
625

Continuous Glucose Monitors and the Burden of Tight Glycemic  
Control in Critical Care: Can They Cure the Time Cost?

Matthew Signal, B.E. (Hons),1 Christopher G. Pretty, M.E.,1 J. Geoffrey Chase, Ph.D.,1 
Aaron Le Compte, Ph.D.,1 and Geoffrey M. Shaw, Mb.Ch.B., FJFICM2

 Journal of Diabetes Science and Technology
 Volume 4, Issue 3, May 2010
 © Diabetes Technology Society

ORIGINAL ARTICLES

Author Affiliations: 1Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand; and 2Department of Intensive 
Care, Christchurch Hospital, Christchurch School of Medicine and Health Science, University of Otago, Christchurch, New Zealand

Abbreviations: (BG) blood glucose, (CGM) continuous glucose monitor, (ICU) intensive care unit, (IQR) interquartile range, (MAPE) mean average 
percentage error, (SD) standard deviation, (SPRINT) Specialized Relative Insulin Nutrition Titration, (TGC) tight glycemic control

Keywords: alarm, blood glucose, continuous glucose monitor, glycemic control, hypoglycemia, sensor

Corresponding Author: J. Geoffrey Chase, Ph.D., Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, 
New Zealand; email address geoff.chase@canterbury.ac.nz

Abstract
Background:
Tight glycemic control (TGC) in critical care has shown distinct benefits but has also proven to be difficult 
to obtain. The risk of severe hypoglycemia (<40 mg/dl) raises significant concerns for safety. Added clinical  
burden has also been an issue. Continuous glucose monitors (CGMs) offer frequent automated measurement 
and thus the possibility of using them for early detection and intervention of hypoglycemic events. Additionally, 
regular measurement by CGM may also be able to reduce clinical burden.

Aim:
An in silico study investigates the potential of CGM devices to reduce clinical effort in a published TGC protocol.

Methods:
This study uses retrospective clinical data from the Specialized Relative Insulin Nutrition Titration (SPRINT)  
TGC study covering 20 patients from a benchmark cohort. Clinically validated metabolic system models are used  
to generate a blood glucose (BG) profile for each patient, resulting in 33 continuous, separate BG episodes 
(6881 patient hours). The in silico analysis is performed with three different stochastic noise models: 
two Gaussian and one first-order autoregressive. The noisy, virtual CGM BG values are filtered and used  
to drive the SPRINT TGC protocol. A simple threshold alarm is used to trigger glucose interventions to avert  
potential hypoglycemia. The Monte Carlo method was used to get robust results from the stochastic noise models.

Results:
Using SPRINT with simulated CGM noise, the BG time in an 80–110 mg/dl band was reduced no more 
than 4.4% to 45.2% compared to glucometer sensors. Antihypoglycemic interventions had negligible effect on time  
in band but eliminated all recorded hypoglycemic episodes in these simulations. Assuming 4–6 calibration 
measurements per day, the nonautomated clinical measurements are reduced from an average of 16 per day to  
as low as 4. At 2.5 min per glucometer measurement, a daily saving of ~25–30 min per patient could potentially  
be achieved.

continued  
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Introduction

Critically ill patients often experience high levels of 
insulin resistance1–7 and stress-induced hyperglycemia, 
which can negatively impact outcomes.1–3,7,8 Some studies 
have shown that tight glycemic control (TGC) can reduce 
intensive care unit (ICU) patient mortality by up to 45%.7,9–11

However, there is a little agreement on what constitutes 
desirable glycemic performance,12–14 particularly with 
regard to how TGC affects outcome. Overall, any TGC 
protocol must reduce elevated blood glucose (BG) levels  
with minimal hypoglycemia. However, protocols or clinical 
practices that utilize large insulin doses can suffer from 
high glycemic variability and excessive hypoglycemia.15 
As a result, several clinical trials have not achieved the 
benefit of TGC.15–18

Hence, there is a significant difficulty in providing 
protocols that simultaneously provide good performance 
and TGC without excessive hypoglycemia. Two major 
causes of hypoglycemia are often reported to be 
clinical error and, or combined with, infrequent BG 
measurement using bedside glucometers or blood 
gas analyzers.17,19–22 Thus continuous glucose monitors 
(CGMs), with their rapid 2–5 minutes measurement rates, 
offer the opportunity to better monitor patients so that 
hypoglycemia could be avoided. 

