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Neuroimaging studies of cognitive control have identified two
distinct networks with dissociable resting state connectivity pat-
terns. This study, in patients with heterogeneous damage to these
networks, demonstrates network independence through a double
dissociation of lesion location on two different measures of net-
work integrity: functional correlations among network nodes and
within-node graph theory network properties. The degree of net-
work damage correlates with a decrease in functional connectivity
within that networkwhile sparing the nonlesioned network. Graph
theory properties of intact nodes within the damaged network
show evidence of dysfunction compared with the undamaged net-
work. The effect of anatomical damage thus extends beyond the
lesioned area, but remains within the bounds of the existing net-
work connections. Together this evidence suggests that networks
defined by their role in cognitive control processes exhibit indepen-
dence in resting data.
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Cognitive control is required in everyday life to coordinate our
thoughts and actions to achieve internal goals while still al-

lowing the flexibility to adjust these goals with changing task de-
mands. Although previous studies have attributed cognitive control
to various prefrontal cortical regions (1, 2), recently it has been
proposed that a dual-networkarchitecture exists in thehumanbrain
in which cognitive control depends on regions that extend beyond
the frontal cortex (3). In a recent cross-task analysis, Dosenbach
et al. (4) identified a number of regions active during different
stages of cognitive control tasks.Given thedifficulty in isolating cog-
nitive control networks that are simultaneously active during task
performance, the investigators took advantage of the recent advent
of resting state functional MRI (rs-fMRI) for detecting spontane-
ous fluctuations between coherent brain regions. In a follow-up
study, these predefined regions of interest (ROIs) obtained from
the task data served as seeds in a correlation analysis of rs-fMRI
data (3) in which graph theory and hierarchical clustering were
applied to the correlation matrices. These analyses identified two
distinct networks labeled as fronto-parietal (FP) and cingulo-
opercular (CO) (Fig. 1A). Based on their role in cognitive tasks, the
FPnetwork consists of nodes proposed toprovide signals that act on
a rapid time scale to initiate and adjust control, whereas the CO
network nodes act to provide signals that allow set maintenance
over a longer time scale (3, 5).
Numerous studies using rs-fMRI have shown that neuronal ac-

tivity is characterized by temporal correlations in blood oxygen
level-dependent signal across disparate brain regions (6, 7). These
fluctuations seem highly consistent over time and reflect the pres-
ence of intrinsic functional (8) and structural (9) connectivity.
Among these fluctuations, different networks can be distinguished,
many of which show remarkable resemblance to task-related net-
works (10).Using rs-fMRI, there are a numberof differentmethods
for assessing network properties, frommeasuring the magnitude of
correlations between single nodes (11) to calculating mean corre-
lation values across predefinednetwork nodes (12).Hereweuse the

latter method to compare mean correlations within and between
the FP and CO networks.
Although correlations between brain regions can reveal global

network properties, they do not provide information about the
relationship between nodes within those networks or about the
small-scale regional organization within network nodes. Graph
theory is a mathematical tool that has recently been applied to rs-
fMRIdatawith the goal of quantifying the organization of network
nodes at both the whole-brain and local levels (13–16). One graph
theory property that distinguishes brain networks from other
nonbiological networks is its characteristic small-world architec-
ture (13) that is hypothesized to be scale-free in that it exists at both
local and global levels (17). In both structural and functional MRI
data (14, 15), brain networks have been found to be optimized for
high local and global information transfer while maintaining low
wiring costs. This organization is so consistent that disruptions
in small-worldness can be used as a biomarker for distinguishing
young healthy subjects from those with Alzheimer’s disease (18),
schizophrenia (19), and even normal aging (20).
Examining the correlation structure of resting state networks in

