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We present a generic mechanism by which reproducing microor-
ganisms, with a diffusivity that depends on the local population
density, can form stable patterns. For instance, it is known that
a decrease of bacterial motility with density can promote separa-
tion into bulk phases of two coexisting densities; this is opposed by
the logistic law for birth and death that allows only a single uni-
form density to be stable. The result of this contest is an arrested
nonequilibrium phase separation in which dense droplets or rings
become separated by less dense regions, with a characteristic stea-
dy-state length scale. Cell division predominates in the dilute
regions and cell death in the dense ones, with a continuous flux
between these sustained by the diffusivity gradient. We formulate
a mathematical model of this in a case involving run-and-tumble
bacteria and make connections with a wider class of mechanisms
for density-dependent motility. No chemotaxis is assumed in the
model, yet it predicts the formation of patterns strikingly similar
to some of those believed to result from chemotactic behavior.

bacterial colonies ∣ chemotactic patterns ∣ non-Brownian diffusion ∣
collective behavior ∣ microbial aggregation

Microbial and cellular colonies are among the simplest exam-
ples of self-assembly in living organisms. In nature, bacteria

are often found in concentrated biofilms, mat, or other colony
types, which can grow into spectacular patterns visible under
the microscope (1, 2). Also in the laboratory, bacteria such as
Escherichia coli and Salmonella typhimurium form regular
geometric patterns when they reproduce and grow on a Petri dish
containing a gel such as agar. These patterns range from simple
concentric rings to elaborate ordered or amorphous arrange-
ments of dots (3–11). Their formation results from collective
behavior driven by interactions between the bacteria, such as
chemotactic aggregation (6), competition for food (8) or changes
in phenotypes according to density (11). The question as to
whether general mechanisms lie behind this diversity of micro-
scopic pathways to patterning remains open.

Unlike the self-assembly of colloidal particles, pattern forma-
tion in motile microorganisms and other living matter is typically
driven by nonequilibrium rather than thermodynamic forces.
Indeed, the dynamics of both dilute and concentrated bacterial
fluids is already known to be vastly different from that of a
suspensions of Brownian particles. For instance, suspensions of
active, self-propelled particles have been predicted to exhibit
giant density fluctuations (12, 13), which have been observed
experimentally (14), along with various other instabilities (15,
16). Similarly, an initially uniform suspension of self-propelled
particles performing a “run-and-tumble” motion like E. coli
has recently been shown theoretically to separate into a bacter-
ia-rich and a bacteria-poor phase, provided that the swim speed
decreases sufficiently rapidly with density (17). This is akin to
what happens in the spinodal decomposition of binary immiscible
fluids, but has no counterpart in a system of Brownian particles
interacting solely by density-dependent diffusivity. (The latter
obey the fluctuation-dissipation theorem, ensuring that the equi-
librium state is diffusivity-independent.) Other nonequilibrium
effects, such as ratchet physics, have also been observed and used

either to rectify the density of bacteria (18–20) or to extract work
from bacterial assemblies (21).

Some aspects of bacterial patterning show features common to
other nonequilibrium systems, and a crucial task is to identify the
key mechanisms that control their development. In many equili-
brium and nonequilibrium phase transitions an initial instability
creates density inhomogeneities; these coarsen, leading even-
tually to macroscopic phase-separation (22). The situation
observed in bacterial assemblies often differs from this; long-lived
patterns emerge with fixed characteristic length scales, suggesting
that any underlying phase-separation is somehow arrested. The
strong diversity of biological functions met in experiments has
led to an equally diverse range of proposed phenomenological
models (5–7, 9–11) to account for such effects. Most of them rely
on the coupling of bacteria with external fields (food, chemoat-
tractant, stimulant, etc.), and many involve a large number of
parameters due to the complexity of the specific situation of
interest. The most common mechanism used to explain the
bacterial patterns is chemotaxis (6): the propensity of bacteria
to swim up/down gradients of chemoattractants/repellants. This
explanation is so well established in the literature for at least
two organisms [E. coli and S. typhimurium (6)] that observation
of similar patterns in other species might defensibly be taken as
evidence for a chemotactic phenotype.