Typically, in most ICU studies, BG is measured every 1–4 h  
and more frequently only if the levels are already at or  
near hypoglycemia. More frequent measurement, and 
even 1–2 hourly measurement, is uncommon due to the 
clinical effort required.12,19,23 The result can be extremely 
variable glycemic control, especially with longer measure- 
ment intervals.24 Thus CGMs may allow more tightly 
controlled BG levels while minimizing glycemic variability, 
which has been strongly linked (independent of glycemic 
levels) with mortality in these cohorts.25,26

There have been relatively few successful investigations 
of CGMs in critical care use,27 although they are well 
studied in type 1 diabetes.28–30 In particular, one set of 
TGC trials using CGM technology was not particularly 
successful due, in part, to significant sensor noise.31,32 
Added sensor noise is a trade-off (in some cases) of 
the CGM’s far higher, automated sampling rate.27,33 
The automation of BG measurements could thus also 
significantly reduce clinical effort while enabling tighter, 
less variable control. However, any excess sensor noise 
must be effectively managed. These sensor and algorithm 
technologies are also constantly evolving with every new 
generation offering improvements.30 

This paper uses data from the Specialized Relative 
Insulin Nutrition Titration (SPRINT) TGC study.11 
It  examines 20 ICU patients from a published benchmark 
cohort34 and, specifically, how they might behave when 
controlled by the SPRINT TGC protocol driven by simulated 
CGM measurements rather than the normal 1–2 hourly 
glucometer measurements. Hypoglycemia detection and 
prevention are also tested, as CGMs offer the ability to 
potentially detect and avert these events much earlier 
than with current methods. This in silico study thus 
aims to demonstrate that CGM devices coupled with an 
effective TGC protocol are capable of reducing nursing 
workload while maintaining safe and effective glycemic 
control. 

Subjects and Methods
Subjects
This study uses patient data from the benchmark cohort, 
proposed by Chase et al.34 It includes 20 patients 
who were admitted to the Christchurch hospital ICU 
during the SPRINT protocol clinical practice change.11 

Abstract cont.

Conclusions:
This paper has analyzed in silico the use of CGM sensors to provide BG input data to the SPRINT TGC 
protocol. A very simple algorithm was used for early hypoglycemic detection and prevention and tested with 
four different-sized intravenous glucose boluses. Although a small decrease in time in band (still clinically 
acceptable) was experienced with the addition of CGM noise, the number of hypoglycemic events was reduced.  
The reduction to time in band depends on the specific CGM sensor error characteristics and is thus a trade-off  
for reduced nursing workload. These results justify a pilot clinical trial to verify this study.
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Each patient spent five days or longer on SPRINT, during 
which some experienced breaks in treatment, typically 
due to surgery or other clinical changes. Patients who 
experienced breaks from SPRINT had their BG data 
segmented into two or more uninterrupted episodes, 
resulting in 33 individual continuous data sets. Each 
episode was then treated as an individual “patient” for 
the purposes of this study. Details of the patient cohort  
are shown in Table 1. The use of these patient records 
falls under existing ethics approval granted by the  
Upper South Regional Ethics Committee, New Zealand.

model used was created to match the reported error 
statistics over the same five BG ranges as reported in 
the study. In each BG range, the noise is modeled as 
an independent Gaussian distributed random error with a 
mean and standard deviation (SD) that matches reported 
results on a similar ICU cohort. 

The first-order autoregressive noise model implemented 
in this paper is that described by Breton and Kovatchev28 
in their 2008 study of CGM error in ambulatory type 
1 diabetes patients. This model is based on data from the 
FreeStyle Navigator CGM sensor (Abbott Diabetes Care, 
Alameda, CA).

Continuous glucose monitor sensor error consists of a  
bias due to calibration drift with a random or quasi-random 
noise superimposed on top. Calibration drift due to sensor 
degradation over time was not considered in this study, 
as this factor is controlled by the specific calibration 
protocol used with the sensor and has not been reported  
in detail to the authors’ knowledge. 

