also been reported to be increased, two-fold higher than
normal but one third lower than those observed in asthma patients [59]. In COPD patients,
exhaled nitric oxide has been directly associated with the exacerbation and severity of the
disease [59], and as in the case of asthma, COPD has been associated with increased oxidative
stress in lung [60,61], although little is known about cell-specific expression of the NOS
isoforms.

The fact that nitric oxide is known to dilate bronchia (reference), and that yet asthma patients
with increased exhaled nitric oxide in their airways are afflicted with bronchoconstriction
(reference) seems paradoxical but can be explained by the role of oxidative/nitrative stress
[61,62]. The strong induction of pulmonary NOS2, simultaneously with the development of
bronchoconstriction, could be due to the formation of unwanted byproducts that can overcome
the expected bronchodilator effect, such as peroxynitrite [62–64]. In support of this possibility,
nitrotyrosine, a marker of nitrative stress, was found at increased levels in the lungs of asthmatic
patients [62,63,65]. However, the differential expression of the NOS isoforms in different lung
cells of healthy and asthmatic subjects provides an alternative scenario. Increased NOS2
specifically in bronchial epithelia and alveolar macrophages would result in increased lung
mucus secretion, whereas the decreased expression of both NOS3 and NOS1 specifically in
pulmonary vessels and bronchial smooth muscle would lead to pulmonary hypertension and
bronchoconstriction. Thus, an effective pharmacological intervention might be to increase the
expression of NOS1 and NOS3 in specifically targeted cells to limit pulmonary hypertension
and bronchoconstriction, while repressing NOS2 induction to minimize nitrative stress and
excessive mucus secretion.

Interestingly, genetic background differences in terms of NOS polymorphisms have been
reported in asthma [66]. For example, an association between a less active polymorphic variant
of NOS1 and the presence of asthma has been documented [66]. Also, one polymorphic variant
of NOS3 has been associated with asthma in Caucasians [67], while another has been predicted
to confer protection against asthma [68]. Differential cell-specific expression of the NOS
isoforms in the lungs of asthma and COPD patients could explain the inconsistent
pharmacological results obtained from NOS inhibitors [56,69]. NOS inhibitors have been
proposed as potential therapeutic agents [70,71], but they only reduce the activity of NOS2. It
is possible, however, that they could aggravate bronchial and vascular smooth muscle
contractility when NOS1 and NOS3 were already reduced in those tissues.

Another clinical condition that could be explained by the compartmentalization of NOS
isoforms is endotoxic shock. During endotoxic shock, pulmonary blood flow changes in
conjunction with different stages of the condition [72]. Nitric oxide could be one of the major
molecular mediators involved in these changes in pulmonary blood distribution. On one hand,
at early stages and independently of the etiology of shock, pulmonary blood flow increases,
raising the volume of oxygenated blood in vital organs. During the late stages of shock, on the
other hand, massive pulmonary vasodilation is elicited in response to dramatic NOS2 induction.
This vasodilation should be prevented because the pulmonary vessels could act as a sink for a
large proportion of the systemic blood volume, thereby compromising the oxygen supply to
other organs. NOS inhibitors have been administered as a therapy to prevent extensive systemic
vasodilation [36,37]; however, the patient mortality was higher in those treated with NOS
inhibitors than that in patients without the treatment [36], suggesting that uncontrolled
vasoconstriction could result in ischemia of major organs. Unfortunately, there is little
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experimental evidence available on the cell-specific expression of the NOS isoforms during
endotoxic shock.

A study of cell-specific changes in the NOS expression in lung tissue was carried out using an
isolated lung model. In this study, it was found that NOS2 expression increased in bronchial
epithelial cells, bronchia-associated lymphoid tissue, alveolar macrophages, and vascular
smooth muscle cells, whereas NOS3 expression decreased in the same cell types within 2 h
after lipopolysaccharide (LPS) treatment [51]. Expression levels were not measured at later
stages or in whole animals; therefore, the effect(s) of these changes at the systemic level were
not addressed.

There are obviously multiple variables that contribute to inflammatory diseases like asthma
and COPD, among which differences in the genetic background of patients in terms of NOS
polymorphisms and the spatial- and temporal-specific expression of NOS genes in the lungs
of these patients are important. In order to develop better strategies for treatment and
prevention, further investigation is needed to identify these variables and clarify their
contributions to these diseases.

