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Abstract
Objectives—Schizophrenia is associated with dysfunction of glutamatergic neurotransmission,
and several studies have suggested glutamatergic abnormalities in bipolar disorder. Recent data
suggest involvement of the NMDA receptor-signaling complex, which includes NMDA receptor
subunits as well as associated intracellular interacting proteins critical for NMDA receptor assembly,
trafficking, and activation; the most well characterized being PSD-93, PDS-95, SAP102, and NF-L.
Previously, studies from our laboratories have described changes in glutamate receptor subunit
transcript and binding site expression in schizophrenia, and changes in NMDA receptor binding site
expression in bipolar disorder in postmortem brain tissue. In the present work, we focus on the
expression of these molecules in hippocampus in schizophrenia and bipolar affective disorder I.

Methods—We performed in situ hybridization to assess hippocampal expression of the transcripts
encoding NMDA receptor subunits NR1, 2A, 2B, 2C and 2D, and the transcripts for the NMDA
receptor associated PSD proteins PSD-95, PSD-93, NF-L and SAP102 in subjects with
schizophrenia, bipolar affective disorder I, and a comparison group. We also measured [3H]
CGP39653 and [3H]MK-801 binding site expression in the hippocampus in schizophrenia.

Results—There was a significant decrease in the expression of transcripts for NR1 and NR2A
subunits and SAP102 in bipolar disorder. We did not detect any changes in these transcripts or in
binding site expression in the hippocampus in schizophrenia.

Conclusions—We propose that the NMDA receptor-signaling complex, including the intracellular
machinery that is coupled to the NMDA receptor subunits, is abnormal in the hippocampus in bipolar
disorder. These data suggest bipolar disorder might be associated with abnormalities of glutamate-
linked intracellular signaling and trafficking processes.
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Introduction
The glutamate hypothesis of schizophrenia was originally based on the observation that
phencyclidine (PCP) can precipitate a schizophreniform psychosis that is indistinguishable
from schizophrenia in non-psychiatrically ill persons. Since PCP is an antagonist of the NMDA
subtype of the glutamate receptor, it has been postulated that NMDA receptor dysfunction
contributes to psychotic pathophysiology. Postmortem studies of persons afflicted with
schizophrenia and, to a lesser extent bipolar disorder, have demonstrated region- and subunit-
specific alterations in the expression of NMDA receptor subunit transcripts and binding sites,
supporting a hypothesis of NMDA receptor dysfunction in these illnesses [1,3,5,17,22,48].

The NMDA receptor is a ligand-gated ion channel formed by an obligate NR1 subunit and
combinations of NR2A-D subunits [15]. The NMDA receptor subunits have consensus
phosphorylation and protein-protein interaction sites that link the NMDA receptor with
intracellular signaling pathways. The development of techniques such as yeast 2-hybrid that
permit identification of previously unknown protein-protein interactions has led to the
discovery of NMDA receptor-interacting proteins that modulate receptor activity via
interactions with the cytoplasmic tails of the NMDA subunits. These protein-protein
interactions facilitate clustering and anchoring of the NMDA receptor in the postsynaptic
density, leading to the assembly of a signaling complex that involves the receptor,
cytostructural proteins, and signal transduction enzymes [30,32]. The NMDA receptor
interacting proteins are enriched in the postsynaptic density (PSD), and include PSD95, PSD93,
and synapse associated protein 102 (SAP102), which primarily interact with the NR2B subunit,
and neurofilament-light (NFL), which interacts with exon 21 containing NR1 subunits [32,
41].