Methods: In Silico Continuous Glucose Monitor 
Measurements
Using a model derived from the clinically validated 
glucose–insulin model of Lin et al.,35,36 BG profiles were 
generated incrementally for each patient at 5-minute 
intervals. As these “actual” BG measurements were 
sampled in silico, noise was added from a noise model, 
creating incremental virtual CGM measurement 
sequences. The sequences range in length from 252 to 
9492 measurements (50–1900 minutes).

Methods: Continuous Glucose Monitor Filtering
The virtual CGM sensor BG measurements and error 
were implemented using MATLAB™ (The Mathworks, 
Natick, MA). These noisy measurements were filtered 
incrementally, simulating the process that would be 
encountered in a real-time clinical setting. Several 
common filter types were tested, including median, 
finite impulse response, and infinite impulse response 
methods. A novel median filter as described by Pretty  
and colleagues37 was found to be most effective and 
was used in this study. 

Methods: Hypoglycemia Alarm/Intervention Design
This study used a simple threshold algorithm to trigger 
an alarm and glucose intervention when a hypoglycemic 
event appeared imminent. Specifically, if two consecutive 
filtered CGM BG measurements were below 54 mg/dl, 
an intravenous glucose intervention was triggered. 

Table 1.
Cohort Details, Presented as Median (Interquartile 
Range) Where Applicable

Number of patients 33

Age
68

(59.5–73)

Gender 60% male

Length of SPRINT (h)
167

(81–241)

Number of measurements
102

(57–169)

APACHEa II
19

(16–24)

APACHE II risk of Death
33.6

(13.5–51.2)

a APACHE, Acute Physiology and Chronic Health Evaluation

Methods: Continuous Glucose Monitor Noise Models
This study uses two different types of stochastic noise 
model: one simple Gaussian model based on data 
from an ICU trial of CGM sensors and one first-order 
autoregressive model based on an analysis of data from 
ambulatory type 1 diabetes patients.

Two levels of Gaussian noise model are investigated. 
The first is designed to produce equivalent simulated 
CGM BG measurement errors on a similar cohort to 
those reported by Goldberg and associates27 in a 2004 
study of the Medtronic Continuous Glucose Monitoring 
Sensor (Minimed-Medtronic, Northridge, CA) device 
in a medical ICU. The second Gaussian model has the 
magnitude of additive noise reduced by half to simulate  
any reduction in noise achieved by technological advances 
in the field since 2004.

The study by Goldberg and associates27 was used as the 
basis for the noise model, as it was critical care specific 
and reported a wide range of error statistics. This noise 
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Simulations were performed with different sized glucose 
interventions (3, 6, 12.5, and 25 g), though held constant 
for any given simulation. The intervention was given 
over 3 minutes to approximate the clinical situation. 
The  algorithm also specified there must be a 15-minute 
period between any interventions to see a significant 
outcome BG change and further replicate typical clinical 
practice in this situation.

Methods: Simulating SPRINT with Continuous 
Glucose Monitor Measurements
A single filtered measurement was taken every 1–2 h 
from the full sequence of filtered CGM data and used to 
drive the SPRINT protocol, with no other modifications  
to the algorithm. Thus using CGM, with all else equal, 
would save significant nursing time by removing 
the need for a finger stick measurement every 1–2 h  
(mean 16 per day).11 More specifically, the SPRINT 
algorithm and its interventions and intervention frequency 
were not changed to enable a direct comparison to 
clinical results and interventions. While the SPRINT 
protocol only used 1–2 hourly values from CGM sequence, 
the full set of data were used for the hypoglycemia 
detection and prevention part of the study.

Methods: Analysis
Monte Carlo simulations were performed using the 
stochastic noise models, with 10 runs for each of the 
33 BG episodes. The baseline simulation was performed 
once.

