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Introduction

Homing to sites of injury is an important property of any puta-
tive reparative cell. Intravenous delivery of bone marrow-derived 
cells including MSCs1 is of functional benefit in animal models 
of neurological disease, including demyelination.2-6 The mecha-
nisms by which these cells affect lesion repair are unknown, as 
are the means by which circulating MSCs enter lesions.

Chemokines are small (8–10 kDa), chemoattractant cytok-
ines. Although their association with inflammation was recog-
nized many years ago, their ability to recruit leucocytes was only 
more recently appreciated. More recently still, it has been recog-
nized that chemokines also play important roles in cell migration 
in other contexts, including development, infection, angiogen-
esis, angiostasis and metastasis.7

Chemokines are known to have a role in recruitment of cells 
in CNS inflammation, including multiple sclerosis (MS).8-13 
Differential expression of a number of chemokines and their 
receptors has been demonstrated in both acute and chronic 
MS lesions including monocyte chemotactic protein-1 (MCP-
1; CCL2), macrophage inflammatory protein-1α (MIP-1α; 
CCL3), MIP-1β (CCL4), regulated on activation, normal T cell 
expressed and secreted (RANTES; CCL5), interferon-inducible 
protein-10 (IP-10; CXCL10), and stromal cell-derived factor-1 
(SDF-1; CXCL12) (reviewed in ref. 14).

We hypothesized that chemokines implicated in the patho-
genesis of demyelinating disease have significant effects on the 
behavior of MSCs. Here we explore the ability of adult hMSCs to 
migrate and proliferate in vitro in response to various chemokines 
(MCP-1, RANTES, MIP-1α, MIP-1β, IP-10 and SDF-1).
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Results

Human MSCs migrate in response to chemokines expressed in 
demyelinated lesions. Using the agarose drop migration assay, 
we assessed the migratory responses of human mesenchymal 
stem cells in relation to a range of relevant cytokines, quantifying 
migration as described above. With most chemokines, the results 
were consistent with a dose-response effect (Fig. 3). MIP-1β 
showed a positive effect at a concentration of 25 ng/ml but this 
did not reach statistical significance (p = 0.14).

Effect of chemokines on hMSC proliferation. We also 
assessed the effects of these chemokines on hMSC proliferation. 
Higher concentrations of RANTES and IP-10 (500 ng/ml) did 
produce a significant increase in proliferation of hMSCs (Fig. 4). 
With MCP-1, there was a trend towards a significant effect on 
proliferation of hMSCs at 50 ng/ml and 100 ng/ml. MIP-1α did 
not have a statistically significant effect on hMSC proliferation 
although there was a trend towards a toxic effect at high concen-
tration (500 ng/ml).

Discussion

This is the first systematic study, using a dose-response approach, 
exploring the responses of human MSCs to chemokines known 
to be expressed in the lesions of multiple sclerosis.

We have demonstrated that hMSCs migrate in response to 
chemokines expressed in demyelinated lesions including SDF-
1, MCP-1, RANTES, MIP-1α and IP-10. In addition, hMSCs 
proliferate in response to high concentrations of RANTES and 
IP-10.

Systemic delivery of multipotent mesenchymal stem cells (MSC) may be of benefit in the treatment of neurological 
diseases, including multiple sclerosis (MS). Certainly, animal studies have demonstrated functional benefits following 
MSC transplantation, although the mechanisms by which MSCs migrate to lesions and stimulate repair remain unknown. 
Chemokines stimulate migration in other settings. In this study, we systematically explore the migratory and proliferative 
responses of human MSCs (hMSC) to chemokines expressed in MS lesions. We demonstrate that these chemokines trigger 
hMSC migration. In addition, we show that RANTES and IP-10 promote hMSC proliferation.
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although the scientific rationale for these trials has been anti-
inflammatory rather than mobilisation of specific populations of 
bone marrow cells. The relatively low concentration of MSCs in 
normal marrow may mean that cytokine-mobilisation would be 
insufficient for therapeutic purposes; nonetheless there are signif-
icant potential advantages compared with the exacting require-
ments of ex vivo proliferation.

