
SPA: Short peptide analyzer of intrinsic disorder status of short
peptides

Bin Xue1,2, Wei-Lun Hsu1,3, Jun-Ho Lee3, Hua Lu3, A. Keith Dunker1,2,3, and Vladimir N.
Uversky1,2,3,4,*
1Center for Computational Biology and Bioinformatics, Indiana University School of Medicine,
Indianapolis, IN 46202, USA
2Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine,
Indianapolis, IN 46202, USA
3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine,
Indianapolis, IN 46202, USA
4Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow
Region, Russia

Abstract
Disorder prediction for short peptides is important and difficult. All modern predictors have to be
optimized on a preselected dataset prior to prediction. In the succeeding prediction process, the
predictor works on a query sequence or its short segment. For implementing the prediction smoothly
and obtaining sound prediction results, a specific length of the sequence or segment is usually
required. The need of the preselected dataset in the optimization process and the length limitation in
the prediction process restrict predictors’ performance. To minimize the influence of these
limitations, we developed a method for the prediction of intrinsic disorder in short peptides based on
large dataset sampling and statistics. As evident from the data analysis, this method provides more
reliable prediction of the intrinsic disorder status of short peptides.

Introduction
The concepts of intrinsic disorder (ID) and intrinsically disordered proteins (IDPs) are being
accepted by the scientific community (Wright & Dyson 1999; Uversky et al. 2000; Dunker et
al. 2001; Tompa 2003). IDPs do not have unique 3D structures in their native states under
physiological conditions. However, they play important roles in living organisms, being
frequently involved in crucial biological processes, such as signaling, recognition and
regulation. Often, the function of IDPs relies on the large-scale conformational changes of
corresponding intrinsically disordered regions (IDRs) (Wright & Dyson 1999; Dunker et al.
2002a, b; Minezaki et al. 2006). The disordered residues and regions can be identified by
experiments as regions of missing electron density in X-ray crystallography maps (Ringe &
Petsko 1986) or as highly dynamic regions in nuclear magnetic resonance (NMR) spectroscopy
(Dyson & Wright 2002b), or by computational predictions (Ferron et al. 2006; He et al.
2009). IDRs are highly abundant in nature. Approximately 70% of proteins in protein data
bank (PDB) have regions of missing electron density (Obradovic et al. 2003), of which

© 2010 The Authors Journal compilation © 2010 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
*Correspondence: vuversky@iupui.edu.
Communicated by : Osamu Nureki

NIH Public Access
Author Manuscript
Genes Cells. Author manuscript; available in PMC 2010 July 9.

Published in final edited form as:
Genes Cells. 2010 June ; 15(6): 635–646. doi:10.1111/j.1365-2443.2010.01407.x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



approximately 40% have regions of missing density corresponding to fragments of 10–20
residues. Over 10% of proteins in PDB have long segments of missing electron density
consisting of at least 30 amino acids (Le Gall et al. 2007). Computational studies at the genome
level revealed that typically 7– 30% prokaryotic proteins contain long disordered regions of
more than 30 consecutive residues, whereas in eukaryotes the amount of such proteins reaches
45–50% (Romero et al. 1997, 2001; Dunker et al. 2001; Oldfield et al. 2005a, b).