patients with focal lesions offers the opportunity to test the hy-
pothesized functional independence of the FP and CO cognitive
control networks. Furthermore, the incorporation of graph theory
analyses allows detection of small-scale changes in regional or-
ganization that may underlie more global network changes. In the
current study, we scanned patients with heterogeneous focal brain
damage in an rs-fMRI session. We computed time-series corre-
lations among the ROIs in the FP and CO network as well as
among voxels within each ROI. At the global network level, we
found higher within-network than between-network correlations
across all patients, and a negative relationship between within-
network functional connectivity and the amount of damage sus-
tained by the network. Simulating lesions in data from healthy
control subjects resulted in less severe decreases in functional
connectivity than found in our patients. Thus, it is likely that the
functional disruption captured by the decrease in connectivity
extends beyond the site of anatomical damage to the remaining
nondamaged nodes of the network. Indeed, the small-worldness of
these nodes was lower than those of the undamaged network,
supporting the notion that global network connectivity changes
can be accounted for by disruptions in local network organization.
We can thus conclude that anatomical damage to portions of two
networks shown previously to be differentially engaged during
different cognitive control processes specifically affects only the
damaged network. This finding points toward the functional in-
dependence of these networks at rest and presumably under con-
ditions requiring cognitive control.
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Results
In this study, 21 patients with heterogeneous focal damage (Fig.
1B) underwent 10 min of rs-fMRI followed by high-resolution
anatomical scans to enable accurate lesion mapping. All patient
lesion masks can be seen superimposed on normalized T1 axial
slices in Fig. 2. Time-series correlations were assessed among 18
predefinedROIs (3) after standard preprocessing (6). The amount
of damage sustained by each patient was quantified as the number
of voxels in eachROI that overlappedwith the lesionmask divided
by the total number of voxels across all ROIs in that network to
account for the differing network sizes. Some patients (Fig. 1C)
sustained significant damage to both networks, so we used a dam-
age-difference score to represent the relative amount of damage to
thenetworks. Thismeasure allowed us to examine how the amount
of relative damage affected the difference in connectivity between
the two networks. As noted in Fig. 1C, the lesions in subjects 5–8
did not overlap with either the FP orCOnetwork. The inclusion of
these subjects in this study can be considered a control to examine
the functional connectivity among anatomically intact network
nodes in patients who have sustained brain damage elsewhere.
In addition to this anatomical measure of network integrity, we

obtained a measure of functional connectivity within and between
the COand FP networks by averaging over the correlations among
network nodes in each patient, a method that has been used
elsewhere (12). Paired t-tests (Fig. 3A) revealed significantly
higher average correlations within the CO network and within the
FP network compared with average between-networks correla-
tions, in the patient group [t(20)=3.55;P< 0.005 and t(20)=5.94;
P < 0.0001, respectively] and in a group of age-matched control
subjects [t (20) = 3.4; P < 0.005 and t(20) = 9.25; P < 0.0001, re-
spectively]. Individual patient mean correlation values are shown
in Fig. 3B. In previous studies of healthy populations (3), the FP

and CO networks exhibited higher within-network than between-
network correlations. This is also true here with both lesion
patients and age-matched control subjects, an observation that
lends support to the dissociability of these networks in the resting
state. Importantly, however, it is only by capitalizing on the extent
of damage to these networks that we can address the question of
whether the within-network connectivity of the FP and CO net-
works is independently affected by this selective damage.
To assess the extent to which the networks are independent,

we correlated relative network damage with relative strength of
functional connectivity within each network. Relatively more
damage to a network was negatively correlated (r = −0.64, P <
0.001; Fig. 4A) with relatively poorer connectivity within that
network. When the size of the lesion was taken into account, this
negative relationship remained significant (r= −0.73, P < 0.001).
The method that we used of averaging correlation values intro-
duces the potential confound of combining negative and positive
values. However, performing the correlation analyses in Fig. 4A
with r2 values did not change this relationship (r=−0.44,P< 0.05).
A potential confound to our relative measure of functional con-

nectivity is that the functional data fromdamaged nodes is allowed
to contribute to the mean network correlation values. Because of
the small number of nodes in both the CO and FP networks and
the variability in the number of damaged nodes per subject, re-
moving the damaged nodes entirely was not a viable option, as this
would negatively affect the signal-to-noise ratio in the individual
subject estimates. Instead, we used the percent node overlap
(Fig. 1C) to conduct a weighted-average, lesion-masking analysis,
in which each node was weighted by the degree of lesion overlap.
Correlation values from those nodes overlappingwith the patients’
lesions thus contributed to the network averages in proportion to
our best estimate of their integrity. Repeating the correlation
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Fig. 1. (A) FP and CO ROI locations from Dosenbach et al. (3) (B) Degree of lesion overlap across all patients. (C) Amount of damage sustained at each node
by each subject. Subjects 5–8, despite having lesions elsewhere, sustained no damage to either network.
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analysis in Fig. 4A with this method yielded the same result ob-
tained without weighted averaging (r = −0.45, P < 0.05). In ad-
dition, we performed a simulation analysis (SI Materials and
Methods), which argues against the possibility that it is the dam-
aged nodes themselves driving this negative relationship. In this
simulation, the functional correlations of those nodes overlapping
with regions of network damage were substituted into the corre-
lation matrix of corresponding undamaged regions in healthy
subjects. If it were the case that the low correlations from the
damaged nodes were driving the negative relationship between
damage and connectivity, this same relationship should have been