Although in principle one would like a similarly detailed
mechanism for each system in which such patterns can form, it
is important also to ask whether more generic explanations
can be found by studying the process at a coarse-grained level.
This does not abandon the search for a mechanism, but aims
to subsume the complex, system-specific microscopic details into
a small number of effective parameters that control the macro-
scopic behavior. Here we follow such an approach, offering a
description on scales intermediate between the microscopic
dynamics of bacteria and the macroscopic scale of the patterns.
In effect we are “averaging out” all specific microscopic aspects,
such as the motion of chemoattractants or steric interactions, and
retaining only a coarse-grained dependence of the bacterial
motility on density. This procedure allows us to identify a very
general mechanism, characterized in the simplest cases by only
two dimensionless numbers, that may help to explain the origin
of pattern formation across a large class of experiments on
bacterial colonies. This involves a density-dependent motility,
giving rise to a phase separation that is then arrested, on a
well-defined characteristic length scale, by the birth and death
dynamics of bacteria.

To develop our approach, we first analyze a specific example
of run-and-tumble bacteria whose swim speed depends directly
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(via unspecified interactions) on local bacterial density. This gives
patterns similar to those observed in experiments (5, 6). However,
the basic mechanism—density-dependent motility coupled to
logistic population growth—is not limited to this example as
we discuss toward the end of this paper. In particular, our work
demonstrates that chemotaxis per se is not a prerequisite for
observing what are sometimes colloquially referred to as “chemo-
tactic patterns.”

It is indeed remarkable that density-dependent motility and
logistic growth alone are sufficient to create some of the pattern
types previously identified with specific chemotaxis mechanisms.
In mechanistic terms, we find that the logistic growth dynamics
effectively arrest a spinodal phase separation; the latter can
follow from a density-dependent swim speed (17), but could also
arise far more generally, as we discuss later. Put differently, an
initially uniform bacterial population with small fluctuations will
aggregate into droplets, but these will not coarsen further once a
characteristic length scale is achieved, at which aggregation and
birth/death effects come into balance. Starting instead from a
small inoculum, we predict formation of concentric rings which,
under some conditions, at least partially break up into spots at
late times (5).

To exemplify our generic mechanism, we start from a minimal
microscopic model of run-and-tumble bacteria, which can run in
straight lines with a swim speed v and randomly change direction
at a constant tumbling rate τ−1 (23–25). To this we add our two
key ingredients: a local density-dependent motility and the birth/
death of bacteria, the latter accounted for through a logistic
growth model. Of course, bacteria can interact locally in various
ways, ranging from steric collisions (17) to chemical quorum sen-
sing (6). [Indeed a nonspecific dependence of motility on bacter-
ial density was previously argued to be central to bacterial
patterning by Kawasaki and co-workers (8).] Here we focus on
the net effect of all such interactions on the swim speed vðρÞ,
which we assume to decrease with density ρ. This dependence
might include the local effect of a secreted chemoattractant [such
as aspartate (3–5), which causes aggregation, effectively decreas-
ing v] but does not assume one.

In addition to their run-and-tumble motion, real bacteria con-
tinuously reproduce, at a medium-dependent growth rate that
ranges from about one reciprocal hour in favorable environments
such as Luria broth to several orders of magnitude lower for
“minimal” media such as M9. In bacterial colonies patterns
may evolve on time scales of days (6), over which such population
growth dynamics can be important.