Inferences from the earlier observations are more interesting. Over half of the proteins in PDB
have short disordered regions of 30 or fewer residues. The vast majority of proteins in various
genomes may have short disordered regions (<30 consecutive residues). These facts
immediately raised several interesting questions: Why are the short disordered regions so
abundant in nature? What functions do they have? How can we identify them? Recent
experimental studies have confirmed the functional importance of short IDRs. They can
mediate protein–protein interaction (Vershon & Johnson 1993), facilitate multimerization and
proceed membrane binding (Liang et al.2003). Computational analyses identified a group of
protein segments called molecular recognition features (MoRFs) (Oldfield et al. 2005b; Mohan
et al. 2006), which are a short protein fragment undergoing disorder-to-order transition during
the protein recognition and binding processes. In other words, short IDRs often help proteins
to interact with other molecules or facilitate such interactions. Actually, as estimated by our
computational studies, over 40% of proteins in eukaryotes genomes are predicted to contain
at least one α-helical MoRF (Oldfield et al. 2005b; Mohan et al. 2006). Based on their
fundamental biological roles, short biologically active peptides were collected and classified
into various databases, such as ELM (Puntervoll et al. 2003), MnM (Balla et al. 2006) and
SLiMDISC (Davey et al. 2006). Pharmaceutical industries have also begun to use more and
more peptides in their drug design (Marasco et al. 2008).

Knowing that the short IDRs are related to many biological functions, it is of great importance
to identify them with high accuracy. However, this is not a trivial task. Experimental methods
are both time and cost consuming. Computational methods, although fast, are less accurate and
have many application restrictions.

All state-of-art computational predictors of intrinsic disorder are knowledge-based, meaning
that predictor training depends on a collection of examples exhibiting and not exhibiting
features of interest. First, a set of proteins is selected in advance. Next, the predictor is optimized
by training on these proteins of known features. When the query proteins are very similar to
proteins in the training set with regard to the features adopted by the predictor, high accuracy
predictions are typically the result. However, when the query protein is different from the
training set proteins in chosen features, the prediction accuracy would be subject to many
factors. The variability of the prediction accuracy in this case is essentially a sampling problem
in the phase space of features adopted by the predictor. The inappropriate selection of true
positive and true negative samples in the training set will definitely reduce the generality of
the predictor. Hence, selecting proper representation for the phase space of features is of key
importance in improving the reliability of the predictor. However, the available structural
information obtained from experiments is still limited in comparison with the number of known
sequences. Only a small portion of known sequences have resolved structures. In PDB, the
number of known disordered residues/regions is noticeably smaller than the number of
structured residues. This limitation restricts the sampling of the entire phase space of features.
Besides, each predictor can be simulated by a specific algorithm. Mathematical approximation
in the algorithm can cause new problems, such as artificial multiple minima and over-fitting.
These problems become more critical when the phase space is sparsely sampled.

A second issue for all the disorder predictors currently used comes from the input requirement
of protein sequence as a consecutive segment. Amino acids and their sequence on that
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consecutive segment provide various features as inputs for predictor. These inputs are
transformed into the disorder index by the predictor. The accuracy of the disorder index
depends on the selection of features, as well as on the length of the consecutive segment. The
reasons for this limitation are as follows. The predictor is trained on segments of a particular
length. Therefore, the query segments of appropriate length can imitate the local interactions,
which are important for local structure and function. If the length is too short, the imitation of
the local interactions may create errors. Usually, the length of this chosen segment is
approximately 20–30 residues. From this starting point, shorter peptides with only a few
residues could not be properly predicted. Many predictors cannot even be applied to short
peptides.

The third problem for current disorder predictors is the low prediction accuracy for short IDRs
(He et al. 2009; Xue et al. 2010). This problem is strongly dependent upon the first and second
problems. By definition, IDRs are flanked sequentially by structured regions. Because a
consecutive segment is required for the prediction, the prediction of disordered region
boundaries will be influenced by neighboring structured residues. When the disordered region
becomes short, the entire predictions for all residues in such an IDR will be influenced by the
flanking structured regions. More practically, residues in short IDRs need to be more disorder-
prone to maintain the disordered status. That is the reason why the composition profile of short
disordered regions is very different from that of longer ones (Peng et al. 2006). Predictors,
which take composition profile as the input and are trained on datasets of long segments, will
have low accuracy in predicting short segments. As shown by earlier studies, although the
prediction accuracy for longer disordered regions is 75–95%, the accuracy for short disordered
regions is only 25–66% (Obradovic et al.2003; Xue et al. 2010).