observed in the simulated patients. However, this was not the case.
Thus, we conclude that the decrease in network correlations in
these patientsmust be due to the dysfunctional organization of the
anatomically intact nodes within the damaged network.
The correlation between lesion location and functional con-

nectivity used relative differences and as such, could be due to in-
creased connectivity in the undamaged network rather than de-
creased connectivity in the damaged network.However, examining
connectivity as a function of absolute damage in each network
separately rejects this claim (Fig. 5). Across patients, CO damage
is negatively correlated with CO (r = −0.8, P < 0.0001) and un-
related to FP connectivity (r = 0.03, P < 0.90), and FP damage is
negatively correlatedwithFP (r=−0.44,P< 0.05) andunrelated to
CO connectivity (r = −0.19, P < 0.41). Partial correlations taking
into account the amount of damage to the opposite network
strengthens these relationships. For CO damage, controlling for
FP damage, the partial correlation with the CO network remained
significant (partial r = −0.83, P < 0.0001) and remained non-
significant for the FP network (partial r = 0.2, P = 0.388). For FP
damage, controlling forCOdamagedidnot change the significance
of the relationshipwith theFPnetwork (partial r=−0.47,P< 0.05)
and the correlation with the CO network remained nonsignificant
(partial r = −0.14, P = 0.559). Together, these data support our
assertion that increasing damage to one network is correlated with
increasingly disrupted connectivity within that network, but does
not affect the other network or the connectivity between networks.
In a parallel analysis to the ROI-to-ROI functional correlations

shown in Fig. 4A, we calculated within-ROI voxel-by-voxel time-
series correlations to capture the local changes to undamaged FP
and CO network nodes. Importantly, these voxelwise correlations
were computed on unsmoothed functional data. For each ROI,
we assessed graph theory metrics (clustering and path length)
over these within-ROI-correlation matrices as well as for equiva-
lent sized random networks yielding a metric of small-worldness
(sigma). The average sigma values across network nodes showed

A

B

Fig. 3. (A) Average FP and CO connectivity across subjects in lesion and con-
trol groups. (B) Average FP and CO network connectivity within each lesion
patient sorted from high FP to high CO damage.

Fig. 2. Lesion masks in normalized space for all 21 subjects.
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a similar relationship to the ROI-to-ROI functional correlations;
that is, the average small-worldness of the small-scale networks
contained in each individual node in the large-scale cognitive con-
trol network was decreased only within the damaged network,
leaving the undamaged network relatively intact. This relationship
were significant (cost = 0.1, r= −0.47, P < 0.05) within a range of
cost values.A single cost value and the best-fitting regression line is
shown in Fig. 4B.
In summary, results fromboth the functional correlations across

network nodes and graph theory measures within nodes indicate

that anatomical damage to one network has a specific detrimental
effect on the remaining undamaged nodes in that network but no
effect on the other network. Simulating brain lesions in healthy
control subjects also supports this claim (SI Materials andMethods
and Fig. S1).

Discussion
Whether in a controlled experimental environment or in a real-life
situation, humans are adept at maintaining a task-relevant goal
while simultaneously making moment-to-moment adjustments in
behavior to achieve that goal. Such cognitive control, we and
others (5, 21) argue, is supported by multiple independent neural
systems. Here we assess network structure using multinodal net-
work functional correlations andwithin-node graph theorymetrics
to provide converging evidence in support of the putative inde-
pendence of two proposed cognitive control networks (3). We
have demonstrated that damage to two networks thought to sup-
port different components of cognitive control alters connectivity
within the damaged network but leaves the other network pre-
served. Within the damaged network, it is not only the portion
of the network subjected to anatomical damage that exhibits dys-
function; rather, as we have demonstrated by within-node graph
theorymeasurements, it is also the remote, interconnected regions
that seem to be affected by this damage.
Our findings are consistent with the concept of diaschisis, which

