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From bird flocks to fish schools, animal groups often seem to react
to environmental perturbations as if of one mind. Most studies in
collective animal behavior have aimed to understand how a glob-
ally ordered state may emerge from simple behavioral rules. Less
effort has been devoted to understanding the origin of collective
response, namely the way the group as a whole reacts to its envi-
ronment. Yet, in the presence of strong predatory pressure on the
group, collective response may yield a significant adaptive advan-
tage. Here we suggest that collective response in animal groups
may be achieved through scale-free behavioral correlations. By
reconstructing the 3D position and velocity of individual birds in
large flocks of starlings, we measured to what extent the velocity
fluctuations of different birds are correlated to each other. We
found that the range of such spatial correlation does not have
a constant value, but it scales with the linear size of the flock. This
result indicates that behavioral correlations are scale free: The
change in the behavioral state of one animal affects and is affected
by that of all other animals in the group, no matter how large the
group is. Scale-free correlations provide each animal with an
effective perception range much larger than the direct interindivid-
ual interaction range, thus enhancing global response to perturba-
tions. Our results suggest that flocks behave as critical systems,
poised to respond maximally to environmental perturbations.

animal groups | collective behavior | flocking | self-organization |
emergent behavior

Of all distinctive traits of collective animal behavior the most
conspicuous is the emergence of global order, namely the

fact that all individuals within the group synchronize to some
extent their behavioral state (1–3). In many cases global ordering
amounts to an alignment of the individual directions of motion, as
in bird flocks, fish schools, mammal herds, and in some insect
swarms (4–6). Yet, global ordering can affect also other behav-
ioral states, as it happens with the synchronous flashing of tropical
fireflies (7) or the synchronous clapping in human crowds (8).
The presence of order within an animal group is easy to detect.

However, order may have radically different origins, and dis-
covering what is the underlying coordination mechanism is not
straightforward. Order can be the effect of a top–down central-
ized control mechanism (for example, due to the presence of one
or more leaders), or it can be a bottom–up self-organized feature
emerging from local behavioral rules (9). In reality, the lines are
often blurred and hierarchical and distributed control may
combine together (10). However, even in the two extreme cases,
discriminating between the two types of global ordering is not
trivial. In fact, the prominent difference between the centralized
and the self-organized paradigm is not order, but response.
Collective response is the way a group as a whole reacts to its

environment. It is often crucial for a group, or for subsets of it, to
respond coherently to perturbations. For gregarious animals
under strong predatory pressure, in particular, collective re-
sponse is vital (2, 11, 12). The remarkable thing about a flock of
birds is not merely the globally ordered motion of the group, but
the way the flock dodges a falcon’s attack. Collective response is
the trademark of self-organized order as opposed to a central-
ized one. Consider a group where all individuals follow a leader,

without interacting with one another. Such a system is strongly
ordered, as everyone moves in the same direction. Yet, there is
no passing of information from individual to individual and
hence behavioral fluctuations are independent: The change of
direction of one animal (different from the leader) has very little
influence on that of other animals, due to the centralized nature
of information transfer. As a consequence, collective response is
very poor: Unless detected directly by the leader, an external
perturbation does not elicit a global reaction by the group. Re-
sponse, unlike order, is the real signature of self-organization.
In self-organized groups the efficiency of collective response

depends on the way individual behavioral changes, typically
forced by localized environmental perturbations, succeed in
modifying the behavior of the whole group. This key process is
ruled by behavioral correlations. Correlation is the expression of
an indirect information transfer mediated by the direct in-
teraction between the individuals: Two animals that are outside
their range of direct interaction (be it visual, acoustic, hydrody-
namic, or any other) may still be correlated if information is
transferred from one to another through the intermediate
interacting animals. The turn of one bird attacked by a predator
has an influence not only over the neighbors directly interacting
with it, but also over all birds that are correlated to it. Correla-
tion measures how the behavioral changes of one animal in-
fluence those of other animals across the group. Behavioral
correlations are therefore ultimately responsible for the group’s
ability to respond collectively to its environment. In the same
way, correlations are likely to play a fundamental role in other
kinds of collective decision-making processes where informed
individuals (e.g., on food location or migration routes) can ex-
tend their influence over many other group members (10).
Of course, behavioral correlations are the product of in-