We now derive coarse-grained continuum equations for the
local density ρðr;tÞ in a population of run-and-tumble bacteria,
with swim speed vðρÞ, growing at a rate of αð1 − ρ∕ρ0Þ. The latter
represents a sum of birth and death terms, in balance only at
ρ ¼ ρ0. At large scales in a uniform system, the motion of indi-
vidual bacteria is characterized by a diffusivity DðρÞ ¼ vðρÞ2τ∕d,
where τ−1 is the tumbling rate and d is the dimensionality (23, 24).
Crucially, however, a nonuniform swim speed vðrÞ also results
in a mean drift velocity V ¼ −vτ∇v (23), which here gives
V ¼ −D0ðρÞ∇ρ∕2 (17). This contribution is crucial to phase
separation (17) and will again play a major role here. However,
this term is absent for ordinary Brownian particles interacting
solely via a variable diffusivity DðρÞ and was accordingly over-
looked in previous studies that relied on phenomenological equa-
tions involving a density-dependent diffusivity and no drift (8).
Such a drift term, V ¼ −DðρÞ∇μex, does, on the other hand, arise
for Brownian particles whose excess chemical potential μex is
density-dependent. Our interacting bacterial system thus imper-
sonates a purely Brownian one with the sameDðρÞ but in addition
μex ¼ log vðρÞ. For vðρÞ a decreasing function, this corresponds to
an attractive thermodynamic interaction that can lead to phase
separation (see below), which DðρÞ alone, for Brownian particles,
cannot.

Coupling the diffusion-drift equation for run-and-tumble
bacteria, as derived in ref. 17, with the logistic growth term,
the full dynamics is then given by

∂ρðr;tÞ
∂t

¼ ∇ · ½DeðρÞ∇ρðr;tÞ� þ αρðr;tÞ
�
1 −

ρðr;tÞ
ρ0

�
− κ∇4ρðr;tÞ;

[1]

where the “effective diffusivity” is

DeðρÞ ¼ DðρÞ þ ρD0ðρÞ∕2. [2]

[For Brownian particles with diffusivity DðρÞ and μex ¼ ln v, De
would be called the “collective” diffusivity.] This results from
the summed effects of the true diffusive flux −DðρÞ∇ρ and the
nonlinear drift flux ρV . In Eq. 1 we have also introduced a phe-
nomenological surface tension parameter κ > 0, which controls
gradients in the bacterial density. Such a contribution has been
shown to arise when the speed of a bacterium depends on the
average density in a small local region around it, rather than a
strictly infinitesimal one (17). Eq. 1 neglects noise, both in the
run-and-tumble dynamics and in the birth/death process. The
former noise source conserves density and should become irrele-
vant at the experimental time scale of days. On the other hand,
the nonconservative noise in the birth and death dynamics may
be more important, and we have verified that our results are
robust to its introduction at small to moderate levels. Numerical
simulations of Eq. 1 have been performed with standard finite
difference methods (although noise does require careful treat-
ment, as in refs. 26 and 27), with periodic boundary conditions
used throughout. For definiteness, all our simulations have been
carried out with vðρÞ ¼ v0e−λρ∕2, where v0 > 0 is the swim speed of
an isolated bacterium and λ > 0 controls the decay of velocity
with density. The precise form of vðρÞ is, however, not crucial
for the phenomenology presented here, and the instability
analysis offered below does not assume it.

The logistic population dynamics alone would cause the
bacterial density to evolve toward a uniform density, ρðrÞ ¼ ρ0,
which constitutes a fixed point for the proposed model. Although
this homogeneous configuration is stable in the absence of
bacterial interactions, it has been shown (17) that, without logistic
growth, a density-dependent swim speed vðρÞ leads to phase
separation via a spinodal instability whenever dv∕dρ < −v∕ρ.
By Eq. 2 this equates to the condition De < 0, and it is indeed
obvious that the diffusive part of Eq. 1 is unstable for negative
De. It is important, clearly, that De can be negative although
D is not. This holds for a much wider class of nonequilibrium
models than the one studied here; we return to this point at
the end of the paper.

For the choice of vðρÞ made in our simulations, we have
De ¼ DðρÞ½1 − ρλ∕2�, and the flat profile will thus become
unstable for ρ0 above 2∕λ. We have confirmed this numerically
and find that upon increasing ρ0, the uniform state becomes (lin-
early) unstable, evolving in a 1D geometry into a series of “bands”
of high bacterial density separated by low-density regions.
Depending on the parameters, this transition can be continuous
(supercritical), with the onset of a harmonic profile whose ampli-
tude grows smoothly with ρ0, or discontinuous (subcritical) with
strongly anharmonic profiles (see Fig. 1).