Materials and Methods

Recombinant human chemokines were obtained from Peprotech; 
SDF-1 (300-28A), MCP-1 (300-04), MIP-1α (300-08), MIP-1β 
(300-09), RANTES (300-06) and IP-10 (300-12).

Marrow collection. Adult human marrow was obtained from 
the discarded femoral head of patients undergoing total hip 
replacement at the Avon Orthopaedic Centre (AOC), Southmead 
Hospital, Bristol with the approval of the local ethics committee 
and following formal patient consent.

Isolation and proliferation of hMSCs. The marrow was  
broken up with a scalpel and washed in Hanks medium (Sigma 
H9269) until only white spicules of bone remained. The cell sus-
pension was layered onto an equal volume of Lymphoprep (Axis-
Shield PoC AS) and spun (1,620 g) for 30 min. A red cell lysis step 
was performed (10 min incubation at 4°C with 0.15 M ammo-
nium chloride, 0.01 M potassium bicarbonate and 0.15 mM 
EDTA in ddH

2
O) and the mononuclear cells were re-suspended 

in Dulbecco’s modified eagle’s medium (DMEM, D5523, Sigma) 
following a further wash with Hanks. Cell number and viabil-
ity were assessed using trypan blue exclusion (Sigma, T8154). 
Initially, cells were plated at a density of 4 x 105/cm2 in standard 
hMSC medium [DMEM supplemented with 10% foetal bovine 

These experiments are the first to explore the migration of 
hMSCs using the agarose drop assay which allows for quanti-
tative analysis of migration and assessment of cell morphology 
in response to changes in culture medium over 72 h, although 
direction and velocity of migration are not assessed.21 The results 
broadly concur with the findings of other investigators who have 
studied chemokine-induced migration of hMSCs (Table 1).22-31 
A notable exception was the failure to demonstrate migration of 
hMSCs in response to MCP-1 by Ringe et al.26 and Croitoru-
Lamoury et al.22 although the latter did demonstrate chemo-
taxis following pre-treatment with interferon-β. This apparent 
discrepancy and the reported variations in the concentration of 
chemokine triggering migration are likely to be explained by the 
inhomogeneous nature of hMSC cultures, differences in culture 
conditions (including passage number) and assay method, as well 
as donor variability and the level of ‘pre-stimulation’ of hMSCs. 
The finding that, under certain conditions, chemokines exert a 
proliferative effect on hMSCs is a novel result.

The possibility that circulating MSCs, exposed to chemokines, 
migrate into lesions, may have implications for spontaneous repair 
processes in MS. MSCs in experimental models have been shown 
to influence neural stem cell differentiation,32-34 remyelination,2,5,6 
axon loss35,36 and, particularly, immune activity.5,37

Our findings may also have implications for the development 
of new therapeutic interventions designed to mobilize endoge-
nous cells to enhance repair. Potentially, small molecules may be 
designed to mobilize endogenous cell populations—analogous 
to the current clinical use of granulocyte-colony stimulating  
factor (G-CSF) to mobilize CD34-positive cells during the work-
up for peripheral stem cell collection. Clinical trials employing 
chemokine receptor antagonists in MS are already in progress14 

Table 1. Summary of published results regarding migration of human MSCs in response to chemokines

Reference Assay method SDF-1 MCP-1 MIP-1α RANTES IP-10

Wang, et al. Hematology 
2002; 7:113–7.

Boyden, 5 h
Increased to max 
tested 300 ng/ml

Increased to max 
tested 40 ng/ml

Wynn, et al. Blood 2004; 
104:2643–5.

Transwell Max 30 ng/ml

Sordi, et al. Blood 2005; 
106:419–27.

Boyden, overnight
Increasing 

 concentrations to 
max 1,000 ng/ml

Max 300 ng/ml

Honczarenko, et al. Stem Cells 
2006; 24:1030–41.

Chemotaxis 
 chamber, 45 min

1 ug/ml; ‘bell-shaped’ 
dose response curves

Son, et al. Stem Cells 2006; 
24:1254–64.