Previously, to predict short peptides, the predictors were built using the datasets of known short
peptides. In this article, we proposed a different methodology to deal with the disorder
prediction in short peptides. The new computational tool, Short Peptides Analyzer (SPA), first
extends the query peptide by embedding it into a preselected segment of 30 residues and then
analyzes the disorder status of this extended fragment by one of the previously developed
disorder predictors, PONDR-VLXT. The purposes of this study were (i) to develop a specific
tool for the accurate disorder prediction of short peptides; and (ii) to improve the prediction
accuracy of short disordered regions inside longer sequences. Because the boundary in defining
a given segment as short or long region is usually set at 30 residues, and because the most of
the PONDR family predictors work well for sequences with 28 or more residues, we restricted
our studies to short peptides of 28 or fewer residues.

Results
SPA prediction scheme

The short query peptide is embedded inside a preselected protein segment of 30 amino acids
to create a longer combined peptide. Embedding is carried out in such a way that each side of
the query peptide is extended by 15 amino acids fragments from this preselected 30-residue-
long protein segment. Therefore, the combined peptide has at least 31 amino acids and is
obviously above the minimal length limitation posted by all PONDR predictors. Hence, this
combined peptide can be predicted by any PONDR predictor. The predicted results
corresponding to the central region of the combined peptide are extracted as the prediction for
the original query short peptide. Apparently, there are two problems to be solved: Which
predictor shall be used? How to choose the 30 a segment?

Each predictor in PONDR family has its own specialty. For example, PONDR-VLXT is very
sensitive to local amino acid composition (Romero et al. 1997, 2001). Because of this
sensitivity, PONDR-VLXT is able to identify the subtle difference between various short
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peptides. That is why this predictor is one of the major components of the MoRF identifiers
(Oldfield et al. 2005b; Cheng et al. 2007). By definition, MoRF is a specific short protein
segment that undergoes disorder-to-order transition during protein–ligand binding. Based on
these considerations, PONDR-VLXT was chosen to predict combined peptides in this study.

Obviously, because the amino acid compositions and physicochemical properties of two
preselected protein segments may be enormously different, the preselected peptide may have
very large influence on the results of final prediction. A common solution to this problem is
the ensemble average. Here, a large number of protein segments are selected to make an
ensemble. The short query peptide is inserted into every protein segment in this ensemble. The
disorder propensities are predicted for all these combined peptides. The disorder predictions
corresponding to the short query peptide from all the combined peptides are averaged and are
taken as the final disorder scores. Such ensemble averaging helps to reduce the random
influence of single preselected protein segment.

Statistics of various short segment datasets
The accuracy of the previously described computational tool for the disorder status analysis of
the short peptides, SPA, was tested using the disordered segments of partially disordered
proteins (DSP) and ordered segments of partially disordered proteins (OSP) datasets,
containing DSP and OSP, respectively. Both datasets originated from the previously generated
partially disordered dataset (PDD) (Xue et al. 2010), and the protocol for their development is
described in the Materials and Methods section. Fig. 1 shows the length distribution of short
disordered and structured segments in the DSP and OSP datasets. The length distributions of
these two types of segments were completely different: the DSP dataset mostly contained short
segments (5–10 residues), whereas the majority of segments in the OSP dataset were noticeably
longer. More specifically, ~75% of disordered segments in DSP were shorter than 10 residues,
and only 16% of structured segments in OSP had 10 or fewer residues. Only 5% of disordered
segments were longer than 20 residues, whereas over 40% of ordered segments had more than
20 residues. This distribution reflects the natural (PDB-based) abundance of short disordered
and ordered segments of various lengths, because both DSP and OSP were directly extracted
from PDB. Apparently, because of the overpopulation of short segments, the overall prediction
accuracy on these two datasets will be dominated by these short segments.