The transition to pattern formation arising from Eq. 1 is a fully
nonequilibrium one: It is not possible to write down an effective
thermodynamic free energy that would lead to this equation of
motion. Nonetheless, it is possible to understand why the
birth/death process effectively arrests the spinodal decomposition
induced by the density-dependent swim speed. The latter tends to
separate the system into high- and low-density domains with
densities on either side of ρ0. (Without the logistic term, these
would coarsen with time.) Bacteria thus tend to be born in the
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low-density regions and to die in the high-density regions. To
maintain a steady state, they have to travel from one to the other:
Balancing the birth/death terms by the diffusion-drift transport
flux between the domains then sets a typical scale beyond
which domain coarsening can no longer progress. Were any do-
main to become much larger, the density at its center would soon
regress toward ρ0, retriggering the spinodal instability locally.
[This is closely reminiscent of what happens in a thermodynamic
phase separation when the supersaturation is continuously
ramped (28).]

To better understand the onset of the instability, let us linearize
Eq. 1 around ρðrÞ ¼ ρ0 and work in Fourier space. Defining
ρðrÞ ¼ ρ0 þ∑qδρq expðiq · rÞ yields

_δρq ¼ Λqδq; Λq ¼ −α − q2Deðρ0Þ − κq4: [3]

The flat profile ρ ¼ ρ0 is thus stable if Λq ≤ 0 for all q and is
unstable otherwise. From the expression for Deðρ0Þ, Eq. 2, one
sees that instability occurs if

Φ≡ −
ρ0D0ðρ0Þ
2Dðρ0Þ

≥ 1 and −
Deðρ0Þffiffiffiffiffi

ακ
p ≥ 2. [4]

At the onset of the instability only one mode is unstable, with
wave vector qc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α∕jDeðρ0Þj

p
, as can be seen in Fig. 2. The first

condition in Eq. 4, Φ ≥ 1, is equivalent to the requirement that
De < 0 given previously. From the dispersion relation, Eq. 3, we
see that the resulting destabilization is balanced by the stabilizing
actions of bacterial reproduction and the surface tension at large
and small wavelength, respectively. The unstable modes thus lie
within a band q1 < q < q2, where q1 ≃ qα ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α∕jDeðρ0Þj

p
and

q2 ≃ qκ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijDeðρ0Þj∕κ

p
set the wavelengths below and above

which the stabilizing effects of bacteria reproduction and the
surface tension can compete with the destabilizing effect of
the negative diffusivity, respectively. For unstable modes to exist,
one needs q1 ≤ q2; restoring prefactors, this yields 2qα ≤ qκ ,

which is the second criterion in Eq. 4. This analysis is consistent
with the view that phase separation is arrested by the birth/death
dynamics, which stabilizes the long wavelength modes (Λ0 ¼ −α),
whereas the phenomenological tension parameter κ primarily
fixes the interfacial structure of the domains, not their separation.

We now consider more closely the parameters controlling the
transition to pattern formation. For definiteness, we address the
specific case used for our simulations, DðρÞ ¼ D0 expð−λρÞ. To
put Eq. 1 in dimensionless form, we define rescaled time, space,
and density as

~t ¼ αt; ~r ¼
�
α

κ

�
1∕4

r; u ¼ ρ

ρ0
: [5]

The equation of motion now reads

_u ¼ ∇ · ½Re−2Φuð1 −ΦuÞ∇u� þ uð1 − uÞ − ∇4u; [6]

where R≡D0∕
ffiffiffiffiffi
ακ

p
and Φ ¼ λρ0∕2 are the two remaining dimen-

sionless control parameters. Meanwhile the conditions 4 for
pattern formation become

Φ ≥ 1; R ≥ Rc ¼ 2
expð2ΦÞ
Φ − 1

: [7]