terindividual interaction. Yet interaction and correlation are dif-
ferent things and they may have a different spatial (and sometimes
temporal) span. Interaction is local in space and its range is typ-
ically quite short. A former study (13) shows that in bird flocks the
interaction range is of the order of few individuals. On the other
hand, the correlation length, namely the spatial span of the cor-
relation, can be significantly larger than the interaction range,
depending chiefly on the level of noise in the system. An ele-
mentary example is the game of telephone: A player whispers
a phrase into her neighbor’s ear. The neighbor passes on the
message to the next player and so on. The direct interaction range
is equal to one, whereas the correlation length, i.e., the number of
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individuals the phrase can travel before being corrupted, can be
significantly larger than one, depending on how clearly the in-
formation is transmitted at each step.
Although the correlation length is typically larger than the in-

teraction range, in most biological and physical cases it is signifi-
cantly smaller than the size of the system. For example, in bacteria
the correlation length was found to bemuch smaller than the size of
the swarm (14, 15). In this case parts of the group that are separated
by a distance larger than the correlation length are by definition
independent from each other and therefore react independently to
environmental perturbations (16). Hence, the finite scale of the
correlation necessarily limits the collective response of the group.
However, in some cases the correlation length may be as large

as the entire group, nomatter the group’s size.When this happens,
we are in the presence of scale-free correlations (17, 18). The
group cannot be divided into independent subparts, because the
behavioral change of one individual influences and is influenced
by the behavioral change of all other individuals in the group.
Scale-free correlations imply that the group is, in a strict sense,
different from and more than the sum of its parts (19). The ef-
fective perception range of each individual is as large as the entire
group and it becomes possible to transfer undamped information
to all animals, no matter their distance, making the group respond
as one. Here, we provide experimental evidence that bird flocks
exhibit scale-free correlations and we discuss under what con-
ditions such correlations may arise in animal groups.

Results
We measured the 3D positions and velocities of individual birds
within large flocks of starlings (Sturnus vulgaris) in the field (20).
Data were taken at sunset over a major roosting site in Rome in
the winter months of 2005–2007 (Movies S1–S4). Analyzed
flocks ranged from 122 to 4,268 individuals (21–23), two orders
of magnitude larger than any previously studied animal group in
three dimensions. The degree of global ordering in a flock is
measured by the so-called polarization Φ,

Φ ¼
���� 1N ∑

N

i¼1

v!i

kvik
����; [1]

where v!i is the velocity of bird i and N is the total number of
birds within the flock. The polarization is zero if the individual
velocities are pointing in different directions, whereas it is close
to one if most of them are nearly parallel. In fact, a nonzero
value of Φ means that there is net motion of the center of mass.
Polarization is therefore used as a standard measure of global
order in the study of collective animal behavior (24, 25) (see also
ref. 26 for a similar order parameter). In all analyzed flocks we
found very high values of the polarization (Table S1). The av-
erage value over all 24 flocks is Φ= 0.96 ± 0.03 (SD), confirming
the visual impression of strongly ordered birds’ velocities (see
Fig. 1A for a 2D projection of the individual 3D velocities).
However, as we have stressed above, order tells us little about

collective response.To learn somethingabout responsewemust study
how the fluctuations in the behavioral state (in this case the velocity)
of one bird are correlated to those of another bird. Let us introduce
for each bird i the fluctuation around the mean flock’s velocity,

u!i ¼ v!i −
1
N

∑
N

k¼1
v!k; [2]

which is nothing else than the bird’s velocity in the center of mass
reference frame (assuming identical masses for all of the birds). The
spatial mean of the velocity fluctuations is zero by construction,

∑
N

i¼1
u!i ¼ 0: [3]

Relation [3] encodes the obvious fact that there cannot be
overall net motion in the center of mass reference frame.