Liver
In hepatocytes, nitric oxide can be synthesized by any of the NOS isoforms [26,73]. Various
cell-cell interactions, oxygen availability and differential exposure to metabolic byproducts
and substances/substrates supplied by the mesenteric or cardiac circulation could modulate the
production and effects of nitric oxide [26,74] in different hepatocytes depending on their
localization in liver. In fact, in liver, which is primarily comprised of hepatocytes, the metabolic
functions and gene profiles of each hepatocyte are known to depend on its location [74–77].
We have therefore hypothesized that the expression of the NOS isoforms and the effects of
nitric oxide depend on the compartmentalization of the enzymes within a cell, the localization
of the cells within an organ and also the developmental timing of the enzyme expression. We
also believe that it is appropriate to test and assess periportal, periarteriolar, perivenous or
periductal expression of the NOS isoforms to better understand their different roles and
functions in liver. In addition, the effects of nitric oxide derived from NOS1 produced in
periportal hepatocytes, for example, could be different depending on the stage and type of a
clinical condition. Concerning NOS1 expression, we have observed that it increases primarily
around perivenous hepatocytes in the late stages of experimental endotoxic shock, whereas
NOS1 is translocated to the nucleus in all types of hepatocytes regardless of their location
within the organ in Type 1 diabetes (Figure 4).

The fact that changes in the hepatic blood circulation during endotoxic shock are the opposite
of those observed in lung [72] serves as another example of changes that could be resulted
from the differential compartmentalization of NOS in liver. In the early stages of shock,
hepatosplanchnic circulation (portal vein) is restricted to divert blood flow to organs other than
liver. During late phases, the vasoplegia that characterizes multiple organ failure includes
hepatosplanchnic circulation [72,78]. It has been assumed that this vasoplegia during
decompensatory endotoxic shock is mainly due to the increased NOS2 activity [20,36,79]. In
a rat model of endotoxic shock, we have observed increased NOS2 expression, in agreement
with these reports; however, the most relevant changes were attributed to the increased
expression of NOS1 (Figure 4) and NOS2 (not shown) specifically in periportal and perivenous
hepatocytes.

Skeletal muscle
Nitric oxide plays an important role in skeletal muscle contraction [80,81]. All three NOS
isoforms have been detected in rat quadriceps [82] and cardiomyocytes [34]. In skeletal muscle,
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NOS2 and NOS3 are predominantly located in the sarcoplasm, whereas NOS1 is present only
in sarcolemma [82] anchored by dystrophin and syntrophin, two proteins that form the
dystrophin protein complex [83]. In Duchene Muscular Dystrophy (DMD), the gene encoding
dystrophin is mutated, and as a consequence, NOS1 remains localized in the sarcoplasm. This
NOS1 mislocalization contributes to muscular ischemia [83]. It has also been shown that
sarcolemmal NOS1 is either absent or decreased in patients with diverse myopathies (including
DMD) suffering from excessive fatigue after mild exercise [84]. NOS1-null mice also exhibit
the same symptoms after mild exercise [84], suggesting that NOS1 might be involved
specifically in increasing blood flow to the muscle, but not necessarily in muscle contraction
[84]. This hypothesis is reinforced by the findings that NOS3−/− mice have less endurance to
exercise than wild-type mice, and they (similar with the NOS1−/−) have systemic blood flow
problems [85], suggesting overlapping functions of NOSs.

Central nervous system
The role of nitric oxide in the control of central sympathetic outflow has been studied through
the local administration of nitric oxide donors or inhibitors in different brain regions and nuclei
associated with sympathetic tone. One of these regions is the rostral ventrolateral medulla
(RVLM). The RVLM has glutamatergic neurons that participate in the increased sympathetic
tone occurring after cardiac stimulation [86]. When NOS1 is available, the RVLM receives
projections from hypothalamic nuclei related to the control of sympathetic nervous activity
[87,88]. Even though the three NOS isoforms are all present in the RVLM (NOS3 in vessels,
NOS1 and NOS2 in neurons [89]), only NOS1 co-localizes with the vesicular glutamate
transporter 3 and c-fos (a marker of neuron activation) in glutamatergic neurons after the
epicardial application of bradykinin in anesthetized cats. These findings suggest that NOS1 in
RVLM plays a role in the central sympathetic responses generated after cardiac stimulation
[86]. Interestingly, when NOS3 was overexpressed in rat RVLM, the mean arterial blood
pressure, heart rate and urinary excretion of norepinephrine decreased, indicating that NOS3
lowers the central sympathetic outflow [90]. NOS2 overexpression in RVLM had the opposite
effect: it increased the central sympathetic tone, and this effect was related to oxidative stress
[91]. These different outcomes could be explained by the differential localization of the NOS
isoforms and the subsequent “local” effects of nitric oxide on downstream targets, whereas a
“generalized” production of nitric oxide does not agree with these observations.