Time in the 80–110 mg/dl BG band and number of 
hypoglycemic events were considered the most important 
metrics for this investigation. Results from simulations 
driven by filtered CGM BG readings were compared 
to baseline results (no added noise). Thus time in 
band was calculated using only the 1–2 hourly filtered 
CGM measurements that were used to drive SPRINT, 
ensuring an equal comparison to the clinical results. 
Hypoglycemic events were counted as the number of  
filtered CGM measurements below 40 mg/dl or, in the 
baseline case, the number of “actual” BG measurements 
below this level per Monte Carlo run.

Nutrition and insulin interventions prescribed by SPRINT 
were examined. Differences in these interventions 
compared to the baseline SPRINT results were analyzed to 
determine the impact of CGM sensor noise on operation  
of this protocol. Significant differences might point 
out the need to customize algorithms or protocols for 
different types of sensor devices.

Results are presented as nonparametric [median (inter-
quartile range [IQR])] or lognormal [mean (1 SD range)]  
as indicated. Lognormal statistics reflect the skewed 
(non-Gaussian) results obtained for BG levels.

Results
Monte Carlo simulations of 10 runs were carried out 
on 33 sets of patient data, providing results for a total 
of 330 runs. These were repeated for three different 
noise models and four hypoglycemic intervention dose 
sizes for a total of 2640 runs. Table 2 shows how the 
level of control was affected when each of the different 
noise models was implemented (no interventions for 
hypoglycemic events). Table 3 shows the results for four 
different levels of hypoglycemia intervention run with 
the full Gaussian sensor noise model. The results of 
the 10 Monte Carlo runs are displayed as median (IQR) 
where applicable.

The median and IQR BG results show no clinically 
significant difference between the baseline, reduced noise, 
full noise, and Breton and Kovatchev28 cases. The  time 
in band is reduced by up to 4.5%, and consequently, the 
<80, <72, and <40 mg/dl bands are slightly increased. 
Insulin and glucose interventions are unchanged, but 
this may also be partially a result of the discretization 
of these interventions in SPRINT.11,24 Per-patient results 
are similar for each of the cases. Overall, the changes are 
not clinically significant.

Again in Table 3, the median and IQR BG results show 
no clinically significant difference between any of the  
interventions and the baseline. Interventions have not 
increased time in any band when compared to results 
with no intervention in Table 2. The number of inter-
ventions and hypoglycemic events decreases with larger 
hypoglycemic interventions, up to a limit. With a large 
intervention of 25 g, the number of hypoglycemic events  
increases. This potentially counterintuitive trend continues 
with 40 g interventions (results not shown). Overall,  
the interventions have reduced the number of hypo-
glycemic events from 1 in 33 patient episodes to 0.

Figures 1–3 illustrate how a patient’s BG profile can 
change when they receive a 3, 12.5, or 25 g glucose 
intervention as they head toward a hypoglycemic event. 
The intervention is identified by the vertical bars in 
the lower plot of each figure, labeled PN dextrose. 
The  shaded band in the upper plot represents the target 
BG band (80–110 mg/dl). Filtered CGM BG measurements 
are shown as crosses. 
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Table 2.
Summary Statistics from the Monte Carlo Simulations with Different Noise Models for Both the Whole Cohort 
and Per–Patient Resultsa

Summary statistics Clinical baseline
Half noise, no 

intervention
Full noise, no 
intervention

Breton noise, no 
intervention

Num episodes 33.0 33.0 33.0 33

Total hours 6881.0 6881.0 6881.0 6881.0

Num 1–2 hourly BG measurements 
[IQR]

3953.0 3978 [3969–3984] 4111 [4108–4127] 4080 [4067–4090]

BG median [IQR] (mg/dl) 105.5 [92.2–119.5] 105 [91.4–119.4] 106.7 [91.6–122.0] 105.3 [91.0–121.6]

BG mean (geometric) [IQR] (mg/dl) 105.9
105.16 [104.98–

105.20]
105.98 [105.81–

106.06]
105.15 [105.13–

105.26]

BG SD (geometric) (mg/dl) 20.2 20.22 [20.21–20.24] 20.32 [20.32–20.32] 20.34 [20.33–20.34]

% BG within 80–110 mg/dl [IQR] 49.6 50.3 45.2 47.2

% BG <80 mg/dl [IQR]] 9.0 9.90 [9.73–10.19] 11.37 [11.25–11.55] 11.24 [10.93–11.38]