These relations, combined with the preceding linear stability
analysis, define a phase diagram in the (R;Φ) plane (Fig. 3) that
agrees remarkably well with numerical results for systems pre-
pared in a (slightly noisy) uniform initial state.
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q/q

− 4

− 3

− 2

− 1
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λ
/α

Fig. 2. Three plots of ΛqðqÞ for jDeðρ0Þj∕
ffiffiffiffiffi
ακ

p ¼ 1, 2, 3 (from bottom to top).
At the transition, only one critical mode q ¼ qc is unstable.
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Fig. 3. (Top) Phase diagram in the (R;Φ) plane. The outer region corresponds
to stable behavior, whereas within the curve, patterning occurs. The solid line
is the theoretical phase boundary—Eq. 7—which accurately fits the numerics
(black squares). The blue and red sections correspond to continuous and
discontinuous transitions, respectively. The two magenta dots correspond
to two 2D simulations that show ordered harmonic patterns close to super-
criticality and amorphous patterns otherwise. (Bottom Left) Transition in the
supercritical regime. The blues lines correspond to the theory—Eq. 8—
whereas the squares come from simulations (Φ ¼ 1.5, 1.35, 1.2 from top
to bottom). (Bottom Right) Transition in the subcritical regime for
Φ ¼ 1.06 and Φ ¼ 1.7 (bottom to top).
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Fig. 1. Growthof the instability in the supercritical (Left) and subcritical cases
(Right). The three lines correspond to three successive times. A small perturba-
tion around ρ0 (red line) growth toward harmonic or anharmonic patterns in
the supercritical or subcritical case, respectively. (Left) Supercritical case
(α ¼ κ ¼ 0.01, λ ¼ 0.02, ρ0 ¼ 15, D0 ¼ v20τ ¼ 1; times: 102, 103, 104). (Right)
Subcritical case (α ¼ κ ¼ 0.005, λ ¼ 0.02, ρ0 ¼ 11, D0 ¼ v20τ ¼ 1; times: 3.102,
3.103, 105).
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Close to the transition, the emergent steady-state pattern can
be studied using an amplitude equation (see SI Appendix). Intro-
ducing ϵ ¼ ðR − RcÞ∕Rc, one gets in 1D that for 1.08 ≤ Φ ≤ 1.58,
the transition is supercritical (continuous) and the steady state is
given by

u≃ 1þAðϵÞΦ cosðxÞ;

A2ðϵÞ ¼ ϵ
18Φ2ð1 −ΦÞ2

34Φ4 − 56Φ3 − 24Φ2 þ 31Φþ 19
;

[8]

which agrees with simulations (Fig. 3 Bottom Left). Outside this
range, the transition becomes subcritical (discontinuous, Fig. 3,
Bottom Right) and the analytical tools available become less reli-
able (29). We emphasize again that the basic mechanism for
patterning presented above does not depend on the precise form
chosen for vðρÞ. Quantitatively, however, Eq. 8 and the frontier
between subcriticality and supercriticality do depend on the
details of the interplay between the nonlinearity in vðρÞ and
the logistic growth term. We leave further analysis of such mod-
el-specific features to future work.

While the amplitude equation is more easily developed in 1D,
the stability analysis offered above is valid in higher dimensions,
and it is natural to ask what happens in 2D, which is the relevant
geometry for Petri dish studies with growing bacterial colonies.
Fig. 4 shows the simulated time evolution of ρðr;tÞ for a system
started with small random fluctuations around the equilibrium
density ρ0, with other parameters as in Fig. 1. Perhaps not surpris-
ingly, bands are replaced by droplets of the high-density phase
dispersed in a low-density background at large times. This is
the typical steady state obtained with a near-uniform starting con-
dition. However, the structure and organization of the bacterial
drops in the steady state depends on the point (R;Φ) chosen in the
phase diagram. Generally, the closer the system is to the super-
critical instability curve, the more ordered the patterns. For
instance, we have observed an essentially crystalline distribution
of bacterial drops, which develops defects and eventually
becomes amorphous on moving farther away from the phase
boundary (Fig. 3 Insets to main panel). For particular choices
of parameters, our model can also admit other steady-state pat-
terns. Close to the supercritical line, where the phase transition is
continuous, we can obtain long-lived stripes, whereas for fixed
large values of R and Φ close to the (right) subcritical phase
boundary, we have also observed “inverted droplets” with a
high-density lawn punctuated by low-density “holes.”