Expression of NMDA receptors and NMDA receptor interacting proteins parallel the
widespread distribution of glutamatergic synapses throughout the brain. In medial temporal
lobe structures, the expression of these molecules is consistent with well-characterized
glutamatergic circuitry. This region includes the dentate gyrus, the hippocampal subfields, the
subiculum and adjacent cortical regions that are reciprocally interconnected via glutamatergic
projections [9]. Previously, changes in the structure and function of the medial temporal lobe
in schizophrenia, and to a lesser extent bipolar disorder, have been reported based upon
techniques utilizing imaging, histopathology, and measures of gene expression [4,12,37,44,
46]. Abnormalities of NMDA receptor expression have been reported in the hippocampus in
schizophrenia and bipolar disorder, consistent with the hypothesis of altered glutamate
neurotransmission in these illnesses [5,43]. The preponderance of data implicating the
hippocampus and related structures in schizophrenia and bipolar disorder, taken together with
the robust demonstration of glutamate receptor dysfunction, suggest that alterations of
glutamatergic neurotransmission, and in particular the NMDA receptor signaling complex,
likely underlie some of these hippocampal abnormalities. Thus, we performed in situ
hybridization to assess hippocampal expression of the transcripts encoding NMDA receptor
subunits NR1, 2A, 2B, 2C and 2D, and the transcripts for the NMDA receptor associated PSD
proteins PSD-95, PSD-93, NF-L and SAP102 in subjects with schizophrenia, bipolar disorder
and a comparison group. We also measured NMDA receptor binding site expression in the
hippocampus in schizophrenia.

Materials and Methods
Subjects

Twenty-four subjects from the neural tissue repository at the Rebecca L. Cooper Research
Laboratories, Victoria, Australia, were studied, comprised of three groups of 8 subjects each
with diagnoses of schizophrenia, bipolar disorder, and normal controls. The left hippocampi
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from each subject were obtained as previously described [6,47]. Blocks of hippocampal tissue
at 22mm rostral to the anterior commissure were taken using a standard methodology [42].
Normal controls and subjects with a diagnosis of bipolar affective disorder I (hereafter referred
to as bipolar disorder) or schizophrenia were matched for age, pH, PMI and sex. Subjects with
bipolar disorder were psychotic at the time of death, and the DSM-IV diagnoses of bipolar
affective disorder I and schizophrenia were confirmed by a senior psychologist and a
psychiatrist using the Diagnostic Instrument for Brain Studies [20]. Demographic data are
shown in Table 1. There were no differences between diagnostic groups for age, sex, PMI or
pH. Cases were excluded if more than five hours elapsed between the subject last being seen
alive and being found dead. Cryostat prepared (20 um) sections from the left middle
hippocampus of each brain were stored at -70°C until used.

In Situ Hybridization
The design of this study was to examine expression of the transcripts encoding the NMDA
receptor subunits NR1, NR2A-D, and the NMDA-associated PSD proteins neurofilament light-
chain (NF-L), PSD95, PSD93 and synapse-associated protein 102 (SAP102). Subclones for
the NMDA receptor subunits NR1 and NR2A-2D were prepared and characterized as
previously described [16,17]. Subclones of unique areas of SAP102, NF-L, PSD93, and PSD95
were prepared as previously described [3,16]. Riboprobes were synthesized from linearized
plasmid DNA and in situ hybridization was performed as previously described [31,45]. For
riboprobe synthesis, 8 μl of [35S]-UTP was dried and 2.0 μl 5X transcription buffer, 1.0 μl
0.1M DTT, 3.0 μl of 10mM ATP, CTP, and GTP, 2.0 μl linearized plasmid DNA, 0.5 μl RNase
inhibitor, and 1.5 μl SP6 or T7 RNA polymerase were combined and incubated for 2 hours at
37°C. 1.0 μl DNase (RNase-free) was added and the mixture was incubated for 15 minutes at
room temperature (RT). Radiolabeled probe was purified with microspin chromatography
columns (Bio-Rad, Hercules, CA). Two slides per subject for each antisense probe were
removed from -70°C and placed in 4% (weight:vol) formaldehyde at RT for one hour. The
slides were then washed in 2X SSC (300mM NaCl/30 mM sodium citrate, pH 7.2) three times
for 5 minutes each. Slides were washed in deionized water for one minute and placed in 0.1M
triethanolamine, pH 8.0/acetic anhydride, 400:1 (vol:vol) on a stir plate for ten minutes. A final
wash was in 2X SSC for five minutes, followed by dehydration through graded alcohols and
air-drying for 30 minutes. A cover slip with 200 μl of riboprobe (2 million cpm, 50% formamide
buffer (50% formamide, 10% dextran sulfate, 3 × SSC, 50 mM Na2HPO4 (pH 7.4), 10 mM
dithiothreitol, 1 × Denhardt’s solution, 100 ug/ml yeast tRNA), and 0.01M dithiothreitol) was
placed on each slide. Slides were placed in a covered tray with a filter paper liner saturated
with 50% formamide. After overnight incubation at 55°C, cover slips were removed and the
slides were placed in 2X SSC for five minutes, followed by RNase (200 μg/ml in 10 mM Tris-
HCl (pH 8.0) and 0.5 M NaCl) at 37°C for thirty minutes and then washed as follows: 2X SSC
for 15 minutes at RT; 2X SSC for 15 minutes at RT; 1X SSC for 10 minutes at RT; 0.5X SSC
for 5 minutes at RT; 0.1X SSC for 60 minutes at 55°C; 0.1X SSC for 60 minutes at 55°C and
0.5X SSC for 15 minutes at RT. The slides were dehydrated in graded ethanol solutions, air-
dried, placed in X-ray cassettes, and apposed to Kodak XAR-5 film for 2-60 days.