Sub-cellular compartmentalization of nitric oxide synthases
Given the short half-life of nitric oxide in biological systems (see Introduction) and the need
for nitric oxide at specific sites in the cell, intracellular compartmentalization of this compound
is crucial for its signal transduction activities [92,93]. In addition, as previously mentioned,
nitric oxide diffusion is limited by its interaction with different molecules within the cells, and
therefore the sub-cellular location(s) of the NOS isoforms affects nitric oxide diffusion.
Spatially regulating nitric oxide production additionally facilitates its specific targeting while
minimizing side reactions such as the formation of peroxynitrite [94].

The expression of each NOS isoform is cell-specific and, within each cell, each isoform appears
to be present in a particular subcellular compartment. Modifications of the NOS isoforms can
affect their sub-cellular compartmentalization, the most well-studied example being NOS3.
Co-translational N-myristoylation and subsequent post-translational Cys palmitoylation of
NOS3 determine its location in the Golgi apparatus and caveolae [95].

The expression of three NOS isoforms in heart cardiomyocytes from various species has been
shown by immunohistochemistry [96,97]. The protein expression of NOS1 and NOS3 is
constitutive, whereas that of NOS2 is inducible by inflammatory mediators [97]. Recently, the
importance of the compartmentalization of NOS1 and NOS3 in cardiomyocytes was
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demonstrated in NOS1−/− and NOS3−/− mice. Both groups of mice developed age-related
cardiac hypertrophy, but only the NOS1−/− mice were hypertensive [98]. NOS3, beta-
adrenergic receptor and L-Type calcium channel are located in cardiomyocyte caveolae,
whereas NOS1 is close to the sarcoplasmic reticulum [98]. Thus, the different clinical outcomes
of the two groups of mice were linked to the NOS1 and NOS3 compartmentalization and
protein-protein interactions within cardiomyocytes [98]. NOS1 and NOS3 are also known to
have opposing effects on the intracellular concentration of calcium and therefore on the control
of contractility. NOS3 inhibits the calcium influx produced by beta-adrenergic agonists
(mediated by L-Type calcium channels), whereas NOS1 facilitates the calcium outflow from
the sarcoplasmic reticulum. These opposite effects appear to be related to the different
subcellular locations of the enzymes, which facilitate the protein-protein interaction of NOS3
with caveolin-3 and that of NOS1 with ryanodine receptors [98].

NOS1 regulation in mitochondria is affected by calcium levels [94]. Nitric oxide regulates
mitochondrial respiration, depending on the ratio of oxygen to nitric oxide [94], through both
noncompetitive and competitive mechanisms [92]. It could be conceivable that the different
cholesterol content of the outer and inner membranes might explain the differences observed
when nitric oxide levels are evaluated by a nitric oxide electrode (which evaluates nitric oxide
diffusing away from mitochondria) or by the oxidation of oxymyoglobin or other hemoproteins
(which works as a “nitric oxide trap” due to the relatively high concentrations used), effectively
competing with cholesterol and possibly with other biomolecules such as cytochrome c
oxidase.

Translocation of nitric oxide synthases among cellular compartments
As indicated above, the NOS isoforms are localized in different subcellular compartments.
However, after a given stimulus, some of them have been known to change location, suggesting
the occurrence of posttranslational modifications such as phosphorylation or the activation of
translocation, a more complex process that occurs with the aid of specific protein-protein
interactions, such as what has been described for NOS3 [43,44]. If nitric oxide were as
diffusible in a biological setting (read cell) as in water, then NOS translocation would not be
required unless a “localized” effect is sought. The three NOS isoforms have all been observed
in cell nuclei under pathophysiological conditions [99–103]. Guanylyl cyclase [104], subunits
of the sGC [105], cGMP production [105], calmodulin [106] and tetrahydrobiopterin
biosynthetic enzymes [107] have also been detected in nuclei, suggesting that nuclear
production of nitric oxide and the subsequent activation of its downstream targets is possible.