The physicochemical properties of protein chains of different lengths could be different. These
differences may eventually invalidate predictors optimized under dissimilar environments. The
composition profiling (Vacic et al. 2007b) and the balanced Kullback-Leibler (KL) divergence
(Kullback 1987) were employed to compare the datasets. Figure 2(a) illustrates the composition
profiles of disordered segments of various lengths compared to sequences in fully disordered
dataset (FDD). When the DSP segment length became short, the abundance of order-promoting
residues (W, C, F, I, Y, V, and L) clearly decreased, and the content of major disorder-
promoting residues (G, S, N, D, E, and K) increased with except for R, Q and P. In essence,
these data suggested that short disordered segments in DSP were noticeably more disorder
prone than fully disordered proteins in FDD. This outcome was expected because short
disordered segment is flanked by ordered segments at both sides. Therefore, there should be
more disorder-promoting residues and less order-promoting residues in the short disordered
segments to counteract the influence of ordered segments at both sides. Alternatively, these
short disordered segments do not have as much potential to interact with other proteins (because
they are typically low in the order-promoting residues such as aromatic amino acids) and could
therefore have evolved to promote solvation. More interestingly, short disordered segments
had much more G, S and N and fewer P, E and K than FDD. The fraction of R and D residues
in both datasets was not too different. Hence, the disorder status of short disordered segments
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was mainly dictated by the high abundance of polar residues rather than by prevalence of
charged residues and proline.

Figure 2(b) represents the relative composition profiles of short structured segments when
compared to sequences of proteins in a fully ordered dataset (FOD). Because of the limited
number of samples in the dataset, the bootstrapping errors were relatively large. Although the
overall trend was still recognizable, the individual content of each amino acid varied greatly
among the datasets of short ordered segments. In general, short ordered segments had more
aliphatic residues (I, V and L) and less polar and charged residues (G, Q, S, N, K, and D). The
content of aromatic residues W, Y and F, as well as that of H, R, P and M fluctuated in a very
wide range. Another/interesting observation is the extremely large abundance of histidine
residues in the O5 and O10 datasets. This fact is also expected because the histidine residues
often have a significant contribution to the protein structural stability.

The KL divergence between various datasets analyzed in this study is shown in Table 1. In our
previous study, a KL value <0.01 was used as the indication of two similar datasets (Xue et
al. 2009a). By applying this rule of thamb, almost all the segments of various lengths in different
datasets were very distinct from each other, except to D10, D15 and D20. Furthermore,
difference between ordered subsets was much bigger than the difference between disordered
subsets. This observation was in line with the composition variations shown in Fig. 2. In
addition, subsets containing very short segments (<10 residues) always had larger KL distance
from other subsets than subsets of longer segments. This finding clearly showed that short
segments constitute a unique entity and therefore should be considered separately.

Prediction accuracy
The receiver operating characteristic (ROC) curve for the SPA performance on various subsets
is shown in Fig. 3. The corresponding values of area under curve (AUC), breakeven point and
accuracy at breakeven point are listed in Table 2. It is clear that the prediction of disorder status
in shorter segments was less accurate than the prediction of disorder in middle-sized segments.
The accuracy of prediction of longer fragments was also reduced. This probably was because
of the insufficient number of samples in the dataset. The datasets D20/O20 achieve the highest
accuracy with the AUC of 0.83 and the breakeven accuracy of 74%.