Image and Data Analyses
One subject in the bipolar group was not utilized since we were unable to detect any mRNA
signal (labeling over the tissue was at background) with any of the probes we utilized for this
study, including probes for genes NR1 and NF-L that are highly expressed, suggesting very
low RNA quality. Film was developed and used for quantitative computer image analysis
(Scion Image, 4.0.2), as previously described [34]. Areas of the hippocampus evaluated include
CA1, CA2, CA3, CA4 and the dentate gyrus (DG). We analysed the entirety of each subfield
for each section studied, with conservative margins where the subfields interface, and the
collection of imaging data was performed blind to diagnosis. The subiculum (Sub) was grouped
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with the hippocampal subfields and the DG for statistical analysis. Tissue background readings
were subtracted from gray scale values collected for each specific region of interest for each
tissue section. Two tissue sections were studied for each subject. These background corrected
values were averaged, providing one mean value per region, per subject, for each probe.
Background-adjusted, averaged gray scale values were converted into optical density. Optical
density values were converted to units of bound radiation from a standard curve generated from
a [14C] microscale standard (Amersham Life Sciences, Amersham UK) placed on each film
[10,50]. Transcript concentration, in turn, was determined from the amount of bound radiation,
the specific activity of each batch of [35S]-uridine triphosphate, and the number of uracil
residues contained in each probe sequence [14,16,19,26,33,35,36]. All data are expressed as
femtomoles mRNA per gram tissue (fmol/g).

Binding Studies
The binding densities of the radioligands [3H]MK-801 and [3H]CGP39653 were carried out
as previously described [43]. For [3H]MK-801 binding, sections were pre-incubated in assay
buffer (50 mM Tris-acetate (pH 7.4) containing 100 μM glutamate, 50 μM glycine and 50 μM
spermidine) at room temperature (RT) for 30 minutes. The specific binding of [3H]MK-801
(20 nM) was defined as the difference in radiolabel binding in the absence (TB) and presence
(NS) of MK-801 (100μM) following a 60 minute incubation, in assay buffer, at RT [18]. The
density of [3H]CGP39653 binding was determined following a 45 minute pre-incubation in
assay buffer (50 mM Tris-HCl (pH 8)) at RT. Sections were incubated in assay buffer with
[3H]CGP39653 (20 nM) in the absence (TB) or presence (NS) of L-glutamic acid (1 mM) for
45 minutes at RT [16]. Following their incubations with the respective radioligands, all sections
were washed twice in ice-cold assay buffer and then dipped in distilled water, to remove salts,
before being dried in a stream of cool air. Sections used for the determination of [3H]MK-801
were apposed to Hyperfilm-[3H] with [3H]microscales until an image suitable for analysis was
obtained. The film was then developed in Kodak D19 developer and fixed in Hypam fixative.
The images were analysed from film using MCID M1 image analysis system. The density of
specific binding was calculated as total binding of the radioligand (TB, three sections) minus
the binding of the radioligand in the presence of a non-radioactive drug that binds to the same
binding site. The sections used for the determination of [3H]CGP39653 were partially fixed
overnight in paraformaldehyde fumes at RT before being apposed to BAS-TR2025
phosphoimage plates with [3H]microscales until an image suitable for analysis was obtained.
The phosphoimage plates were then scanned using a BAS5000 high-resolution phosphoimager
and the images analysed using AIS image analysis software. For both [3H]CGP39653 and
[3H]MK-801 the density of the images was converted to dpm/mg estimated tissue equivalent
(ETE) by comparison with the standard curve generated using the relative densities of the
[3H]microscales. Using the specific activities of the appropriate radioligand, the values were
converted to fmole/mg ETE.