was originally formulated to describe temporary clinical deficits
related to areas remote from the area of damage (22). The concept
of diaschisis has since been expanded to includeneurophysiological
observations of depression of activity in remote, undamaged brain
sites that are functionally connected to lesion areas. The prevailing
hypothesis for the underlying mechanism responsible for this phe-
nomenon is the withdrawal of excitatory influences from anatom-
ically connected brain regions (23), but evidence for this mecha-
nism from neuroimaging data in stroke patients has been mixed.
Some investigators have demonstrated significant reductions in
resting activity in structurally intact regions homologous to the site
of damage using positron emission tomography (24) and magne-
toencephalography (25), as well as decreases in EEG coherence
throughout the lesion hemisphere (26) and across the entire brain
(27). One study, however, found that whereas resting PET activity
showed significant decreases at a distance from the lesioned site,
task-evoked BOLD signal was minimally affected (24).
Although the aforementioned studies are largely consistent in

their observation that functional disruptions extend beyond the
region of anatomical damage, none have examined the specific ef-
fects of damage on functional networks. Perhaps the disparate
results from these studies can be explained by our hypothesis that
damage remains localized to the particular network affected. This
has been examined in an fMRI study of patients with right hemi-
sphere strokes who exhibited spatial neglect (11). In this study,
functional connectivity of nodes in two attention networks was
assessed at both the acute and chronic stage of recovery. Func-
tional correlations between pairs of network nodes in both the
anatomically damaged ventral attention system and intact dorsal
attention system were decreased at the acute stage compared
with age-matched control subjects. Over time, the dorsal system
recovered its functional connectivity, but the ventral system re-
mained impaired. The investigators posited that although only one
system had sustained physical damage, because the ventral and
dorsal attention systems normally interact, anatomical damage to
the ventral system carried over into the dorsal system and man-
ifested as a disruption in functional connectivity. That is, the dorsal
system normally relies on the operation of the ventral system
to maintain some aspects of spatial attention, so anatomical dam-
age to the ventral systemhas functional consequences for the distal
parts of thenetwork even though they are remote from thedamage.
Another recent study from the same group (28) examined the

behavioral significance of intra- versus interhemispheric interac-

Fig. 5. Mean correlation values within the CO or FP networks in either
patients with relatively more CO network damage or patients with relatively
more FP network damage. *Significant differences between within-FP and
within-CO network correlations (P < 0.05).

A

B

Fig. 4. (A) Relative functional connectivity of CO and FP networks versus
relative CO and FP anatomical damage. (B) Relative small-worldness (sigma)
of CO and FP network nodes versus relative CO and FP anatomical damage.
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tions following ischemic stroke. Subjects’ levels of behavioral im-
pairment were correlated with the strength of functional connec-
tivity both within the damaged hemisphere and across to the intact
hemisphere nodes. Interhemispheric interactions most strongly
predicted the level of impairment in behavior, adding to the col-
lection of evidence that anatomical damage produces network
dysfunction in nonlesioned regions of the same network. However,
in the current study, rather than assessing the damage to a single
functional network, we used patients with damage to nodes
throughout two different, predefined cognitive control networks.
This disparate pattern of damage allowed comparisons of network
correlations within subject rather than with a control group and,
more importantly, has allowed us to assess the degree of in-
dependence of these two multinodal networks. Damage to the FP
network degraded the functional connectivity of nodes only within
the FP network, and damage to the CO network impaired con-
nectivity only withinCOnodes.Applying graph theory to individual
nodes in these two networks provides a potential explanation for
this decrement in connectivity. The small-scale organization of
these brain regions only within the damaged network exhibited
disruptions in small-worldness compared with the organization of
nodes within the nondamaged network.
Other investigators have used graph theory to examine the ef-

fects of brain lesions on the organization of large-scale brain net-
works; however, to our knowledge, none of these investigators
have had the advantage of using real data from patients with brain
lesions. In a recent study, Alstott et al. (29) simulated the effects
of brain lesions on network properties derived using graph the-
ory and found that the degree of disruption in network organiza-
tion depends on the location of the lesion. When nodes were
classified based on properties pertaining to their role in the net-
work as a whole, removing nodes that were considered “hubs”was
most detrimental. This approach treats the entire brain as a single
network without considering the effect of lesions on individual
subnetworks. The difficulty with using graph theory on smaller
subnetworks is thatmany of themetrics are sensitive to the number
of nodes in a graph, necessitating networks that are larger that the
number of nodes in each of the networks examined here. Using
graph theory at a local level as we do in the current study is one way
of addressing the question of the organization of subnetworks with
and without a lesion.
The observed double dissociation between the FP and CO net-