In comparison, the AUC of PONDR-VLXT in PDD dataset is only 0.71 (Xue et al. 2009a).
Hence, it was interesting to compare the accuracy of PONDR-VLXT and SPA performance
on various subsets analyzed in this study. The results of this comparison are summarized in
Table 3. In datasets of short disordered segments, the accuracy of SPA remarkably exceeded
the PONDR-VLXT accuracy, especially for segments shorter than 20 residues. Even in the
datasets of short ordered segments, the accuracy of SPA was noticeably better than that of
PONDR-VLXT in half of the cases, which represent 65% of the segments. These data clearly
show that SPA not only provided a methodology of accurate prediction of disorder status in
short segments, which cannot be predicted by traditional disorder predictors because of their
limitation on the length of analyzed sequences, but also presented a new way of improving the
prediction accuracy. As an illustration of the SPA performance, Table 4 represents several
examples of short intrinsically disordered and intrinsically ordered regions (containing 16–20
amino acids) with known crystal or NMR structures, which were correctly or incorrectly
predicted by SPA. Here, the experimentally validated disorder status was established from the
corresponding PDB entries, with regions with missing electron density being identified as
disordered, and segments flanked by the disordered regions being considered as structured. In
SPA prediction, a segment was considered as disordered if the content of disordered residues
was equal to or higher than 50%. On the contrary, if segment contained <50% of predicted
disordered residues, it was assigned as structured. Table 4 shows that in addition to this arbitrary
classification of segments as wholly disordered or structured, SPA can provide a mean disorder
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propensity score for a given peptide, which then can be used for a more accurate disorder status
assignment.

Applications
Recently, a concept of MoRFs was introduced to characterize a specific structural element that
mediates many of the binding events of IDPs (Oldfield et al.2005b; Mohan et al. 2006; Cheng
et al. 2007; Vacic et al. 2007a). These structural elements consist of short regions – on the
order of 20 residues – that undergo disorder-to-order transitions upon binding to their partners.
Furthermore, these regions are typically flanked with regions of intrinsic disorder (Oldfield et
al. 2005b; Cheng et al. 2007). The search of PDB for proteins that fit the general MoRF model
of disorder-mediated protein interactions revealed a dataset of 372 short fragments that are
very likely to be disordered prior to binding their protein partners, as shown by both sequence-
and structure-based predictions (Mohan et al. 2006; Vacic et al. 2007a). These MoRFs were
separated into four major groups based on their secondary structure content (Mohan et al.
2006): α-MoRFs, which form α-helices; β-MoRFs, which form β-strands or β-sheets; ι-MoRFs,
which have irregular, nonrepeating psi- and phi- angles; and complex-MoRFs, which have two
or more secondary structure types of approximately equal abundance (see Fig. 5). Subsequent
analyses revealed that MoRFs are very common in various proteomes and occupy a unique
structural and functional niche in which function is a direct consequence of intrinsic disorder
(Oldfield et al. 2005b; Mohan et al. 2006; Cheng et al. 2007; Vacic et al. 2007a). The functional
capacities of MoRFs were shown to be exploited in many molecular settings suggesting that
MoRFs may play crucial roles in many different functions (Mohan et al. 2006; Vacic et al.
2007a). MoRFs clearly exemplify a molecular recognition mechanism, which is coupled to the
folding process, and which confers exceptional specificity and versatility (Dunker et al.
2001, 2005, 2008a, b; Dyson & Wright 2002a, 2005; Gunasekaran et al. 2003; Uversky et al.
2005; Radivojac et al.2007; Dunker & Uversky 2008; Uversky & Dunker 2008; Wright &
Dyson 2009).

Because α- and β-MoRFs are basically structured peptides flanked by disordered regions at
both side, and because ι-MoRFs look like segments ‘frozen’ in the irregular configurations
because of their interaction with binding partner, we decided to use our SPA tool to evaluate
the predicted disorder status of various MoRFs. Almost all the MoRF segments analyzed so
far were predicted to be either fully disordered or fully structured (data not shown). Therefore,
we simply considered the segments with 50% or more disordered residues as disordered and
counted the number of disordered MoRF segments in each case. Results of this analysis are
summarized in Table 5, which shows that only three of 12 α-MoRFs were predicted to be
disordered, whereas for ι-MoRFs the disorder/order ratio was close to four out 10. These data
are in agreement with earlier observations that MoRFs tend to maintain higher net charge than
ordered monomers and although they show lower proportions of aromatic residues, the vast
majority of MoRF regions were shown to contain at least one aromatic amino acid (Mohan et
al. 2006). The presence of aromatic residues in MoRFs was expected because the side chains
of aromatic amino acids tend to make strong and specific interactions (Burley & Petsko
1985), which are expected to exist in regions involved in molecular recognition (Mohan et
al. 2006). All these features are shown in Fig. 4 for various MoRF complexes.