In these 2D geometries initialized from a near-uniform state,
droplets can coalesce in the early stages, whereas at late times the
dynamics is governed by evaporation-condensation events (see
Figs. 4 and 5). However, it is already apparent from Fig. 4 that
coarsening eventually stops and the droplets reach rather well-
defined steady-state sizes and center-to-center distances. This
can be quantified by looking at the time evolution of the charac-
teristic domain size, LðtÞ, which we have computed as the inverse
of first moment (times 2π) of the structure factor (22). Fig. 5 sug-
gests that LðtÞ at late times eventually stops increasing and

reaches a steady-state value. [The visible steps in domain size
mark discrete evaporation events involving smaller bacterial
droplets; presumably LðtÞ would become smooth for a large
enough system.]

These droplet patterns in steady state are very similar to
those observed for E. coli in a liquid medium or S. typhimurium
in semisolid agar (0.24% water-agar in ref. 5) when starting from
a uniform distribution (6). For the E. coli case, interactions are
believed to come from chemoattractant, emitted by the bacteria
themselves, that is not degraded over time (3, 4). The chemoat-
tractant distribution should approach uniformity so that these
interactions decay to zero as time proceeds. In our framework
this is analogous to decreasing Φ, which will turn any initially un-
stable state into a homogeneous one, and can thus explain that
the patterns observed experimentally fade with time (whereas in
our simulations Φ remains constant and the patterns are stable
indefinitely). E. coli in a semisolid medium also shows droplet
patterns of high symmetry. In our framework, such patterns result
from a continuous transition, close to the supercritical line.

The growth of bacterial colonies of S. typhimurium starting
from a small inoculum of bacterial cells in semisolid agar leads
to quite specific (transient but long-lived) patterns, with the
bacteria accumulating in concentric rings that can subsequently
fragment into a pattern of dots (5, 6). Once again, although these
patterns are believed to stem from a chemotactic mechanism (6),
we find they can arise in principle without one, so long as our two
basic ingredients of density-suppressed motility and logistic
growth are both present. Indeed, initializing our simulations with

Fig. 4. Numerical results for a 2D simulation with size equal to (in dimensionless units, see Eq. 5) 28 × 28, R≃ 316, and Φ ¼ 1.5. Times corresponding to the
snapshots are (from left to right) ~t ¼ 0.05, 0.12, 0.20, and 0.51. The color bar shows values of the dimensionless density u; see Eq. 5.
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Fig. 5. Plot of the characteristic domain size, ~L, as a function of time, ~t (both
in dimensionless units), for a system in the inhomogeneous phase, with
initially random density fluctuations around ρ0. Parameters were R ∼ 316

and Φ ¼ 1.35, whereas the system size was 35.5 × 35.5 (in dimensionless
units). The solid line corresponds to a single run, whereas the dashed line
is an average over six runs. The steps in the single run curve correspond
to evaporation-condensation events, highlighted by black squares in the
snapshots shown in the figure (before and after one of the steps, respec-
tively, arrows indicate positions on the plot corresponding to the two
snapshots). The color bar shows values of the dimensionless density u.
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a single small droplet of high-density ρ, we find that a similarly
patterned bacterial colony structure develops. First, the bacteria
spread radially, forming an unstructured lawn with the highest
density at the center. This background density increases logisti-
cally until the onset of instability via our generic phase-separation
mechanism; with circular symmetry, the instability causes con-
centric rings of high bacterial density to successively develop that
are very stable in time (Fig. 6 third and fourth snapshots in the top
row). The patterns observed at later times again depend on the
position of the parameters in the (R;Φ) plane. If we fix a value of
R, e.g., 100, larger values of Φ in the unstable region lead to rings
being very stable. For smaller values of Φ, on the other hand,
effectively corresponding to weaker interactions between the bac-
teria, we observe that rings initially form but rapidly destabilize
through a secondary modulation of the bacterial density along
them. This eventually breaks the rings into a series of drops (Fig. 6
third and fourth snapshots in the bottom row). The inner rings
destabilize first, and the system evolves eventually to the same
steady state as found starting from a uniform density, composed
of drops with well-defined characteristic size and separation. All
this phenomenology is strikingly reminiscent of the dynamics
observed by Woodward et al. (5) for S. typhimurium, where rings
are stable at large concentrations of potassium succinate (a “sti-
mulant” that promotes pattern formation), but break up into
drops at smaller ones. Our model shows a similar morphological
change when decreasing Φ, i.e., the strength of the interactions.