works using both multinodal functional correlations and within-
node graph theory suggests a parallel organization whereby the
function of one network may not be necessary for the other net-
work to function adequately. Consistent with clinical observations
(30), the existence of independent, distributed networks sup-
porting cognitive control may render the brain less susceptible to
persistent behavioral deficits as a result of focal cortical damage.
However, the finding that these networks are distinct functional
units does not preclude the possibility that they flexibly interact to
carry out complex cognitive control (31). That is, in a healthy in-
dividual with functionally and structurally intact cognitive control
networks, either system or both could contribute toward accom-
plishing the goal at hand. Understanding how these parallel sys-
tems coordinate their activities to carry out complex cognitive
control represents an important next step. Moreover, given the
important role of these networks in a wide variety of cognitive
processes, it will also be critical to relate the strength of functional
connectivity to behavior in both intact and damaged networks.

Materials and Methods
Participants. Twenty-one patients (age: mean ± SE, 58 ± 14 y; range, 19–83 y)
with focal lesions due to ischemic stroke (n = 16), cerebral hemorrhage (n = 1),
tumor resection (n=2), or traumatic brain injury (n=2), and21healthy subjects
(age: mean ± SE, 61 ± 17 y; range, 19–83 y) were studied. All patients were at
least 5 mo poststroke or postinjury (mean, 8.3 y; range, 5.8 mo to 32 y). All
participants were prescreened to exclude individuals with a history of other

neurologic or psychiatric conditions. Informed consent was obtained from
subjects in accordance with procedures approved by the Committees for
Protection of Human Subjects at the University of California, Berkeley.

MRI Acquisition Procedures. T2*-weighted echo planar images (EPI) were
collected on a whole body 3-T Siemens MAGNETOM Trio MRI scanner using
a 12-channel head coil. Structural images were acquired using an axial MP-
RAGE 3D T1-weighted sequence (TR = 2,300ms, TE = 2.98ms, FA = 9°, 1× 1 × 1-
mm voxels) for patients and controls, and an additional FLAIR image was
collected for each patient to better visualize the lesion. For patients, 10min of
EPI datawereanalyzed (300 timepoints, TR=2,000ms, TE=30ms, 283.30-mm-
thick axial slices). For controls, 10 min of EPI data were analyzed in seven
subjects (435 time points, TR = 1,370 ms, TE = 26 ms, 24 3.85-mm-thick axial
slices), and 4min 20 s of EPI data in 14 subjects (250 time points, TR = 1,000ms,
TE = 50 ms, 24 4.025-mm-thick axial slices). All participants were instructed to
stay awake with their eyes open; no other task instruction was provided.

MRI Preprocessing. Image preprocessing was carried out with AFNI (32). The
following prestatistics processing was applied: slice-time correction and re-
moval of nonbrain structures from the EPI volumes. Spatial smoothing using
a 5-mm Gaussian kernel was applied to all functional data except for those
used in the within-ROI graph theory analysis. Following Fox et al. (6), signal
from movement, white matter, and ventricles was regressed out, although
we did not subject the data to global mean scaling. The high-resolution T1-
weighted image was coregistered to the mean functional data and sub-
sequently segmented using SPM5 (Wellcome Department of Cognitive Neu-
rology, London, United Kingdom). The template used for segmentation was
derived from 152 normal subjects (MNI152; Montreal Neurological Institute,
Montreal, QC, Canada). Parameters obtained from segmenting thebrainwere
later used tonormalize each individual’s T1-weightedbrain, but all analyses of
functional data were performed in the subjects’ native space. This extra seg-
mentation step was necessary for accurate registration, which is often con-
founded by structural brain damage.

Lesion Mapping. Lesion masks were manually traced by EN and CG in native
patient space according to visible damage on a T1-weighted anatomical scan
and guided by damage and hyperintensities on a T2-weighted FLAIR image.
All lesion masks were examined by MD for anatomical specificity. Individual
patient masks in normalized space are shown in Fig. 2.

Percent Network Damage. To answer the question regarding how lesions dif-
ferentially affect two predefined networks (3), the extent of the brain lesion
for each individual was quantified by counting the percentage of voxels in
each ROI that overlapped with the lesion. These percentages were then av-
eraged over all of the nodes within a network, resulting in one number for
each network; a percentage of damage to that particular network. By sub-
tracting these “damage scores” from one another, a number between −100
and+100was obtained, indicating relative damage toonenetwork compared
with the other, for each individual separately.