% BG <72 mg/dl [IQR] 3.9 4.46 [4.29–4.53] 5.64 [5.48–5.78] 5.47 [5.43–5.58]

% BG <40 mg/dl [IQR] 0.0 0.04 [0.03–0.08] 0.05 [0.03–0.07] 0.10 [0.10–0.12]

Num patients <40 mg/dl [IQR] 1.0 2 [1–2] 2 [1–2] 3 [2–4]

Median insulin rate [IQR] (U/h) 3.0 [2.0–3.0] 3.0 [2.0–3.0] 3.0 [2.0–3.0] 3.0 [2.0–3.0]

Median glucose rate [IQR] (g/h) 4.6 [3.3–5.9] 4.6 [3.3–5.9] 4.6 [3.3–5.9] 3.9 [3.3–5.2]

Number of interventions (where 
applicable)

0.0 0.0 0.0 0.0

Per–patient statistics

Hours of control [IQR] 166.0 [71.3–252.7] 166.0 [71.3–252.2] 166.0 [70.5–253.0] 166.0 [71.3–252.2]

Num BG measurements [IQR] 101.0 [43.8–149.5] 98.0 [44.5–150.7] 102.0 [43.8–157.2] 102.0 [43.8–160.5]

BG median [IQR] (mg/dl)
106.8 [102.0–

113.4]
107.1 [102.0–112.0] 108.5 [104.0–114.0] 107.3 [102.4–113.4]

BG mean (lognormal) (mg/dl)
109.7 [102.0–

116.6]
108.9 [100.3–116.4] 109.5 [103.3–115.5] 108.8 [101.5–115.3]

BG SD (lognormal) (mg/dl) 20.0 [19.6–20.3] 20.1 [19.5–20.4] 20.2 [19.8–20.6] 20.1 [19.8–20.5]

Time to <140 mg/dl [IQR] (hours) 0.0 [0.0–4.0] 0.0 [0.0–4.0] 0.0 [0.0–3.2] 0.0 [0.0–4.0]

% patients to <140 mg/dl [IQR] 100.0 100 [100–100] 100 [100–100] 100 [100–100]

Time to <110 mg/dl [IQR] (hours) 5.0 [2.0–12.0] 6.0 [2.0–11.2] 5.0 [2.0–10.2] 5.0 [1.8–11.2]

% patients to <110 mg/dl [IQR] 100.0 100 [100–100] 100 [100–100] 100 [100–100]

Median insulin rate [IQR] (U/h) 3.0 [3.0–3.0] 3.0 [3.0–3.0] 3.0 [3.0–3.0] 3.0 [3.0–3.0]

Median dextrose rate [IQR] (g/h) 4.6 [3.3–5.2] 4.6 [3.3–5.2] 3.9 [3.3–5.2] 3.9 [3.3–5.2]

a Lognormal and nonparametric statistics are used with lognormal as indicated. For summary statistics, IQR is presented 
across results from all 10 Monte Carlo runs and 33 episodes. For per-patient results, IQR is across median per-patient 
results.

The significantly different-sized steps in BG due to the 
different interventions show the importance of sizing the 
intervention appropriately. Too small a dose has little effect 

and requires an added intervention in the 3 g case of  
Figure 1. Too large a dose leads to loss of control as in 
Figure 3. As a form of validation, the size of these glycemic 
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Table 3.
Summary Statistics from Monte Carlo Simulations of Full-Guassian Noise Model with Intervention. Lognormal 
or Non-Parametric Statistics are Used with Lognormal as Indicated.