Statistics
Multiple linear regression was performed to test for associations between gene expression and
postmortem interval, age, and tissue pH. When significant associations were detected, we
utilized analysis of covariance (ANCOVA) as our primary statistic. When ANCOVA was
utilized, regressed values were used for post-hoc analysis. Otherwise, our dependent measures
were analyzed by factorial analysis of variance with diagnosis and hippocampal subregion as
independent variables. Where appropriate, posthoc analyses were performed with Tukey’s
honestly significant difference test. For all statistical applications we used the Statistica
(Statsoft, Tulsa, OK) software package for Windows 2000. For all tests, α = 0.05. The presence
or absence of antipsychotic or mood stabilizer (lithium and valproic acid) treatment was
secondarily analyzed for an association with transcript expression.
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Results
Sense and antisense probes were prepared for NR1, NR2A, NR2B, NR2C, NR2D, PSD95,
PSD93, SAP102, and NF-L. Specific labeling was only observed for sections incubated with
antisense riboprobe. We detected NR1, NR2A, NR2B, NR2C, NR2D, PSD95, PSD93,
SAP102, and NF-L transcript expression in the hippocampal subfields CA1, CA2, CA3, and
CA4, the dentate gyrus (DG), and the subiculum (Sub) (Figures 1 and 2).

In the hippocampal subfields, DG, and Sub, we detected an association between NR1, NR2A,
and NR2C, but not NR2B or NR2D, mRNA expression and age (NR1: R = 0.36 p = 0.003,
NR2A: R = 0.28, p = 0.017, NR2C: R = 0.31, p = 0.037). Multiple regression analyses are
summarized in Table 2. We also detected an association between NR1, NR2A, and NR2D, but
not NR2B or NR2C, mRNA expression in this region and pH (NR1: R = 0.36, p = 0.0002,
NR2A: R = 0.28, p = 0.005, NR2D: R = 0.24, p = 0.01)(Table 2). We did not detect any
associations between NMDA receptor subunit expression and PMI. Using ANCOVA, we
detected a main effect for diagnosis for NR1 (F (2, 105) = 3.91, p = 0.02) and NR2A (F (2,
106) = 4.37, p = 0.02), but not for NR2B, NR2C, or NR2D, transcript expression in the
hippocampus (Figure 3). Post-hoc analysis revealed significantly lower levels of mRNA
expression for NR1 (p = 0.02) and NR2A (p = 0.049) in bipolar disorder compared to controls.
We also detected a main effect for region for NR1, NR2A, NR2B, NR2C and NR2D mRNA
expression (p < 0.001 for each gene for region). Post-hoc analysis revealed significantly (p <
0.05) higher levels of mRNA expression for all of the NMDA subunits in the DG and CA2
versus CA1, CA3, CA4 and the Sub. We did not detect any diagnosis by region interactions
for NR1 or NR2A-D in the hippocampus.

In the hippocampal subfields, DG, and Sub, we detected an association between NF-L,
SAP102, and PSD95, but not PSD93, mRNA expression and pH (NF-L: R = 0.36, p = 0.000061,
SAP102: R = 0.41, p = 0.000003, PSD95: R = 0.43, p = 0.000001)(Table 2). We also detected
an association between SAP102 transcript expression in this region and age (R = 0.41, p =
0.045)(Table 2). We did not detect any associations between NMDA receptor interacting
protein transcript expression and PMI. We detected a main effect for diagnosis for SAP102 (F
(5, 104) = 3.61, p = 0.03), PSD93 (F (5, 95) = 3.83, p = 0.03), and NF-L (F (5, 105) = 9.57, p
= 0.0002) transcript expression in the hippocampus (Figure 4). We did not detect a main effect
for diagnosis for PSD95 mRNA expression. Post-hoc analysis revealed significantly lower
levels of mRNA expression for SAP102 (p = 0.048) in bipolar disorder compared to controls.
We also detected significantly reduced levels of transcripts for PSD93 (p = 0.02), and NF-L
(p = 0.0009) in the hippocampus in bipolar disorder compared to schizophrenic subjects. We
detected a main effect for region for SAP102, PSD95, PSD93, and NF-L mRNA expression
(p < 0.001 for each gene for region). Post-hoc analysis revealed significantly (p < 0.05) higher
levels of mRNA expression for SAP102, PSD95, PSD93 or NF-L in the DG and CA2 versus
CA1, CA3, CA4 and the Sub. We did not detect any diagnosis by region interactions for
SAP102, PSD95, PSD93 or NF-L in the hippocampus.