Discussion
The reliable disorder prediction on short protein segments is a difficult task (He et al. 2009;
Xue et al. 2010). For a short peptide, the information on long range interactions, which may
contribute to its stability and dynamics, is always insufficient. Besides, the majority of modern
disorder predictors are typically trained on a set of relatively long sequences. As a result, their
prediction accuracies on short segments are relatively poor. All the predictors need a
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consecutive segment of certain length as the input of the prediction and segments which are
shorter than a chosen threshold are rejected by the predictor. Actually, it is a wise strategy in
designing predictor to reject the prediction if its accuracy cannot be assured. To the best of our
knowledge, PONDR-VSL2 has the shortest threshold of nine residues, whereas the thresholds
of the majority of disorder predictors are set at approximately 30 residues. Therefore, there is
an urgent need to develop a method for an accurate evaluation of disorder status in such short
peptides. Described in this article is a novel computational tool, the short peptide analyzer or
SPA, which applies the method of artificial extension of the length of a short query peptide,
implements traditional disorder prediction on the extended peptide, and adopts an ensemble
average approach to reduce the random error.

To illustrate the performance of SPA analyzer on known ordered and disordered fragments,
Fig. 5 represents the SPA prediction for an ordered peptide P1, PFVVSDIAFMGLFYD, and
a disordered peptide P2, PLSHGSVVYPRSSLG. Both P1 and P2 peptides have 15 residues,
and their order and disorder, respectively, have been experimentally identified. These two
peptides were identified as potential sites of protein–protein interactions by the phage display
experiments. All the curves in Fig. 5 can be divided into three regions: AA1-AA15, AA16-
AA30 and AA31-AA45. Here, AA16-AA30 is the query peptide P1 or P2, whereas flanking
segments AA1-AA15 and AA31-45 correspond to the N-terminal and C-terminal halves of
fully disordered or fully ordered segments (FOS) selected from fully disordered segments
(FDS) and FOS, respectively. Because query sequences were embedded into the preselected
ordered or disordered fragments, the resulting flanking regions were predicted as ordered or
disordered depending on the nature of the preselected sequences. However, the AA16-AA30
region corresponding to the query sequence was much less affected by the order/disorder status
of the flanking regions. By taking the ensemble average as a final step, the results were
furthermore consolidated. From Fig. 5, it is clear that the SPA predictions were in a good
agreement with the experimental results.

As shown in Fig. 5, the disordered status of terminal residues is heavily influenced by the
boundaries. This is one of the reasons why boundary residues usually have less prediction
accuracies (He et al. 2009;Xue et al. 2010). We believe that the strategies proposed in SPA
can be helpful in improving the accuracy for boundary residues.

Experimental procedures
Datasets of preselected segments

To reduce the fluctuation of the averaged prediction because of insufficient samples, it is
important to select as many protein segments as possible. If the ergodicity in the space of
combined peptides is satisfied, then the final averaged prediction over all the possible
combinations should be highly reliable. However, this exhaustive sampling involves 2030

possible combinations. For the simplicity and feasibility, the number of preselected protein
segments has to be reduced to a computationally acceptable level. Such a reduced set of protein
segments should provide a sound representation of the original phase space of the combined
peptides. By try-and-error approach, two datasets of preselected protein segments were chosen
to compose the ensemble, the dataset of FDS and the dataset of FOS.