Functional Connectivity. Eighteen 6-mm spheres centered on coordinates
from fMRI data reported in Dosenbach et al. (3) were transformed from
Talairach to MNI space and then reverse-normalized to each subject’s native
space. The reverse-normalization procedure used the normalization param-
eters obtained from the SPM5 segmentation tool to go fromatlas space to the
individual’s native space. For between-ROI correlations, voxel time-serieswere
averaged within each ROI, and these averages were bandpass filtered (0.005–
0.08 Hz) to remove physiological noise such as cardiac and respiratory artifact
(1). Functional connectivitywas assessed ineach subject by correlatingaverage
time-series across seeds, resulting in an 18 × 18 matrix for each subject. It
should be noted that pairwise correlation values derived from this type of
analysis reflect only the synchronized activations and deactivations in differ-
ent regions andwill not detect similar time courses that are phase shifted (i.e.,
these will result in low correlations). Because of the low frequency of
thefiltered signal and the nature of the resting state activity, we assumed that
such phase-shifted patterns would not represent the presence of healthy
interactions. For within-ROI correlations, all ROIs were matched for minimum
number of voxels (74) across subjects and regions. Functional connectivity was
assessed in each subject by correlating time-series across single voxels within
each ROI.

Average strength of connectivity within a network was calculated by
adding all Fisher-transformed correlation values within a network and di-
viding this by the number of nodes within that network, as in He et al. (11)
and Van Dijk et al. (12). Apart from that average within-network strength,
between-network strength was calculated by adding all of the values ob-
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tained from the between-network interactions and dividing this by the total
number of between-network interactions. This resulted in three values
for each individual. We did not assess average strength of connectivity
within each ROI, as this would be highly subject to autocorrelations among
neighboring voxels.

Partial Correlations.Apartial correlation removes the effect of a third variable
from the relationship between the two variables of interest. The number of
voxels in the lesion mask was calculated per patient and entered as a con-
trolling variable in both the relative (network Fig. 4A) and individual net-
work (Fig. 5) correlation analyses.

Removing the Contribution of Damaged Nodes from Average Correlations. The
percent overlap between the lesion mask and individual ROIs (Fig. 1C) was
used to construct a weighted-average that might more accurately reflect the
contribution of each damaged node to the total network average. In this
method, the correlation value from each node was multiplied by the percent
damage of that node (as damage increased, the weighting coefficient de-
creased from 1 to 0) and summed across nodes in either the FP or CO net-
work. This sum was then divided by the sum of the percent damage values
for all nodes in the network.

Graph Theory.Voxel-by-voxel correlationmatrices were derived for each node
(ROI) as described above. We did not compute classical metrics based on
graph-theoretic ideas at the FP/CO network level, because such measures are
difficult to interpret on small networks (with only 18 nodes). Instead, these
binarized 74 × 74 correlation matrices served as adjacency matrices defining
graphs over which various metrics were assessed. The threshold used to
binarize the correlation matrices was chosen so as to produce graphs with
comparable cost, defined as the total number of edges between nodes in
the graph divided by the maximum possible number of edges. Rather than
restricting our analysis to a set of graphs obtained by applying a single
threshold value to the correlation matrices, we systematically explored the

properties of graphs over a range of cost values to ensure that all comparisons
between subjects equated the number of edges in the graph. Although the
following computations were performed at a range of cost values (0.01–1),
the main results are reported at cost = 0.1, which is within the range of “ideal
costs” (0.01–0.34) (25).

The graph metrics of interest here were the clustering coefficient (C) and
the minimum path length (L) defined for each of the nodes in the network.
For any node i, C is the ratio between the number of edges that exist among
the nearest neighbors of i and the maximum possible number of edges that
could exist among them; high values of C imply that most of the neighbors
are also neighbors of each other. For any pair of nodes (i, j), the path length
L is defined as the minimum number of edges that must be traversed to
form a direct connection between i and j. From these local definitions, graph
averages of C and L were computed. For comparison, random networks
were constructed that contained the same number of nodes and edges. In
a random graph, the average minimum path length is typically short and the
average clustering coefficient is small. A well-accepted characterization of
a network that incorporates these properties is the small-worldness coef-
ficient sigma. Sigma is the ratio of local connectedness (C, clustering coef-
ficient) to global integration (L, path length) of a network; when this ratio
is greater than 1, a network is said to demonstrate “small-worldness” (13).
Damaged nodes were not included in this analysis and as such, any subjects
without overlap to either the FP or CO network were not included, leaving
18 subjects in the analysis reported in Fig. 4B. The same analysis including all
subjects is described in SI Materials and Methods.
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