In Fig. 1C we report the probability distribution of the modulus
of the full velocity (the speed) and of the modulus of the velocity
fluctuations in a typical flock. Themodulus of the fluctuations u!i is
on average much smaller than that of the velocities v!i. This is
expected, because the polarization is very large and thus the
fluctuations around the mean are small. Yet, despite their small
values, the velocity fluctuations contain a great deal of infor-
mation, as is clear from an inspection of Fig. 1B. Even in such 2D
projection of a 3D flock it is possible to detect the presence of two
large domains where the fluctuations are nearly parallel to each
other (see Fig. S1 for another flock). The existence of these
domains is not a consequence of the fact that birds are all flying in
the same direction, because the overall center of mass velocity has
been subtracted in Eq. 2. Hence, what Fig. 1B shows is the pres-
ence of strong spatial correlations: The change of heading of
a bird within one of these domains is highly correlated to that of
all birds within the same domain. Previous studies on starling
flocks suggest that each bird interacts on average with approxi-
mately seven neighbors (13). From Fig. 1B it is clear that the
correlated domains contain much more than seven birds. Hence,
the span of spatial correlation is significantly larger than the in-
teraction range. To quantify the size of the domains we define in
three dimensions the correlation function of the fluctuations,

CðrÞ ¼ 1
c0

∑ij u
!
i · u

!
j   δ

�
r− rij

�
∑ijδ

�
r− rij

� ; [4]

where δðr− rijÞ is a smoothed Dirac δ-function selecting pairs of
birds at mutual distance r;  u!i · u

!
j ¼ uxi u

x
j þ uyi u

y
j þ uzi u

z
j and c0 is

a normalization factor (of dimensionm2·s−2) such thatC(r=0)=1.
The correlation function measures the average inner product of
the velocity fluctuations of birds at distance r. A large value of C(r)
implies that the fluctuations are nearly parallel and thus strongly
correlated. Conversely, when the fluctuations are antiparallel,
and therefore anticorrelated, the correlation functionhas a negative

Fig. 1. (A) 2D projection of the velocities of the individual birds within
a starling flock at a fixed instant of time (flock 28-10; 1,246 birds, linear size
L = 36.5 m). Vectors are scaled for clarity (see Dataset S1 for original data).
The flock is strongly ordered and the velocities are all aligned. (B) 2D pro-
jection of the individual velocity fluctuations in the same flock at the same
instant of time (vectors scaled for clarity). The velocity fluctuation is equal to
the individual velocity minus the center of mass velocity, and therefore the
spatial average of the fluctuations must be zero. Two large domains of
strongly correlated birds are clearly visible. (C) Normalized probability dis-
tribution of the absolute value of the individual velocities and of the ab-
solute value of the velocity fluctuations (same flock as in A and B). The
velocity fluctuations are much smaller in modulus than the full velocities.
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value. On the other hand, when the fluctuations are uncorrelated,
pointing in random directions, the correlation function averages
to zero.
The typical form of C(r) in starling flocks is reported in Fig. 2A

(for other flocks, see Fig. S2). At short distances the correlation is
close to 1, and it decays with increasing r, becoming negative at
large interindividual distances [for r larger than the flock’s size C
(r) is no longer defined]. Such behavior indicates that within
a flock there is either strong correlation (short distance) or strong
anticorrelation (large distance), whereas in no range of r the
correlation function is consistently equal to zero, as one would
expect in the case of absence of correlation. This phenomenon
can be seen at a qualitative level in Fig. 1B: Each correlated do-
main has an anticorrelated domain with opposite fluctuations.
Their mutual negative correlation must not be misunderstood for
an absence of correlation: The latter case would imply a random
distribution of orientations and therefore a correlation function
equal to zero over a finite interval, at variance with the correlation
functions we find. We note that the presence of correlated/anti-
correlated domains pairs, and therefore the fact that the corre-
lation function is positive and negative, is a trivial consequence of
the fact that the spatial average of u!i is zero (Eq. 3). However,
what is highly not trivial is the fact that just two domains (the
minimum number) span the entire system: indeed Eq. 3 can in
principle be satisfied in many possible ways, for example forming
many small domains pairs, instead of two large ones.
To explain the behavior of C(r) we introduce the correlation

length ξ, whichcanbedefinedas thezeroof thecorrelation function,

Cðr ¼ ξÞ ¼ 0: [5]

The value of ξ coincides with the average size of the correlated
domains (Materials and Methods and Fig. S3). Indeed, the fact
that the correlation function changes sign at r ¼ ξ corresponds to
the fact that when we increase r we pass from considering indi-
viduals in the same correlated domain to considering individuals
in anticorrelated domains. What is the typical value of ξ? A for-
mer study showed that the interaction range has a constant value
in units of birds, rather than in units of meters (13). Hence, one
may naively expect that the correlation length also has a constant
“topological” value (units of individuals), rather than a constant
metric value. What we find is, however, completely different and
somewhat surprising: We measured the correlation length in all
analyzed flocks and found that ξ does not have a constant value,
either in units of birds or in units of meters. Rather, the corre-
lation length grows linearly with the size of the flock L (Fig. 2C).
Accordingly, correlated domains in starling flocks are larger the
larger the flock.
A correlation length that is proportional to the system size

implies that correlations are scale free. Let us briefly recall how
this works. In general, we can write the leading contribution to
the correlation function as