These two segment datasets were extracted from the previously generated datasets of ordered
and disordered proteins, FDD and FOD (Xue et al. 2009b). The set of fully ordered proteins,
FOD, was extracted from PDB by choosing X-ray structures of single-chain nonmembrane
proteins, which were characterized by unit cell and primitive space groups. Structures with
ligand, disulfide bonds and missing electron density were removed from the dataset. The
sequence identity of 25% was applied in the BLASTClust (basic local alignment search tool
with clustering) from NCBI to find redundant sequences, and shorter sequences in the same
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cluster were removed. The final dataset has 554 chains and 113,895 residues. The dataset of
fully disordered proteins, FDD, was extracted from the Dis-Prot database (Sickmeier et al.
2007) by selecting proteins, which were experimentally shown to be wholly disordered. The
final version of FDD has 84 proteins and 17,420 residues.

Next, all the proteins from FOD and FDD were analyzed by PONDR-VLXT (Romero et al.
1997, 2001) and PONDR-VSL2 predictors (Obradovic et al. 2005; Peng et al. 2005, 2006) to
evaluate the disorder propensity distribution in their sequences. Segments having consistent
‘ordered’ or ‘disordered’ status among the experiment and the results of these two predictions
were selected. Segments shorter than 30 residues were filtered away. Segments longer than 30
residues were chopped down to 30 residues starting from their C-termini. Finally, all segments,
which were predicted and experimentally verified as ordered, were grouped into FOS. There
were a total of 1470 such segments. By applying the BLASTCLUST and 25% threshold value
to filter redundancy, the final FOS dataset of 1439 segments was created. Similarly, 197
disordered segments were classified into FDS. The application of BLASTCLUST did not
reduce the number of sequences in this dataset.

Independent prediction and bootstrapping
For each short query peptide, there were 1636 combined peptides, among which 1439 resulted
from embedding a query peptide into the FOS sequences, and 197 combined peptides originated
from the insertion of a query sequence into the FDS sequences. Because the sizes of FOS and
FDS are very different, a simple mathematical average over all these 1636 predictions will
undoubtedly bias to the predictions from FOS-embedded fragments. To avoid this bias, a
balanced bootstrapping procedure was applied 1000 times to represent the final disorder score
for each residue of the query sequence. At each bootstrapping step, to calculate the disorder
score for each residue, an equal number of predictions made for ordered-segment-combined
peptides and for disorder-segment-combined peptides were randomly selected from the
original set of 1439 and 197 predictions. This process was repeated 1000 times to provide mega
average values, as well as the statistical error of the prediction.

Test datasets
To evaluate the accuracy of the proposed method, two additional datasets were created. The
first dataset, DSP, contained disordered segments of partially disordered proteins, whereas
ordered segments of partially disordered proteins were included in OSP dataset. Both datasets
originated from the previously generated PDD (Xue et al. 2010), which was created by selecting
from PDB the X-ray structures of single chain protein with resolutions higher than 3.0 Å and
without prosthetic groups. These sequences were then clustered by using BLASTCLUST with
a 30% cut-off of sequence identity. In the case, there were multiple sequences in the same
cluster, the longest one was selected. The resulting sequences were furthermore filtered by
removing histidine tags and initial methionines, as well as sequences having only 20 or less
disordered residues totally in the entire sequence by applying xml2pdb
(http://dunbrack.fccc.edu/Guoli/s2c/index.php). The purpose of removing sequences with low
number of disordered residues was to keep the reasonable size of the dataset. There were 647
sequences with totally 230,314 residues, in which 16,011 disordered residues were located in
1376 disordered regions. After removing the segments longer than 28 residues, there were 2861
and 221 short disordered and short structured segments in DSP and OSP, respectively.