It has been proposed that the translocation of NOS isoforms in response to various stimuli can
affect cells in different ways, including changes in the regulation of gene transcription,
activation/inhibition of signal transduction pathways and modulation of enzymatic activity via
protein-protein interactions [43,44]. For example, the nitric oxide synthase-interacting protein
(NOSIP) negatively regulates nitric oxide production by inducing translocation of NOS1 and
NOS3 to the actin present in the cytoskeleton and inhibiting the activity of these enzymes
[108–110].

Regulation of gene transcription
Several lines of evidence indicate that the regulation of nitric oxide production can also occur
at the level of gene transcription. In one study, for example, NOS1 was localized in the cytosol
of rat cortical astrocytes during the first 6 d of culture; however, at the 7th d, NOS1 was mainly
present in the nuclei of these cells, concomitant with the nuclear production of nitric oxide and
the decrease of NOS2 protein expression [104]. These results suggest that the presence of NOS1
in nuclei represses the transcription of the NOS2 gene [102].
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In our own studies, we have seen that while all three NOS isoforms were localized in the cytosol
of the hepatocytes in the livers of Type 1 diabetic rats, only NOS1 was present in the nuclei of
these cells (Figure 4). In the parallel experiments undertaken in a different biological model
(endotoxic shock), NOS1 was always detected only in the cytoplasm of hepatocytes (Figure
4); the absence of insulin, presence of hyperglycemia or a response to increased oxidative stress
in the Type 1 diabetic rats could account for the differences detected between their hepatocytes
and those of the rats undergoing endotoxic shock. Interestingly, in the endotoxic shock model,
NOS1 primarily increases in perivenous hepatocytes from 1 to 6 h after LPS administration
(Figure 4).

Another interesting study was carried out in Zucker fa/fa rats. One of the main functions of
brown adipocytes is to generate heat by uncoupling mitochondria in a process named non-
shivering thermogenesis. This function is impaired in Zucker fa/fa rats [111,112]. NOS2 and
NOS3 are both localized in the cytoplasm and nuclei of brown adipocytes in both control and
Zucker rats [103]. The in vivo and in vitro sympathetic stimulation of non-shivering
thermogenesis increased the expression and activity of both enzymes in the nuclei and
cytoplasm of adipocytes in both control and wild-type Zucker rats. However, nuclear-localized
NOS2 protein, but not nuclear-localized NOS3, was decreased in brown adipocytes of Zucker
fa/fa rats after sympathetic stimulation. The authors suggested that the nuclear localization of
the NOS isoforms might provide a subcellular environment more suitable than the cytosol for
a more specific and effective action of nitric oxide-producing systems, especially for their close
control of thermogenic responses of brown adipocytes [103].

In freshly isolated rat hepatocytes stimulated with lysophosphatidic acid (a G protein-coupled
receptor agonist that activates NOS3), NOS3 was translocated from the cytoplasm to the
nucleus [100]. Once in the nucleus, NOS3 modulated, through nitric oxide production, the
transcription of the gene encoding NOS2, which had been induced by nuclear factor kappa–B
[100,113].

Activation/inhibition of signal transduction pathways
NOS3 is primarily expressed in the Golgi apparatus and plasmalemmal caveolae of endothelial
cells [114,115]. It has been shown that serum starvation increases the perinuclear location of
the NOS3/caveolin complex in cultured endothelial cells isolated from bovine aorta [116]. If
insulin is added to the culture, NOS3 is phosphorylated through the Akt pathway, and in
response to the palmitoylation of caveolin, the complex is translocated to the caveolae; this
NOS3/caveolin association inhibits NOS3 activity [117] (Figure 5). This trafficking is
independent of the phosphorylation status of NOS3, explains the shorter duration of nitric oxide
production in the presence of insulin, regardless of the duration of NOS3 phosphorylation
[116]. In high-fat fed mice, insulin-induced NOS3 phosphorylation in aorta was decreased,
suggesting that NOS3 phosphorylation may have a role in the endothelial cell dysfunction that
characterizes obesity and insulin resistance [118]. NOS3 translocation may therefore be related
to the modulation of vasodilation. In another example of NOS3 translocation, incubation of
endothelial cells with oxidized LDL decreased nitric oxide production, an event that has been
associated with the displacement of NOS3 from caveolae to the Golgi apparatus [119]. In
endothelial cells, NOS3 is more active in the cis-Golgi than in the trans-Golgi apparatus,
mitochondria or nucleus [120]. Based on studies with organelle-targeted NOS2 constructs,
NOS2 was also found to be more active in the cis-Golgi than in any other cellular compartment
[96]. It was therefore concluded that the higher activity of NOS3 is the result of a facilitated
access to calcium stores in the cis-Golgi apparatus under normal conditions [120].