Summary statistics
Intervention = 3 

grams
Intervention = 6 

grams
Intervention =  

12.5 grams
Intervention =  

25 grams

Num episodes 33.0 33.0 33.0 33

Total hours 6881.0 6881.0 6881.0 6881.0

Num 1–2 hourly BG 
measurements [IQR]

4114.5 [4095–4118] 4095 [4081.5–4117.5] 4102 [4091–4104] 4086 [4076–4100]

BG median [IQR] (mg/dl) 106.2 [91.3–121.2] 106.0 [91.4–120.7] 106.3 [91.8–121.3] 106.3 [91.7–121.3]

BG mean (geometric) [IQR] (mg/dl)
105.34 [105.28–

105.51]
105.58 [105.51–

105.70]
105.87 [105.74–

105.95]
106.09 [105.99–

106.17]

BG SD (geometric) (mg/dl) 20.3 20.3 20.3 20.3

% BG within 80–110 mg/dl [IQR] 45.37 [45.03–45.53] 45.82 [45.66–46.42] 45.5 [45.33–45.85] 45.60 [45.31–46.22]

% BG <80 mg/dl [IQR]] 12.17 [11.80–12.32] 11.69 [11.56–11.82] 11.48 [11.38–11.52] 11.38 [11.21–11.45]

% BG <72 mg/dl [IQR] 5.98 [5.73–6.02] 5.57 [5.37–5.70] 5.34 [5.27–5.53] 5.01 [4.89–5.22]

% BG <40 mg/dl [IQR] 0.01 [0–0.05] 0.01 [0–0.02] 0 [0–0] 0.04 [0.02–0.05]

Num patients <40 mg/dl [IQR] 1 [0–2] 1 [0–1] 0 [0–0] 1 [1–2]

Median insulin rate [IQR] (U/h) 3.0 [2.0–3.0] 3.0 [2.0–3.0] 3.0 [2.0–3.0] 3.0 [2.0–3.0]

Median glucose rate [IQR] (g/h) 4.6 [3.3–5.9] 4.6 [3.3–5.9] 4.6 [3.3–5.9] 4.6 [3.3–5.9]

Number of interventions (where 
applicable)

64.5 55.8 51.0 55.0

Per–patient statistics

Hours of control [IQR] 166.0 [70.5–252.7] 166.0 [71.3–252.2] 166.0 [70.5–252.0] 166.0 [71.3– 252.7]

Num BG measurements [IQR] 102.0 [43.5–159.0] 102.0 [42.3–160.7] 102.0 [42.5–158.7] 100.0 [43.0–157.0]

BG median [IQR] (mg/dl) 107.7 [104.3–112.8] 107.9 [102.4–114.8] 108.1 [103.7–114.8] 108.2 [103.9–112.5]

BG mean (lognormal) (mg/dl) 109.1 [101.3–115.3] 109.1 [101.8–115.1] 109.5 [101.7–114.6] 109.4 [101.2–117.8]

BG SD (lognormal) (mg/dl) 20.2 [19.8 –20.4] 20.1 [19.7–20.5] 20.2 [19.8–20.4] 20.2 [19.7–20.6]

Time to <140 mg/dl [IQR] (hours) 0.0 [0.0–3.2] 0.0 [0.0–3.2] 0.0 [0.0–3.2] 0.0 [0.0–3.2]

% patients to <140 mg/dl [IQR] 100 [100–100] 100 [100–100] 100 [100–100] 100 [100–100]

Time to <110 mg/dl [IQR] (hours) 5.0 [1.8–11.2] 5.0 [2.0–11.2] 5.0 [1.8–11.2] 5.0 [1.8–11.2]

% patients to <110 mg/dl [IQR] 100 [100–100] 100 [100–100] 100 [100–100] 100 [100–100]

Median insulin rate [IQR] (U/h) 3.0 [3.0–3.0] 3.0 [3.0–3.0] 3.0 [3.0–3.0] 3.0 [3.0–3.0]

Median dextrose rate [IQR] (g/h) 3.9 [3.3–5.2] 3.9 [3.3–5.2] 3.9 [3.1–5.2] 3.9 [3.3–5.2]

excursions correspond well with intravenous glucose 
tolerance test data for similar-sized glucose boluses.38,39

Table 3 and Figure 3 further show that an excessive 
glucose intervention can be as bad for the patient as 
too small an intervention. The resulting BG is so high  
the TGC protocol overcompensates with insulin at the 
next 1–2 hourly intervention and causes a sudden drop, 
potentially back into a hypoglycemic region. Hence 

an oversized hypoglycemic intervention can increase 
variability and (perhaps counterintuitively) increase 
hypoglycemia due to controller response as well.