CðrÞ ¼ 1
ξγ

g
�
r
ξ

�
; [6]

(17, 18), where g(x) is a dimensionless scaling function. As we
have seen, we find that the correlation length grows with the
flock’s size L; this result can be formalized as

ξðbLÞ ¼ bξðLÞ; [7]

where b is a generic scaling factor. Substituting Eq. 7 into the
general relation [6] yields

Cðr;LÞ ¼ bγCðbr;  bLÞ: [8]

By choosing b = 1/r, we finally obtain the following form for the
correlation function in starling flocks,

Cðr;LÞ ¼ 1
rγ

f
� r
L

�
: [9]

Eq. 9 explains the meaning of the expression “scale free”: The
correlation between birds does not have any characteristic length
scale apart from the trivial one fixed by the size of the flock,L. The
correlation length ξ defined above is not an intrinsic length scale,
for it is proportional to L. The scaling function f(r/L) in Eq. 9
embodies the effect of the flock’s finite size on the correlation
function. To get rid of such an effect and find the asymptotic
correlation function C∞(r), we simply ask what the correlation is
between two birds at distance r within a very large flock; to answer
this question we perform the limit L→∞ in Eq. 9 and get

C∞ðrÞ ¼ 1
rγ

f ð0Þ≈ 1
rγ
: [10]

Eqs. 9 and 10 make the main point of our work: The empirical
observation that the correlation length is proportional to L (Fig.
2C and Eq. 7) implies that correlations in starling flocks are scale
free and that the asymptotic correlation function is a power law.
What is the value of γ? The sharpest way to work out the value

of this exponent is to calculate the derivative of the finite size
correlation function with respect to the rescaled variable x = r/ξ.
According to Eq. 6, when we evaluate this derivative at the zero
of the correlation function, i.e., at x = 1, we obtain

C′ðx ¼ 1Þ ¼ 1
ξγ

g′ð1Þ≈ −
1
ξγ
≈ −

1
Lγ: [11]

Hence, the rescaled correlation function at its zero should flatten
(lower derivative) in larger flocks. In Fig. 3A we plot several
correlation functions vs. the rescaled variable x = r/ξ: Up to

Fig. 2. (A) The correlation function C(r) is the average inner product of the
velocity fluctuations of pairs of birds at mutual distance r. This correlation
function therefore measures to what extent the orientations of the velocity
fluctuations are correlated. The function changes sign at r = ξ, which gives
a good estimate of the average size of the correlated domains (flock 28-10).
(B) The correlation function Csp(r), on the other hand, measures the correla-
tions of the fluctuations of the modulus of the velocity, i.e., the speed. This
correlation function measures to what extent the variations with respect to
the mean of the birds’ speed are correlated to each other. The speed corre-
lation function changes sign at a point r = ξsp, which gives the size of the
speed-correlated domains (flock 28-10). Both correlation functions in A and B
are normalized to give C(r = 0) = 1. (C) The orientation correlation length ξ is
plotted as a function of the linear size L of the flocks. Each point corresponds
to a specific flocking event and it is an average over several instants of time in
that event. Error bars are SDs. The correlation length grows linearly with the
size of theflock, ξ = aL, with a = 0.35 (Pearson’s correlation test:n = 24, r = 0.98,
P< 10−16), signaling the presence of scale-free correlations. (D) Also in the case
of the correlation function of the speed, the correlation length ξsp grows
linearly with the size of the flock, ξsp = aL, with a = 0.36 (Pearson’s correlation
test: n = 24, r = 0.97, P < 10−15). Error bars are SDs.
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experimental error the curves seem to collapse quite well one
onto the other, with no clear evidence of a flattening of the
derivative for larger flocks, indicating that γ in Eq. 11 has a very
small value. In the Inset of Fig. 3A we report for all of the an-
alyzed flocks the absolute value of the derivative in x = 1 vs. ξ.
What we observe is indeed a very weak decrease of the derivative
with increasing correlation length. The best fit to Eq. 11 gives
a very small exponent [γ ¼ 0:19± 0:08, with reduced chi square
(RCS) = 0.045], but the data are equally compatible with a log-
arithmic decay (RCS = 0.040) and even with a constant value of
the derivative, equivalent to γ = 0 or no decay (RCS = 0.059).
The data barely span one order of magnitude, so it would be
unwise to commit to any of these fits. However, what the data
positively demonstrate is that the value of γ is very low indeed.
This result is rather startling. In a non-scale-free system, the