Binding data for the bipolar group from these experiments was published previously [43]. We
did not detect any associations between NMDA receptor binding site expression and PMI, pH,
or age. We measured [3H]CGP39653 and [3H]MK-801 binding in the hippocampal subfields,
DG, and Sub (Figure 5). We did not detect any changes in [3H]CGP39653 or [3H]MK-801
binding in the hippocampus in schizophrenia (Figure 6). Finally, we performed correlation
analyses for the effects of treatment with psychotropic medications. We did not detect a
significant association between NR1, NR2A, or SAP102 mRNA expression and treatment with
a mood stabilizer (lithium or valproic acid), for the entire group of 24 subjects or within the
bipolar cohort (data not shown).
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Summary of results
We found decreased NR1, NR2A and SAP102 transcript expression in bipolar disorder, but
not schizophrenia. The largest decreases in NR1 mRNA expression were detected in CA3
(33%) and the Sub (41%), for NR2A in CA4 (44%), and for SAP102 in CA2 (24%), CA3
(37%), and CA4 (45%). We did not detect any significant changes in NR2B, NR2C, NR2D,
PSD93, PSD95, or NF-L expression in the hippocampus in bipolar disorder or schizophrenia.
We did not detect any changes in [3H]CGP39653 or [3H]MK-801 binding in schizophrenia.

Discussion
We found significant decreases in NR1 and NR2A transcript expression in the hippocampus
in bipolar disorder (Figure 3). These findings are consistent with a previous report of decreased
[3H]CGP39653 and [3H]MK-801 binding site expression in bipolar disorder in the same
subjects. [3H]CGP39653 binds to the glycine coagonist site which is on the NR1 subunit, while
[3H]MK-801 binds to a site accessible only when the ion channel is open and preferentially
binds NR2A- or NR2B-containing receptor complexes [38]. Thus, our findings of decreased
NR1 and NR2A transcripts and the previously published binding data from the same cohort
are consistent with one another, and they suggest a decrease in the total number of NMDA
receptors as well as a decrease in the number of open ion channels in bipolar disorder [43].
Decreased NR1 mRNA has also been reported in the dentate gyrus in a different cohort of
subjects with bipolar disorder, while another study did not detect changes in NR1
immunoreactivity in the hippocampus in this illness [22,48]. Taken together, the balance of
these studies suggests that NMDA receptor expression is altered in the hippocampus in bipolar
disorder. Since NMDA receptors mediate molecular correlates of learning and memory, such
as long term potentiation, changes in NMDA receptor expression may have a profound effect
on brain function in this illness.

In bipolar subjects, we found changes in NR1 and NR2A, but not NR2B, transcript expression.
While expression of NMDA receptor subunits may be coordinately regulated, previous studies
have found that NMDA receptor subunit transcript expression may be divergent in human
disease states [27-29]. Our data suggest that NMDA receptor subunit mRNAs, in particular
NR1 and NR2B, may not be co-regulated at the transcript level in bipolar disorder.