Different views are possible concerning the ability of our
generic model to reproduce some of the observed chemotactic
patterns of E. coli and S. typhimurium (6). One possibility is that
Eq. 1, with the interpretation we have given for it, actually does
embody the important physics of pattern formation in these
organisms. Indeed it is well accepted that bacteria in the high-
density concentric rings are essentially nonmotile (30). The pre-
cise mechanism leading to this observation is not well understood
(6), but it is possible that the chemotactic mechanism mainly acts
to switch off motility at high density. If so, by focusing solely on
this aspect [with a correspondingly vast reduction in the para-
meter space from that of explicit chemotactic models (5, 6)]
our model might capture the physics of these chemotactic
patterns in a highly economical way. Interestingly, our model
is essentially local, whereas chemotaxis in principle mediates
interactions between bacteria that are nonlocal in both space
and time. It is not clear whether such nonlocality is essential

for the chemotactic models in refs. 5 and 6 or if fast-variables
approximations and gradient expansions would reduce these
models (which involve between six and nine dimensionless num-
bers) into Eq. 1. In this case, we would still have in Eq. 1 a highly
economical model for chemotactic pattern-formation organisms,
possibly with a different interpretation of De and κ.

Alternatively, the success of our local model for these chemo-
tactic organisms might be largely coincidental. But in that case,
such a sparse model should be easily falsified, for instance, by
using the linear stability analysis to relate the typical length scale
of the patterns to microbial parameters. This length scale is of
order 2π∕qc ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijDej∕α
p

, with jDej≃D, a typical bacterial dif-
fusion coefficient [D ∼ Oð100 μm2 s−1Þ for E. coli (24)]. Using the
previously quoted growth rate α≃ 1 hr−1, we get a ring separa-
tion of ∼1 mm, in order-of-magnitude agreement with the experi-
mental value (5).

Our phase diagram could be explored quantitatively for
S. typhimurium (5) by changing both nutrient and stimulant con-
centration. The former affects both growth rate and motility,
whereas the latter controls the dependence of motility on density.
The swim speed, tumble rate, and growth rate can all be mea-
sured microscopically, fixing α and also, so long as it stems from
pure run-and-tumble motion, DeðρÞ. To allow for other micro-
scopic possibilities, it would be better directly to measure this
effective diffusivity in the stable regime using Fourier microscopy
(31) and extrapolate these data into the unstable region. A
further quantitative test of our mechanism might involve altering
the growth medium with the aim of changing solely the birth/
death term α, which is responsible for the arrest of phase separa-
tion at a finite length scale. Finally, the main role of κ in Eq. 1 is
to determine the interfacial width between low- and high-density
phases; it might be determined by careful measurement of
that width.

