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Evidence has accumulated indicating that the
clostridia ferment glucose by means of a system
similar to the Embden-Meyerhof-Parnas (EMP)
pathway (Elsden, 1952). In the case of Clos-
tridium perfringens, for instance, most of the
enzymes of the EMP pathway have been demon-
strated in cell free extracts (Bard and Gunsalus,
1950; Shankar and Bard, 1955). Further evi-
dence for the operation of the EMP pathway in
C. perfringens has been provided in the form of
studies involving tracer distribution in the
products of the fermentation of C14-labeled glu-
cose (Paege et al., 1956). The utilization of pen-
toses by members of the genus Clostridium has
received less attention. Reports in the literature
concerning this phase of carbohydrate metab-
olism in the clostridia have been restricted gener-
ally to a listing of the pentoses metabolized and
to the products of pentose metabolism. For
example, Pr6vot and Taffanel (1942) reported
that Clostridium novyi, Clostridium saprotoxicum,
and Clostridium hemolyticum metabolized arabi-
nose and xylose, producing ketones, lactic acid,
ethanol, and fatty acids of low molecular weight.
Bolcato et al. (1952) studied the fermentation
of xylose and arabinose by Clostridium aceto-
butylicum. They isolated and identified as fer-
mentation products triose phosphates and pyru-
vic acid, and concluded on the basis of this
evidence that pentose was fermented by means of
a C2-C3 cleavage.

It was felt that the metabolism of pentoses by
members of the genus Clostridium was worthy
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of further study. Experiments conducted with
C. perfringens revealed that this organism could
be induced to ferment D-ribose, but not D-xylose
or L-arabinose. The products included carbon
dioxide, hydrogen, ethanol, and volatile acids
(Cynkin, 1957). In the present report, evidence
is presented indicating that extracts prepared
from C. perfringens grown on D-ribose possess
ribokinase and phosphopentoisomerase activity,
and are able to convert ribose-5-phosphate to
hexose monophosphate.

MATERIALS AND METHODS

C. perfringens strain BP6K from the Cornell
University collection was maintained by trans-
fer in heart infusion broth containing D-ribose.
Mass cultures of cells were grown in a medium
containing 1 per cent yeast extract (Difco), 1
per cent tryptone (Difco), and 0.5 per cent K2-
HPO4. A 20 per cent solution of D-ribose was
sterilized by filtration and added to the medium
to yield a final sugar concentration of 1 per cent.
Cultures were incubated at 37 C for 5 hr, har-
vested by centrifugation, and washed once with
distilled water before being used in the prepa-
ration of cell free extracts.
Two general methods were used for the prepa-

ration of extracts. In the first method, the cul-
ture was suspended in distilled water and sub-
jected to sonic oscillation. In the second method,
extracts were prepared by grinding with alumina.

D-Ribose was obtained from various commer-
cial sources. Ribose-5-phosphate was obtained
from Schwarz Laboratories as the barium salt.
Triphosphopyridine nucleotide (TPN) and the
potassium salt of adenosine triphosphate (ATP)
were obtained from the Sigma Chemical Com-
pany.
The method of Horecker et al. (1954) was em-

ployed for the demonstration of "ribokinase"
activity, in which the disappearance of free pen-
tose was followed after the phosphate esters were
removed as ethanol-insoluble barium salts.

331



CYNKIN AND DELWICHE

40

30

0

Zr 20
w
X_
0

z
w
0.

10

0 10 20 30
TIME IN MINUTES

Figure 1. Disappearance of free pentose in the
presence of ATP. In these experiments, a cell-free
extract was prepared by treating a 20 ml suspen-
sion containing about 20 mg (dry weight) of cells
per ml in a Raytheon 50 Watt, 9 kc Oscillator for
60 min. Reactions were conducted at room temper-
ature. The reaction mixture contained the follow-
ing ingredients (in a total volume of 0.6 ml):
tris(hydroxymethyl)aminomethane buffer (pH
7.3), 15 jAmoles; MgC92, 10 ,moles; cysteine (pH
7.4), 5.2 jimoles; ATP, 4 ,umoles; extract, 0.1 ml;
D-ribose, 2.0,moles. The ribose was added last.
At the intervals shown above, a 0.1 ml sample
was removed, added to 0.5 ml absolute ethanol,
and treated with 0.01 ml of a saturated barium
acetate solution. The resulting precipitate was
removed by centrifugation, and a 0.1 ml aliquot
of the supernatant was analyzed for pentose.