asymptotic correlation between two individuals drops to zero
when their distance gets larger than ξ. On the contrary, in
a scale-free system the asymptotic correlation is never zero, but it
nevertheless decays, albeit as a power law, 1/rγ. However, if γ is
barely different from zero, as seems to be the case in starling
flocks, then the asymptotic correlation (i.e., the correlation
within infinitely large flocks) practically does not decay with the
distance. From Eq. 8 we see that an almost zero value of γ
implies that two birds 1 m apart in a 10-m-wide flock are as
strongly correlated as two birds 10 m apart in a 100-m-wide flock.
Behavioral correlations in starling flocks are therefore not simply
scale free, but in fact are unusually long ranged.
To better understand the significance of scale-free correlations

it is useful to see what happens in the non-scale-free case. To this
aim we use synthetic data (Materials and Methods). In each flock
we substitute the actual velocity fluctuations with a set of syn-
thetic random vectors correlated according to the following as-
ymptotic correlation function:

bC∞ðrÞ ¼ 1
rγ
exp

�− r
λ

�
: [12]

We use the hat to distinguish this synthetic correlation function
from the biological one. In contrast with Eq. 10, the synthetic
correlation function [12] is clearly not scale free, as the decay rate λ

(which we can arbitrarily tune) fixes a spatial scale, and the cor-
relation is exponentially suppressed for r > λ. Hence, the finite size
correlation function bCðr;LÞ, calculated according to definition [4],
does not obey the scale-free relation [9]. When λ is small, domains
are also small (Fig. 4A) and bCðr;LÞ is consistently equal to zero
beyond distances of order λ (Fig. 4C). This means that portions of
the flock separated by a distance larger than λ are uncorrelated and
behave independently. The correlation length ξ is a constant, ap-
proximately equal to λ, and it does not scale with L. As we increase
λ, the size of the synthetic domains grows and the correlation
function becomes more and more long ranged (Fig. 4C), but
nothing qualitative changes as long as λ < L.
On the other hand, if the decay rate λ is larger than the size L

of the flock, then all possible values of the interindividual dis-
tance r are much smaller than λ, and therefore the exponential in
Eq. 12 is always well approximated by 1. In this case the as-
ymptotic correlation function of the synthetic data decays as
a scale-free power law,

bC∞ðrÞ≈ 1
rγ
; [13]

exactly as in the case of real flocks, Eq. 10. We therefore expect
that in the scale-free limit (Eq. 13) the synthetic finite-size corre-
lation function must become equal to that of real flocks, provided
that we choose a value of γ that is small enough. This is exactly
what we find: The synthetic correlation function (Fig. 4C) and the
synthetic domain size and correlation length (Fig. 4 B and D) be-
come barely distinguishable from their biological counterparts
when the scale-free form (Eq. 15) holds, i.e., in the regime λ > L.
So far we have studied the correlations of the orientation of the

velocity (Eq. 4). However, when we compute the correlation
function of the speed (i.e., the modulus of the velocity—see
Materials and Methods for details), we find an identical linear
scaling with L of the corresponding correlation length (Fig. 2 B
and D). Hence, speed correlations are scale free, exactly as
orientation correlations. Moreover, the analysis of γ (Fig. 3B and
Inset in Fig. 3B) gives a very small value for this exponent, exactly
as for the orientation (γ ¼ 0:19± 0:11, RCS = 0.10; logarithmic
decay, RCS = 0.068; constant, no decay, RCS = 0.097).
Therefore, speed fluctuations also are very long ranged, almost
not decaying with the distance.
The speed is a stiffer mode than the orientation, as it is more