The three noise models (two Gaussian models and the 
Breton and Kovatchev28 model) produced mean absolute 
percentage errors (MAPEs) on this cohort of 16.0% (full 
Gaussian), 8.1% (half Gaussian), and 12.2% (Breton and 
Kovatchev28).
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Figure 2. Example of BG profile when intervening with 12.5 g of glucose.
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Figure 1. Example of BG profile when intervening with 3 g of glucose.
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Discussion

Performance
The aims of this in silico study were to show that 
nursing workload can be reduced, the level of glycemic 
control maintained, and early hypoglycemic detection 
implemented using CGM sensors in the ICU, despite 
potentially high levels of sensor noise in individual 
measurements. The performance of the CGM sensors 

in this role was evaluated in silico using Monte Carlo 
simulations with stochastic CGM noise models and real 
ICU patient data.

The lack of clinically significant reduction in the BG 
control metrics shown in Table 2 suggest that the 
additional noise introduced by the CGM sensors has 
little effect, at least in the context of the SPRINT protocol. 
This may be because SPRINT is model-derived and 
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both the inputs and outputs are discretized, so small 
sensor errors do not generally have a large effect on the 
protocol-selected insulin and nutrition rates and thus the 
resulting BG levels. The number of patients experiencing 
one or more hypoglycemic events (BG ≤40 mg/dl) and 
the percentage of total BG measurements <40 mg/dl 
increased when using the simulated CGM sensors to a 
level that might be considered clinically unacceptable. 
However, Table 3 shows that using a simple alarm 
algorithm and appropriately sized glucose intervention  
can almost eliminate these episodes.

The increase in the number of recorded hypoglycemic 
episodes with simulated CGM noise could either be due 
to the added noise causing an underlying normoglycemic  
level to falsely appear low or adversely affecting the 
control protocol. However, the similarity in time‑in‑band 
results and insulin and nutrition rates seems to suggest  
that the controller is behaving similarly with the baseline 
and noisy data. Regardless of the reason for the increase 
in hypoglycemic events, if CGM sensors were to be used 
in a clinical situation, the sensor readings would need 
to be trusted and acted upon. Thus, in addition to 
hypoglycemia detection, this study also investigated 
using the CGM BG readings to trigger intravenous 
glucose boluses to prevent hypoglycemia.

The results in Table 3 show that intervening with a 
glucose bolus at the onset of potential hypoglycemia has 
little effect on time in band. The four intervention sizes  
(3, 6, 12.5, and 25 g) resulted in similar values of around 

45.5 ± 0.3%. A separate analysis of the time in band for 
the entire BG sequence (not just the 1–2 hourly SPRINT 
measurements) yielded similar results (not shown).  
All  of these results indicate an overall slight increase in 
variability with increasing sensor noise.

These results (Table 3) outline the importance of sizing 
the intervention appropriately. Figure 1 shows a typical 
example of a detected potential hypoglycemic event being 
counteracted by a 3 g bolus of glucose. The initial glucose 
bolus was not large enough, so 15–20 minutes later,  
the patient required a second intervention. Interestingly,  
at the 25 g infusion, there is a similar trend, as shown 
in Figure 3. The initial infusion pushes the BG level 
too high, causing SPRINT to administer too much  
insulin at the next hour when the patient is already quite 
sensitive or still has a lot of insulin onboard. This in 
turn causes the BG to rebound to the point of potential 
hypoglycemia, requiring another glucose intervention. 
This potentially counterintuitive trend of increasing 
interventions and hypoglycemic events continues with 
40 g interventions (results not shown) and indicates that 
the size of the bolus either needs to be carefully selected, 
maybe on a patient-specific basis, or extra information 
provided to the control protocol so it can factor in the 
effect of the bolus at the next intervention. 

A final significant result is the reflection on nursing time. 
Specialized Relative Insulin Nutrition Titration typically 
requires on average 16 measurements per day at 1.5–
2 minutes per measurement (all tasks).11 Assuming four 

Figure 3. Example of BG profile when intervening with 25 g of glucose.
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calibration measurements per day, these results would 
reduce the total measurement burden 75% (12 per day) or 
18–24 minutes per patient per day, which is potentially 
clinically significant in a busy ICU environment.