We also detected decreased expression of SAP102 transcripts in the hippocampus in bipolar
disorder. This finding represents the first such report of an altered NMDA receptor interacting
protein in the hippocampus in this illness. SAP102 mediates NMDA receptor trafficking by
interacting with the cytoplasmic tail of the NR2B subunit and the intracellular trafficking
molecule Sec8 [41]. SAP102 also binds signaling molecules, including protein kinase C alpha,
that contribute to the NMDA receptor signaling complex in the PSD [23]. Thus, a decrease in
SAP102 expression, in the context of no changes in NR2B expression, might lead to a decrease
in the number of NR2B-containing NMDA receptors delivered to the postsynaptic density
(PSD), and alterations in the composition of NMDA receptor signaling complexes in the PSD.
Such changes could have a significant impact on synaptic plasticity, since electrophysiological
processes in the hippocampus, such as long term potentiation, are mediated by NMDA receptor
activation [25].

We did not detect changes in NMDA receptor subunit transcript expression in the hippocampus
in schizophrenia (Figure 3). This finding is consistent with the absence of changes in glutamate
and phencyclidine (PCP) binding site expression in the hippocampus in this illness in two
previous reports [11,21], while a third study only found changes in the PCP binding site in
CA3 [5]. However, other studies have detected changes in NR1 and NR2B transcript expression
in the hippocampus in schizophrenia, including one study with a cohort of different subjects
from the same brain bank as the subjects utilized in the present study [11,22].
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Several factors may account for these divergent mRNA expression findings. Ours was the only
cohort studied that was comprised of subjects who were actively psychotic at the time of death,
and there may be significant differences in hippocampal gene expression in psychotic versus
nonpsychotic states. We measured gene expression in the middle hippocampus, but not the
dorsal or ventral areas. Hippocampal gene expression is not homogenous, and we only sampled
one level of this structure, possibly accounting for the disparate findings of NMDA receptor
expression in the present study compared to previous reports [13]. Another possibility is that
our study was underpowered to detect changes in NR1 or NR2B transcript expression, since
our cohort has fewer subjects than the previous studies reporting differences in schizophrenia.
This is unlikely given that we were able to detect a moderate (10-15%) change in NR1
expression in the hippocampus in bipolar disorder. Finally, the use of more sensitive methods
such as quantitative PCR might have found differences in hippocampal gene expression in
schizophrenia. Nevertheless, while our transcript studies are not consistent with other studies
of NMDA subunit mRNA expression in the hippocampus, there is a consensus of no detectable
changes in studies that have measured NMDA receptor binding sites in the hippocampus in
schizophrenia.

Dissimilar to our results with bipolar disorder, we did not detect any changes in NMDA receptor
interacting protein expression in the hippocampus in schizophrenia (Figure 4). This result was
unexpected given our previous findings of altered PSD95 and NF-L transcript expression in
the thalamus [3] and prefrontal cortex [2], as well as a report of decreased SAP102 protein
expression in the hippocampus in this illness [49]. Taken together, these findings suggest that
the hippocampus may be spared with regard to abnormalities of NMDA receptor interacting
molecule expression in schizophrenia. Supporting this hypothesis, one study reported
differences in PSD95 mRNA expression in the prefrontal cortex, but not in the hippocampus,
in schizophrenia [40].

Our finding of decreased NR1, NR2A, and SAP102 mRNA expression in bipolar disorder is
potentially confounded by the presence of mood stabilizer treatment. Valproic acid (VPA) and
lithium have been shown to modulate glutamatergic neurotransmission in the rat brain [7,8].
In addition, chronic lithium treatment has been shown to inhibit NMDA receptor mediated
calcium currents and suppress phosphorylation of molecules in the NMDA receptor signaling
complex [24,39]. These results indicate that mood stabilizers may regulate NMDA receptor
expression and function. Since five out of eight of the subjects with bipolar disorder were taking
lithium (4 subjects) or valproic acid (1 subject) at the time of death, we performed a secondary
analysis to determine if there was an association between mood stabilizer treatment and mRNA
expression. We did not detect a significant association between NR1, NR2A, or SAP102
mRNA expression and treatment with a mood stabilizer (lithium or valproic acid), for the entire
group of 24 subjects or within the bipolar cohort. This result is difficult to interpret because of
the inherent selection bias of a psychiatric population where the patients who are the most ill,
with possibly the most glutamatergic dysfunction, are frequently taking a mood stabilizer. Due
to the small sample size of our cohort and the correspondingly low analytic power to detect a
medication effect, it remains a possibility that our findings of altered NR1, NR2A, and SAP102
expression in bipolar disorder might be secondary to regulation by a mood stabilizer.