costly for a bird to change its speed (accelerate/decelerate) than
its heading. Hence, the fact that both orientation and speed are
scale-free correlated means that birds are able to transfer across
the flock their whole dynamical state. In flocking, any external
perturbation, and in particular predation, is likely to directly
cause a change of velocity (direction, modulus, or both) of a small
subset of birds that first detect the perturbation (Movie S4). Such
localized change must transmit to the whole flock to produce
a collective response. We do not focus here on the timescale for
this to happen, but on the very possibility for the information to
reach the whole group, irrespective of the time needed to do this.
In a group with finite correlation length ξ the fluctuation of the
dynamical state gets damped beyond ξ. On the contrary, in a flock
where correlations in both speed and orientation are scale free,
and where the power-law exponent γ is very small, information
can reach the whole group without damping. Therefore, scale-
free correlations are the key to collective response in bird flocks.

Discussion
Significant spatial correlations have already been observed in
bacteria swarms (14, 15). In ref. 15 it was found that for large
enough densities of the bacterial swarm the correlation length
becomes several body-lengths long. However, in bacteria the
correlation function decays exponentially and the correlation
length remains much shorter than the swarm size: Correlation, as
well as interaction, is short ranged. What we find in starling
flocks is different: The correlation function is a scale-free power
law and the correlation length scales with the group’s size; hence,
interaction is short ranged, but correlation is long ranged. If
a correlation length larger than the interaction range is likely to
be a common trait of self-organized groups, scale-free correla-
tions seem to be the landmark of a qualitatively different kind of

Fig. 3. (A) The correlation functions of several flocks are plotted vs. the
rescaled variable x = r/ξ. (Inset) The modulus of the derivative of the corre-
lation function with respect to the rescaled variable x, evaluated at x = 1,
plotted vs. the correlation length ξ for all flocking events. The derivative is
almost constant with ξ, indicating that the exponent γ in the scale-free as-
ymptotic correlation is very close to zero. The black and red lines represent
the best fits to, respectively, a constant and a logarithm (see text). (B) Same
as in A for the speed correlation.
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collective animal behavior, characterized by a superior level of
collective response.
Under what conditions do scale-free correlations appear? And

what do scale-free correlations teach us about the interindividual
coordination mechanism? First, there is no need to postulate the
existence of complicated coordination mechanisms to explain
scale-free correlations: Simple behavioral rules based on imita-
tion, such as those used in most numerical models (24, 25, 27),
are compatible with scale-free correlations. Indeed there are
several statistical models based on simple alignment rules that
develop scale-free correlations under certain circumstances (17).
The key point is not the rule, but the noise. Given a reasonable
behavioral rule (for example, align your velocity to that of your
neighbors), correlation strongly depends on the level of noise in
implementing such a rule. In a thermal system noise is due to the
temperature, whereas in animal groups it is introduced by the
inevitable individual error in obeying to any behavioral rule (see,
however, ref. 28). Ordinarily, in self-organized systems the lower
the noise is, the longer the range of the correlation. In this
context order and correlation have a common origin: They are
both large when the noise level in the system is low. Hence, it
may be expected that bird flocks, which as we have seen are
highly ordered, also exhibit strong correlations. In this case or-
der, correlation, and response would all be a consequence of the
capability of flocking birds to obey a certain set of behavioral
rules allowing very little tolerance, irrespective of the level of
environmental perturbation the flock may undergo.
However, the relationship between noise and correlation may

be more complex than that just described. In some cases, cor-
relation (and hence response) reaches a maximum at a specific

level of the noise. If noise is lowered below such a critical level,
order continues to grow, whereas correlation of the fluctuations
actually decreases. This behavior is what happens when a critical
point is present. A classic example is ferromagnetism: Below the
critical temperature the global magnetization grows, but the local
fluctuations around the global magnetization become less cor-
related. In this case order and correlation are decoupled: In-
creasing the degree of order in the system (by lowering the noise
below the critical point) makes the behavioral state of the indi-
viduals more stable, but also less sensitive to neighboring be-
havioral changes. Such higher behavioral inertia depresses,
instead of enhancing, the correlation and the global response of
the group. Too much noise, on the other hand, equally destroys
correlation, so that the system must contain just the right amount
of noise to produce a maximum response. For this reason, only at
the critical point are correlations scale free. In most physical
systems criticality is obtained by tuning some external parameter
regulating the noise (such as the temperature) to its critical
value. In the case of flocks, however, the critical value of the
noise, i.e., of the random deviation from the coordination rules,
may be evolutionary hardwired into birds’ behavior.
Discriminating between the two scenarios above (very low noise