"Phosphopentoisomerase" activity was demon-
strated using the method of Axelrod (1955),
in which a modification of the carbazole proce-
dure of Dische and Borenfreund (1951) was em-
ployed for the detection of ketoses. Pentose was
estimated by the method of Mejbaum (1939).
Hexose monophosphate was estimated by follow-
ing TPN reduction spectrophotometrically in the
presence of glucose-6-phosphate dehydrogenase.
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Figure 2. Formation of ketose from ribose-5-
phosphate. In these experiments, cell-free extracts
were prepared as follows: a paste containing 21
g of cells (wet weight) was ground manually with
50 g of "levigated" alumina. Twenty-fiveml of a
0.9 per cent KCI solution were stirred in with the
mixture, and the preparation was stored over-
night. A clear supernatant solution was obtained
after two centrifugations at 20,000 X G for 45
min. All operations were performed at 4 C. The
substrate, ribose-5-phosphate (barium salt),
was dissolved (1 mg/ml) in 0.1 M tris(hydroxy-
methyl)aminomethane buffer, pH 7.3, immedi-
ately before use in order to minimize spontaneous
isomerization. One-half ml of this solution was
placed in each of three colorimeter tubes at 37 C.
One-tenth ml of enzyme solution was then added
to each tube. At each time interval indicated, one
tube was treated with 6.0 ml of 23 N H2SO4, 0.2
ml of a 0.12 per cent carbazole solution in absolute
ethanol, and 0.2 ml of a 1.5 per cent aqueous
solution of L-cysteine hydrochloride. Each tube
was then incubated at 37 C for 30 min. Optical
density at 520 m,u was determined. The tube
treated at 0 min was used as a colorimetric blank.
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Figure S. Formation of hexose monophosphate
from ribose-5-phosphate. The cell free extract
was prepared by treating a 20 ml suspension con-

taining about 100 mg (dry weight) of cells per ml
in a Raytheon 200 watt, 10 kc oscillator for 20
min. Debris was removed by centrifugation at
20,000 X G for 45 min. The reaction was begun by
adding 0.2 ml of 0.05 M ribose-5-phosphate to 1.0
ml of extract. The incubation temperature was

30 C. At the intervals shown above, a 0.2 ml
sample was removed, added to 0.8 ml distilled
water, boiled for 2 min, chilled, and centrifuged.
The supernatant was analyzed for pentose and for
hexose monophosphate.

The assumption was made here that phospho-
hexoisomerase was present in the extracts
(Shankar and Bard, 1955).

RESULTS

Ribokinase activity. When D-ribose was incu-
bated with a cell free extract in the presence of
ATP, the disappearance of pentose was ob-
served (figure 1). No attempt was made to iden-
tify phosphorylated products. However, in the
experiments described below, ribose-5-phosphate
was assumed to be the product of the phosphory-
lation of ribose (Cohen et al., 1951; Sable, 1952;
Horecker et at., 1954).

Phosphopentoisomerase activity. In the quanti-
tative determination of this enzyme, the color
density produced in the cysteine-carbazole reac-

tion would be standardized by comparison with
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the color produced by an equilibrated reaction
mixture (Axelrod, 1955). In the present experi-
ment, however, an increase in color density was
to be regarded as qualitative evidence for iso-
merase activity, i. e., ketose production from
ribose-5-phosphate. The observed increase in
optical density, shown in figure 2, presumably
is the result of ketose production, and this has
been considered as evidence for the isomerization
of ribose-5-phosphate.

Conversion of pentose phosphate to hexose mono-
phosphate. When ribose-5-phosphate was in-
cubated with extracts, pentose disappearance
could be demonstrated. This disappearance was
accompanied by the formation of hexose mono-
phosphate (figure 3). Attempts to demonstrate
intermediates such as triose phosphate, assayed
by measuring diphosphopyridine nucleotide
reduction spectrophotometrically, or heptulose,
using a modification of the orcinol reaction (Hor-
ecker et al., 1953), were unsuccessful. Assuming
the presence of phosphohexoisomerase, the con-
centration of hexose monophosphate estimated
by the method described in figure 3 is the sum
of the concentrations of glucose-6-phosphate and
fructose-6-phosphate. It should be pointed out
that the extracts used in these experiments do
not metabolize glucose-6-phosphate as estimated
by following, spectrophotometrically, the re-
duction of di- or triphosphopyridine nucleotide.

DISCUSSION

The transketolase-transaldolase sequence of
reactions, in which the conversion, pentose phos-
phate -+ heptulose phosphate -- hexose phos-
phate, occurs, has been associated with an
"Oxidative Cycle", in which, theoretically,
hexose can be completely oxidized to CO2
and H20 without the involvement of the tricar-
boxylic acid cycle (see Gunsalus et al., 1955, for
references). In addition, the fermentation of
D-ribose by cell-free extracts of bakers' yeast
(Gibbs et al., 1955), and the fermentation of
D-ribose and D-xylose by intact resting cells of
Aerobacter aerogenes (Altermatt et al., 1955)
have been shown to proceed through the trans-
ketolase-transaldolase reaction sequence. How-
ever, since bakers' yeast and A. aerogenes are
facultative aerobes, it might be argued that the
fermentation of pentoses by means of this
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mechanism is a perversion of the normal func-
tion of the sequence in the oxidative cycle.
In the present study, alternate functions can-

not be assigned so readily to the transketolase-
transaldolase sequence. In the first place, Clos-
tridium perfringens is an obligate anaerobe, so
that the sequence cannot be placed in an oxida-
tive role. In the second place, the absence of
glucose-6-phosphate dehydrogenase makes it
difficult to envision the involvement of the se-
quence in a cyclic mechanism. It would seem,
then, that in C. perfringens, the primary, if not
sole, catabolic function of the enzymes of the
transketolase-transaldolase sequence is the dis-
similation of pentose.

SUMMARY

Cell free extracts of Clostridium perfringens
have been shown to possess ribokinase and phos-
phopentoisomerase activity. The conversion of
pentose phosphate to hexose monophosphate in
these extracts was also demonstrated.
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