Some of this potential reduction in clinical burden may be 
offset by the increase in hypoglycemic episodes triggering 
alarms and interventions. However, improved alarm 
algorithms and constantly evolving CGM technology may 
improve this situation. 

Limitations: Clinical
Although the virtual patient simulation method used 
here is clinically well validated,24,40 this in silico study 
needs to be confirmed with clinical testing. The BG 
sequences used to drive SPRINT in this study were 
model based, not real CGM output data. This analysis 
provides a strong initial proof of concept; however, 
testing and validation of the findings in a clinical setting  
is needed to confirm these results.

Limitations: Signal Processing
Two separate stochastic noise models were used in  
this study, providing three different CGM sensor noise 
profiles. The two Gaussian noise profiles are based on 
data from a study of CGMs in a medical ICU;27 however, 
the model was created from reported sensor error  
statistics, and therefore, the time-series information about 
the errors is lost, and hence they are assumed to be 
independent. The full-Gaussian noise profile is conservative 
in that the MAPE is large (16.0%), while the reduced-
Gaussian profile may better reflect the magnitude of 
noise for current sensor technology. The  third noise 
profile was generated using the model of Breton and 
Kovatchev,28 and while much more complete in terms of 
modeling glucose diffusion to the interstitium and the 
interdependence of errors, the model was derived for 
ambulatory type 1 diabetes patients and is therefore not 
necessarily the best model for ICU patients. 

While not having a validated, ICU-specific CGM noise 
model, analyzing the results of these three noise profiles 
shows little difference in performance between them 
and the baseline, and it is therefore anticipated that 
real CGM characteristics are captured somewhere between  
these three simulated models. 

True sensor noise characteristics combined with more 
advanced filtering techniques would likely result in 
a much cleaner CGM data stream and hence a more 
reliable method for triggering alarms and interventions. 
The simple alarm algorithm may also have triggered false 

hypoglycemia alarms, furthering the need for a more  
robust algorithm such as an integral-based method.37,41 
Thus a better model would likely improve the perform-
ance outcomes and alarm data reported here. Hence these 
results as presented are potentially conservative.

Calibration drift due to sensor degradation over time 
was not considered in this study. Without correction, 
calibration drift will show up as though the actual  
BG measurements were higher or lower in a relatively 
consistent manner as the sensor gain drifts.42 This drift 
would cause the alarm to trigger early (possibly falsely) 
or late. However, such calibration drift is typically a 
function of the frequency and quality of calibration 
measurements, which can likely be controlled more 
readily in a critical care setting using sensors such 
as blood gas analyzers. This issue also has not been 
quantified, to date, in the critical care setting with 
modern CGM devices.

Summary
Finally, this paper is focused on proof of concept for 
the integration of CGMs into the ICU. The generally 
good results seen here with suboptimal filtering and 
a conservative noise model serve primarily to show 
that the method is feasible and deserves further direct 
clinical investigation.

Conclusion
This paper has analyzed in silico the use of CGM sensors 
with simple filters and hypoglycemia alarms to provide 
input to the SPRINT TGC protocol. The main results  
and conclusions include the following:

•	 Continuous glucose monitors, even with significant 
noise as might (eventually) be found with emerging 
noninvasive CGM devices, have no significant clinical 
impact on TGC performance or interventions if 
relatively simple and common filters are used.

•	 Very simple hypoglycemia alarms can reduce the 
very low rate of such events (in SPRINT, 2–4% of 
patients) to zero, although some excessive alarming 
may also result.

•	 The glucose bolus intervention size is critical. This 
study found ~12.5 g to be relatively optimal and 
that levels of 25–40 g can counterintuitively increase 
hypoglycemia as the controller (unaltered) seeks 
to adjust to the sudden BG change. Thus this 
intervention is also control protocol specific.
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•	 The use of CGMs in SPRINT should reduce 
average nursing burden for measurement up to 
75%, potentially saving ~25–30 minutes per patient 
per day, which is clinically meaningful in the very 
busy ICU clinical environment.

All of these results justify clinical testing for validation  
and highlight the main issues in using CGMs for TGC in 
critical care.
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