vs. criticality) is difficult. We know too little about the actual in-
terindividual coordination mechanisms to conclude anything for
sure. If scale-free correlations of a “soft” degree of freedom such
as the orientation may be expected also off a critical point, the
fact that a “stiff” mode such as the speed is scale-free correlated
seems, however, to indicate that some kind of criticality might in
fact be present in starling flocks. Indeed scale-free correlations of
a stiff degree of freedom are difficult to obtain by simply de-
creasing the noise in the system. Too low a noise level in a hard-to-
change behavioral mode, as speed is, can cause an excessive be-
havioral inertia, which in turn depresses correlation and global
response. For this reason criticality is perhaps a more likely sce-
nario for our results. A comparison with physical systems, where
much is known on the relationship between correlations and
criticality, is significant in this respect. In physics whenever a con-
tinuous symmetry is spontaneously broken, giving rise to global
ordering, it is possible to prove that fluctuations transverse to the
order parameter are scale free (Goldstone’s theorem) (29). An
example is given by continuous spin models with alignment
interactions, where individual spins on a lattice can point in any
direction in space. Here, the system orders at low temperature,
giving rise to a global magnetic momentum, somewhat similarly to
individual velocities orienting in a common direction in flocks.
Fluctuations transverse to the global magnetization are soft modes
and exhibit power-law decay in space. In this case, scale-free
correlations are not a symptom of criticality, but a consequence of
the spontaneous breaking of a continuous symmetry, the rota-
tional one. Not all fluctuations are, however, scale free in this
context: For the modulus of the spins (i.e., the analog of speed), in
particular, correlations are short ranged (30). In flocks, on the
contrary, as we have shown, we do find scale-free correlations also
of the speed fluctuations. There is no obvious way to explain such
correlations by using symmetry arguments, such as Goldstone’s
theorem. This result is quite important, as it shows that in flocks
all dynamical modes are scale-free correlated, not only those
connected to the rotational broken symmetry. It really seems that
flocks are critical in some fundamental way.
Whatever the origin of the scale-free behavior is, the very low

value of the exponent γ that we find, i.e., the fact that the cor-
relation is almost not decaying with the distance, is by far the
most surprising and exotic feature of bird flocks. How starlings
achieve such a strong correlation remains a mystery to us.
Criticality is not uncommon in biological systems made up of

many interacting components (SI Text). Being critical is a way for
the system to be always ready to optimally respond to an external
perturbation, such as a predator attack as in the case of flocks. Our
empirical results, together with further study on the role of criti-
cality in animal groups, may contribute to move the fascinating
“collective mind” metaphor (31, 32) to a more quantitative level.

Materials and Methods
Empirical Observations. Data were taken from the roof of Palazzo Massimo,
Museo Nazionale Romano, in the city center of Rome, in front of one of the

Fig. 4. Random synthetic velocities. In each flock we replace the actual
birds’ velocity fluctuations with a set of synthetic random vectors correlated
over a length λ that we can arbitrarily tune (see text). The synthetic fluctu-
ations are located at the same positions as birds in a real flock (we used flock
28-10, the same as in Fig.1). (A) Synthetic fluctuations in the non-scale-free
case, λ = 0.05L. The domains are quite small and have a size comparable to λ.
(B) Synthetic fluctuations for λ = 4L. In this scale-free limit the domains are
very similar to the actual biological ones displayed in Fig.1B. (C) Synthetic
correlation functions bCðr;LÞ for various values of the decay length λ. By in-
creasing λ the synthetic correlation function becomes more and more long
ranged and it finally becomes very close to the actual biological one in the
scale-free regime λ > L. (D) Synthetic correlation length ξSYNTH, as a function
of the decay length λ (each point is an average over 50 synthetic samples;
errors bars are SDs). As long as λ is smaller than the size of the flock L, ξSYNTH
grows following λ. However, in the scale-free regime, λ > L, ξSYNTH saturates
to a value very close to the actual biological one.
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major roosting sites usedby starlings duringwinter. Birds spend theday feeding
in the countryside and come back to the roost in the evening, ∼1 h before
sunset. Before settling on the trees for the night, starlings gather in flocks of
various sizes and performwhat is called “aerial display,” namely an apparently
purposeless dance where flocks move and swirl in a remarkable way. By using
stereometric digital photogrammetry and computer vision techniques we
reconstructed the individual 3D positions and 3D velocities in 24 flocking
events. A flocking event is a series of consecutive shots of a flock at a rate of
10 frames/s. Analyzed flocks had different numbers of birds (from 122 to 4,268
individuals) and different linear sizes (from 9.1 to 85.7 m). The details of the 3D
reconstruction of the positions can be found in refs. 22 and 23. A tracking
algorithm (SI Text) has been used to reconstruct the 3D velocities.