More generally, our analysis of Eq. 1 shows that the main
prerequisite for pattern formation, assuming the presence of
the logistic growth term, is negativity of the effective diffusion
constant De. For run-and-tumble dynamics, De < 0 was shown
to arise for a sufficiently strong decay of swim speed with density;
it does so because spatial variations in the true diffusivity DðρÞ
create a drift flux ρV ¼ −ρD0ðρÞ∇ρ∕2, which can overcompensate
the true diffusive flux −D∇ρ (17). Negative De could, however,
equally arise for another density-dependent nonequilibrium
diffusion process. Indeed, the principle of detailed balance, which

Fig. 6. Dynamics of formation of patterns in 2D, starting from a single small bacterial droplet in the middle of the simulation sample. (Top) Formation of rings
in a system with R ¼ 100 and Φ ¼ 1.65. The simulation box has size 125 × 125 (in dimensionless units). The snapshots correspond to times equal to (from left to
right) ~t ¼ 1, 5, 10, and 27. (Bottom) Breakage of rings into dots. The four snapshots correspond to the time evolution of a system with R ¼ 100 and Φ ¼ 1.3. We
show a 125 × 125 fraction of the simulation box, with the boundaries far away and not affecting the pattern. The snapshots correspond to times equal to (from
left to right) ~t ¼ 1, 7, 29, and 122. For both rows, the color bar shows values of the dimensionless density u.

Cates et al. PNAS ∣ June 29, 2010 ∣ vol. 107 ∣ no. 26 ∣ 11719

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PH
YS

IC
S

SE
E
CO

M
M
EN

TA
RY



holds only for systems whose steady states are governed by equi-
librium thermodynamics, leads to the Einstein relation, that
D ¼ kBTM, with D a many-body diffusivity and M the corre-
sponding mobility. In conditions of local equilibrium, such as
those governing phase separation in thermodynamic systems,
the drift velocity remains V ¼ −M∇μex. Therefore, since μex
derives from a free energy, no drift velocity can arise purely from
gradients of D. In contrast, for strongly nonequilibrium systems
such as bacteria, the no detailed balance principle applies. We
should then expect instead generically to find mobility-induced
drift velocities, and the run-and-tumble model is merely one
instance of this. Accordingly one can expect, in principle, to find
cases of negative De in other microorganisms showing distinctly
different forms of density-dependent self-propulsion.

To summarize, we have studied the dynamics of a system of
reproducing and interacting run-and-tumble bacteria, in the case
where interactions lead to a decreasing local swim speed with
increasing local density. We have thereby identified a potentially
generic mechanism for pattern formation in which an instability
toward phase separation, caused by the tendency for bacteria to
move slowly where they are numerous, is arrested by the birth and
death dynamics of bacterial populations. We have shown that
these two ingredients alone are enough to capture many of the
patterns observed experimentally in bacterial colonies—including
some that have only previously been explained using far more
complex models involving specific chemotactic mechanisms.
Indeed, if motility decreases steeply enough with density, then
a spatially homogeneous bacterial population becomes unstable
to density fluctuations leading to the formation of bands (1D) or
droplets (2D). The length scale of the resulting pattern is set by a
balance between diffusion-drift fluxes and the logistic relaxation
of the population density toward its fixed-point value. Starting

instead from a small initial droplet of bacteria, we predict the for-
mation of concentric rings, each of which may eventually further
separate into droplets.

In several well-studied systems, such characteristic patterns are
(with good reason) believed to be the direct result of chemotactic
behavior (5, 6). It is therefore remarkable that they can also arise
purely from the interplay of density-dependent diffusivity and
logistic growth, without explicit reference to the dynamics (or
even the presence) of a chemoattractant. This suggests that simi-
lar patterns might arise in organisms having no true chemotactic
behavior at all. Such patterns could then be the result of local
chemical signaling without gradient detection (quorum ,sensing,
not chemotaxis) or even purely physical interactions (steric hin-
drance, say), either of which could in principle produce the
required dependence of motility on density. Last, a motility
decreasing with density is not the only mechanism that could lead
toDeðρÞ < 0 in Eq. 1, and much of our analysis applies equally to
other such cases.

Finally, the simplest version of our model allows identification
of just two dimensionless parameters that control the entire pat-
tern-forming process. In both homogeneous and centrosymmetric
geometries, this gives predictions for how the pattern type
depends on interaction strength, which are broadly confirmed
by experimental data. This suggests that some of the diverse
patterns formed by colonies of motile bacteria could have a
relatively universal origin.
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