Tranmatrigel, 24 h 100 ng/ml

Dwyer, et al. Clin Can Res 
2007; 13:5020–7.

Transwell 18 h
Increased between 

150–600 pg/ml

Ringe, et al. J Cell Biochem 
2007; 101:135–46.

ChemoTx, 20 h
250–1,000 nM, min 

100 nM
No migration 
1–1,000 nM

Schmal, et al. Cytotherapy 
2007; 9:69–79.

Minichambers, 
1.5 h

Max 1–10 ng/ml

Ponte, et al. Stem cells 2007; 
25:1737–45.

Transwell, 
 overnight

150 ng/ml 100 ng/ml 100 ng/ml 150 ng/ml

Croitoru-Lamoury, et al.  
J Interf Cyto Res  
2007; 27:53–64.

Transwell, 48 h 50 & 500 ng/ml
1,000 ng/ml only 

with IFNb
1,000 ng/

ml
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wells. Results are presented as a percent of control. Each experi-
ment was repeated at least in triplicate.

Cellular proliferation assay. Cellular proliferation was  
measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 
tetrazolium bromide (MTT) assay (M5655, Sigma, UK).20 
Human MSCs between second and fifth passage were plated in 
50 µl 2% FCS in DMEM into 96 well plates (Nunc or Falcon) 
at a cell density of 1,000 cells per well. The total volume in the 
wells was made up to 100 µl by the addition of x2 concentra-
tion of chemokine in 2% FCS in DMEM. At 72 h, 20 µl of 5 

serum (FBS, StemCell Technologies Inc., 06471)] in vented tissue 
culture flasks (Falcon). Cultures were incubated in a humidified, 
5% CO

2
 atmosphere at 37°C and the medium exchanged every 

5–7 d. Upon reaching a minimum of 80% confluence, adherent 
cells were passaged with trypsin-EDTA (Cambrex, BE17-161E) 
and re-plated in T75 flasks with fresh medium at 0.5 x 106 cells 
per flask. MSCs were routinely differentiated into adipogenic, 
chondrogenic and osteogenic cell types according to previously 
published methods.15-18 The immunophenotype as determined by 
FACS was consistent with the defining criteria for MSCs.1

Agarose drop migration assay. The chosen method of assess-
ing hMSC migration in vitro was the agarose drop method,  
modified from Frost et al.19 Human MSCs between second and 
fifth passage were trypsinised and resuspended in 2% FCS/
DMEM at approximately 1 x 106 cells/40 µl. The concentration 
of FCS was a balance; higher concentrations induced significant 
migration independent of the chemokine added but some FCS 
was required to maintain cell viability. The cells were mixed with 
20 µl 1% low melting point agarose (Sigma A-9045) in PBS which 
was pre-warmed to 95°C then cooled to 37°C. The cell/agarose 
mixture (2 µl/well) was aliquoted quickly onto the center of pre-
cooled wells coated with poly-L-lysine. The mixture was then 
allowed to set at 4°C for 10 min. Subsequently, 750 µl of medium 
appropriate to the experiment was added to the wells around the 
cell suspension/agarose droplet. In some experiments, 20 µg/
ml aphidicolin (Sigma A0781) was added to the flood to inhibit  
cellular proliferation. Following 72 h incubation at 37°C, migra-
tion between the edge of the agarose drop and the penumbra of 
outwardly migrating cells was measured at 0, 90, 180 and 270° 
using a phase contrast microscope and calibrated graticule (Fig. 
1). To correct for systematic differences between trials, migration 
distances were converted to a migration index: distance migrated 
in test wells divided by the mean distance migrated in the control 

Figure 1. Human MSCs migrating out of an agarose droplet under control conditions (A; 0 ng/ml MCP-1) and following stimulation of migration (B; 
100 ng/ml MCP-1). Under conditions of low levels of migration, individual cells or small clusters could be seen (A) but with higher levels of migration, 
sheets of migrating MSCs were observed (B).

Figure 2. MTT signal correlated with cell density [Pearson correlation 
0.907 (significant at the 0.01 level)].
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