The performance of SPA was also evaluated on a dataset of multi-partner MoRF segments and
illustrated for two biologically active short peptides with known disorder status. The multi-
partner MoRF dataset was also extracted from PDB by following procedures: First, select all
the complex structures in PDB that have short nonglobular protein fragments (5–25 residues)
bound to large globular structural partner (>70 residues). Then, remove all the complexes that
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have solvent surface area difference (ΔASA) of <400 square angstroms from unbound to bound
state. Third, by aligning each short protein segment in the complexes back onto all the
sequences in UniProt, extract the sequences that contain multiple protein segments, and these
multiple segments overlap (at least one residue) with each other. Followed by this, the
overlapped common regions are taken as multi-partner MoRFs. Finally, after applying
BlastCluster to remove the redundancy, there are 150 multi-partner MoRFs in 51 clusters. Two
15-mer peptides were identified through a screening for protein–protein interaction using the
phage display technology.
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Figure 1.
Length distribution of short disordered and short ordered segments from DSP and OSP.
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Figure 2.
Relative composition profile of DSP segments vs FDD (a) and that of OSP segments vs fully
ordered dataset (FOD) (b). On x-axis, amino acids are arranged in ascending disorder tendency.
CP is the absolute composition of one amino acid in the query dataset; CID is the absolute
composition of the same amino acid in FDD; COD is the same amino acid composition in FOD.
Error bars are from 200 times of bootstrapping sampling. ‘D’ indicates subsets from DSP while
‘O’ is for subsets from OSP. D5 includes all the segments with segment length less than 5;
D10 is for segments longer than or equal to 5 but <10; D15 corresponds to segments with 10
≤ L < 15; D20 is 15 ≤ L < 20; D25 is 20 ≤ L < 25; D28 is 25 ≤ L ≤ 28. The same nomenclature
is applied to subsets obtained from OSP.
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Figure 3.
Receiver operating characteristic (ROC) curve of SPA in DSP/OSP datasets. These two
datasets are furthermore grouped into subsets according to the length of segments in them. ‘D’
indicates subsets from DSP while ‘O’ is for subsets from OSP. D5 includes all the segments
with segment length less than 5; D10 is for segments longer than or equal to five but <10; D15
corresponds to segments with 10 ≤ L < 15; D20 is 15 ≤ L < 20; D25 is 20 ≤ L < 25; D28 is 25
≤ L ≤ 28. The same nomenclature is applied to subsets obtained from OSP. Each pair of subsets
with the same range of length, originated from DSP and OSP, respectively, are put together to
calculate the ROC curve for segments of that length.
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Figure 4.
3D Structure of molecular recognition features (MoRFs) with their substrates. (a) (PDBid:
2NM1) and (b) (PDBid:2AUC) are alpha-MoRFs. (a) is predicted to be structured while (b) is
disordered. (c) (PDBid:1LXH) and (d) (PDNid: 1PJM) are coil-MoRFs with (c) structured and
(d) disordered.
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Figure 5.
Application of SPA on two peptides P1 (PFVVSDIAFMGLFYD) and P2
(PLSHGSVVYPRSSLG). P1 is experimentally identified as ordered while P2 is disordered.
All the slim curves are PONDR-VLXT predictions for the combined peptides by inserting the
query peptides into disordered and ordered segments selected from fully disordered segments
(FDS) and fully ordered segments (FOS). The large connected dots are predictions and error
bars from SPA. (a) Predictions of 10 randomly selected combined peptides by embedding P1
on disordered protein segments from FDS. (b) Predictions of 10 randomly combined peptides
by implanting P1 into ordered segments of FOS. (c) Predictions for peptides generated by
inserting P2 into 10 segments used in (a). (d) Combining P2 onto 10 segments shown in (b).
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Table 2

Area under ROC curve of various subsets and corresponding prediction accuracy

AUC Breakeven
accuracy

Breakeven
point

D5/O5 0.704 67.8% 0.51

D10/O10 0.754 66.0% 0.49

D15/O15 0.757 69.8% 0.44

D20/O20 0.829 74.1% 0.37

D25/O25 0.794 70.7% 0.37

D28/O28 0.733 66.0% 0.36
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