Correlation Function. The correlation function C(r) defined in Eq. 4 is calcu-
lated by averaging the inner (or scalar) product of the velocity fluctuations
of all pairs of birds with mutual distance in the interval (r, r + dr), where dr
sets the discrete scale of C(r). The smoothed Dirac δ in Eq. 4 must be inter-
preted in this sense. The correlation function is normalized in such a way to
give C(r = 0) = 1. The integral over r between 0 and L (size of the flock) of the
numerator of Eq. 4 is 0 due to Eq. 3,

ðL
0
dr∑

ij
u!i · u

!
j   δ

�
r− rij

� ¼ ∑
ij
u!i · u

!
j ¼ ∑

i
u!i · ∑

j
u!j ¼ 0: [14]

As a consequence, the numerator in Eq. 4 must have a 0 in the interval [0:L],
and therefore the same holds for the whole function C(r). Because of this
condition we can define the correlation length ξ as in Eq. 5. The correlation
function of the velocity modulus, the speed, is defined as

CspðrÞ ¼ 1
c0

∑ijϕi ·ϕj   δ
�
r− rij

�
∑ijδ

�
r− rij

� ; [15]

where the δ-function has the same meaning as explained above, c0 is
a normalization factor such that the correlation is one in zero, and where

ϕi ¼ kv!ik− 1
N

∑
N

k¼1
kv!kk [16]

is the (scalar) fluctuation of the speed with respect to the global mean. The
same arguments used for the velocity fluctuations hold also for the speed
fluctuations, so that Csp(r) must have a zero, ξsp.

Size of the Domains. The correlation length ξ provides a good estimate of the
size of the correlated domains. To check this point we computed the size of

the domains in an alternative way, by diagonalizing the covariance matrix
Cij ¼ u	!i · u

	!
j . The N-dimensional eigenvector wmax relative to the maximum

eigenvalue of this matrix can be used to identify the direction of maximal
mutual alignment of the fluctuations, i.e., the average orientation of the
largest correlated domain. Defining this eigenvector is useful, because if bird
i belongs to the correlated domain, then the i component of the eigenvector
wmax is significantly different from zero. This is the rigorous way to identify
the birds belonging to a correlated domain. Once the domain is defined, we
calculate the domain’s size using the median of the mutual distances of the
birds belonging to it. In Fig. S2 we report the domain’s size thus calculated as
a function of the correlation length ξ. The clear linear correlation, with
angular coefficient very close to 1, shows that ξ is indeed a good estimate of
the domain’s size.

Synthetic Random Velocities. At each instant of time a flock is characterized by
a set of3Dcoordinates (thebirdspositions x!i) andof3Dvectors (thefluctuations
u	!i around the mean velocity). Given a flock, we keep the actual 3D positions,
but replace the 3D fluctuations with a set of random vectors w	!i (synthetic
fluctuations), drawn with a distribution whose covariance matrix is given by

hw	!ðxÞ · w	!ðxþ rÞi ¼ expð− r=λÞ
ðaþ rÞγ : [17]

The length λ sets the decay rate of the synthetic correlation, whereas the
factor a simply makes the correlation nonsingular in r = 0. When λ >> L, the
exponential is always unity, and the correlation becomes a power law with
exponent γ. Not any power makes a power law scale free, though. In three
dimensions the power law is actually scale free only for γ < 3, whereas if γ >
3 the correlation length does not scale linearly with L and the correlation is
effectively short ranged. As we have seen in the main text, to have a good
agreement with the biological data we need to use a very small value of this
exponent. Practically speaking, any value γ < 1 gives synthetic results com-
patible with the biological ones, within the experimental error.
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