Interestingly, in endothelial cells of brain lenticulostriate arterioles (pathological deterioration
of which has been related to stroke), NOS3 translocation from the abluminal surface to the
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nucleus was associated with a decreased nitric oxide production in angiotensin-hypertensive
rats, but not in control animals [121]. This result suggests that mislocalization of NOS3 plays
a role in endothelial cell dysfunction in angiotensin-dependent hypertension [115]. Others have
suggested that NOS3 mislocalization could be due to increased oxidative stress [121,122].

Modulation of enzymatic activity
Here, we presented two examples from the literature on the modulation of enzymatic activity:
one on the lipoxygenase activity modulation by NOS; the other on the NOS activity modulation
by NOSIP. NOS3 has been detected primarily in the nuclei of human mast cells, whereas NOS1
is localized primarily in the cytosol of these cells [99]. After activation of mast cells with
A23187 (a calcium ionophore) or IgE/anti-IgE, cytosolic NOS3 was phosphorylated and
translocated to nuclei, and nitric oxide was detected in both the cytoplasm and nuclei of these
cells. Because NOS3 co-localized with 5-lipoxygenase in the nucleus, and leukotriene
formation was inhibited by a nitric oxide donor and stimulated by a nitric oxide synthesis
inhibitor, the authors suggested that nuclear-localized NOS3 modulates leukotriene formation
by a mechanism independent of cGMP production [99]. Whether the effects associated with
any of the NOS isoforms in the nucleus occur through nitric oxide production or via a protein-
protein interaction(s) needs to be further addressed.

The NOSIP (nitric oxide synthase-interacting protein) is expressed in heart, brain and lung, as
well as in endothelial cells [110]. NOSIP is translocated from the nucleus to the cytoplasm in
the G2 phase of the cell cycle [108,109]. By interacting with NOS1 and NOS3 [109,110],
NOSIP negatively regulates nitric oxide production by inducing NOS1 and NOS3 translocation
to the actin cytoskeleton and inhibiting their enzymatic activity [108–110].