In addition, since we only measured mRNA expression for the NMDA interacting proteins,
our findings do not indicate whether or not there was a change in total protein expression.
Another confounding issue is the very low expression levels of NR2C, raising the possibility
that the lack of an effect for expression of this transcript was due to a floor effect. However,
NR2C expression is generally low in the HPC and for each subject we did detect a grey scale
value above background. Finally, changes in mRNA or binding site expression do not
necessarily indicate a change in receptor function. There may also be changes in receptor
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surface expression, localization to the proper region of the plasma membrane, or linkage to
intracellular signaling machinery.

Conclusions
Our findings of decreased expression of NMDA receptor subunits and an NMDA receptor
interacting protein in the hippocampus in bipolar disorder suggest that NMDA receptor activity
may be abnormal in this illness. Decreases in NMDA receptor subunit and binding site
expression suggest that the overall level of NMDA receptor expression may be decreased in
bipolar disorder. The decrease in SAP102 mRNA expression suggests that there may be a
deficit in NMDA receptor trafficking. Our data suggest that the pathophysiology of bipolar
disorder includes abnormalities of NMDA receptor expression, and support modulation of
glutamate transmission as a target for pharmacological intervention in this devastating illness.
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Figure 1.
In situ hybridization using [35S] labeled antisense riboprobes for NMDA receptor subunit
transcripts in the hippocampal subfields CA1, CA2, CA3, and CA4, the dentate gyrus (DG),
and the subiculum (Sub).
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Figure 2.
In situ hybridization using [35S] labeled antisense riboprobes for neurofilament light (NF-L)
(A), postsynaptic density protein 93 (PSD93) (B), PSD95 (C), and synapse associated protein
102 (SAP102) (D) in hippocampal subfields, the dentate gyrus, and the subiculum.
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Figure 3.
Expression of NMDA receptor subunit transcripts in hippocampal regions CA1, CA2, CA3,
CA4, dentate gyrus (DG) and subiculum (Sub) from patients with bipolar disorder (BD),
schizophrenia and a control group (CTL). Data expressed as fmol mRNA/g tissue (mean ±
SEM).
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Figure 4.
Expression of transcripts for NMDA receptor interacting molecules in hippocampal regions
CA1, CA2, CA3, CA4, dentate gyrus (DG) and subiculum (Sub) from patients with bipolar
disorder (BD), schizophrenia and a control group (CTL). Data expressed as fmol mRNA/g
tissue (mean ± SEM).

McCullumsmith et al. Page 14

Brain Res. Author manuscript; available in PMC 2010 July 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
[3H]MK-801 (A) and [3H]CGP39653 (B) binding site expression in hippocampal regions CA1,
CA2, CA3, dentate gyrus (DG) and subiculum (Sub). Panel A’ is [3H]MK-801 binding in the
presence of unlabeled MK-801, Panel B’ is [3H]CGP39653 binding in the presence of
unlabeled L-glutamic acid.
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Figure 6.
[3H]CGP39653 and [3H]MK-801 binding site expression in hippocampal regions CA1, CA2,
CA3, CA4, dentate gyrus (DG) and subiculum (Sub) from patients with schizophrenia and a
control group. Data expressed as fmol/mg estimated tissue equivalent.
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Table 2

Summary of Regression Analysis

Gene Studied Multiple Regression Coefficient (R) Demographic Beta p-value

NR1 0.36 age -0.31 0.0033

pH 0.35 0.00025

NR2A 0.28 age -0.25 0.016

pH 0.27 0.0046

NR2B 0.19 age -0.16 0.15

pH 0.20 0.54

NR2C 0.31 age -0.22 0.037

pH -0.15 0.10

NR2D 0.24 age 0.039 0.71

pH -0.25 0.0099

NF-L 0.36 age -0.12 0.23

pH 0.39 0.000061

PSD 93 0.25 age -0.019 0.87

pH 0.14 0.19

PSD 95 0.43 age -0.14 0.14

pH 0.46 0.000001

SAP102 0.41 age -0.21 0.045

pH 0.45 0.000003
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