Conclusions
Even though nitric oxide is a small molecule produced in confined compartments within
different types of cells, its site-specific effects are sensed throughout the entire organism. The
effects of this molecule at the organism level are not the result of a long half-life, high stability
or free diffusion, but the consequence of localized effects of nitric oxide at various cellular
levels and in different cell types, modulating and orchestrating complex responses requiring
cross-talk among organs [25,101,120,123–127]. Nitric oxide production depends on the correct
localization of the enzyme isoforms involved in its synthesis, subcellular trafficking of those
isoforms in response to varying conditions and proper association of regulatory proteins with
the NOS isoforms to ensure correct physiological functions [43,44,46,121,128]. Understanding
the complex functions of nitric oxide could someday help us to develop improved diagnostic
tools and design novel preventative or treatment strategies directed to a specific NOS isoform
and cellular compartment.
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Figure 1. Nitric oxide generation and signaling
Nitric oxide, generated by NOS, activates soluble guanylate cyclase (sGC) and particulate
guanylate cyclase (pGC), and inhibits cytochrome c oxidase. cGMP activates cGMP-
dependent protein kinases (PKG). As shown in the figure, some downstream pathways and
cellular functions (grey boxes) are involved in the effects of endogenous cGMP. The
concentration of cGMP can be controlled by the action of phosphodiesterases (PDE). In
addition, nitric oxide can affect other pathways through protein modifications (nitric oxide-
metal adduct formation, S-nitrosation, nitration). For instance, the nitration of specific Tyrosine
residues in the beta-subunit of Complex V results in lower ATPase activity during nitrative
stress or aging [137,138]. ANP, atrial natriuretic peptide; PK, protein kinases (letter indicates
the type of kinase); PDEs, phosphodiesterases; sGC, soluble guanylyl cyclase; IRAG, IP3
receptor-associated cGKIβ substrate; MLC phosphatase (MLCP); RhoA, a substrate for
cGMP-dependent protein kinases (PKG); large-conductance Ca2+-activated K+ (BKCa)
channels. Other details were previously described by Hofmann et al. [139].
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Figure 2. Metabolite-controlled production of NO
Nitric oxide (NO) is produced by nitric oxide synthases (NOS) from L-arginine. Nitric oxide
can interact with specific targets, such as soluble guanylate cyclase (sGC) and cytochrome c
oxidase (CCO), or with other molecules, such as superoxide anion, to trigger nitrative stress.
High levels of citrulline (mM) inhibit NG,NG-dimethylarginine dimethylaminohydrolase
(Ddah), resulting in an increase of NG,NG-dimethyl-L-arginine (ADMA). ADMA, in turn, is
a potent NOS inhibitor. Arginine concentrations can be modulated by the activity of arginases,
which catalyze the formation of L-ornithine (Orn) and urea from L-arginine. Another
abbreviation: DMA, dimethylarginine. Enzyme names are in italic.
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Figure 3. Location of NOS in liver, liver cells and subcellular compartments
NOS1, NOS2 and NOS3 are present in liver. NOS1 has been shown in rat hepatocytes ([140]
and Villanueva et al., 2010, submitted manuscript). NOS2 and NOS3 have been demonstrated
in normal human hepatocytes [26]. NOS2 is present in Kupffer cells, whereas NO3 is present
at the endothelial cells of the hepatic sinusoids [26,141]. Within the cells, the NOS isoforms
are located in different subcellular compartments such as the Golgi apparatus, caveolae or
mitochondria [94]. NOS1 and NOS2 can be translocated from cytoplasm to nuclei in
pathological conditions such as diabetes (see Figure 4) and cirrhosis [26], respectively. Within
the cell, nitric oxide produced by NOS can interact with various specific targets (soluble
guanylate cyclase, cytochrome c oxidase) and other biomolecules such as lipids, proteins and
carbohydrates.
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Figure 4. Immunohistochemistry of NOS1 in liver from control, Type-1 diabetic and endotoxin-
treated rats
NOS1 distribution was evaluated in the perivenous area, as shown by immunohistochemistry
(at 20X; shown in a red-brown color) (Villanueva et al., 2010, submitted manuscript). Arrows
show the distribution of NOS1 in endothelium (black), hepatocytes (white) and Kupffer cells
(grey). A rabbit NOS1 polyclonal primary antibody (from Cayman Chemical Co.) was used
in the immunostaining procedure that is followed by a diaminobenzidine-based development.
In control animals, NOS1 expression was visible only at the endothelium (Control). Using the
same conditions in Type-1 diabetic rats, NOS1 was present in hepatocytes, endothelium and
Kupffer cells. Nuclear localization of NOS1 was only seen in hepatocytes of Type-1 diabetic
rats (compare cells from the three groups). In endotoxin animals (5 h after lipopolysaccharide
injection), the number of NOS1-positive cells was higher than that in control animals.
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Figure 5. Role of caveolin in modulating NOS3 activity
Caveolin-1 (CAV1), by anchoring proteins to the membrane, inhibits the activity of certain
proteins, for example, NOS3. Following ligand- or mechano-stimulation, NOS3 is dissociated
from CAV1, allowing its accessibility to calmodulin (CaM) and 90-kD heat-shock protein
(HSP90) to produce nitric oxide (modified from Carver and Schnitzer, [142]).
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Table I

Cellular distribution of NOS isoforms

NOS isoform Cell and Expression type References

NOS1 Neurons, cardiomyocytes, gastrointestinal smooth muscle, keratinocytes, macula densa,
neutrophils, skeletal muscle, tubular epithelium, vascular smooth muscle cells, hepatocytes

[4,20,26,80,82,94,124,129–135]

NOS2 Inducible expression
Macrophages and airway smooth muscle cells, alveolar macrophages, chondrocytes,
endothelial cells, Kupffer cells, lung fibroblasts, mast cells, neutrophils, skeletal muscle, Type
II epithelial cells, vascular smooth muscle cells
Constitutive expression
Airway epithelium, colon mucosae, cortical tubules, neurons, hepatocytes, keratinocytes

[20,23–29,52,82]

NOS3 Endothelial cells, bronchial epithelial cells, eosinophils, epithelial cells of human nasal
mucosa, fibroblasts, gastrointestinal mucosae, hepatocytes, lymphocytes, neutrophils,
skeletal muscle, syncytiotrophoblasts of human placenta, Type II alveolar cells

[20,26,51,52,82,134,136]
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