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Background—There remains substantial debate over the impact of school closure as a mitigation
strategy during an influenza pandemic. The ongoing 2009 H1N1 influenza pandemic has provided
an unparalleled opportunity to test interventions with the most up-to-date simulations.

Methods—To assist the Allegheny County Health Department during the 2009 H1N1 influenza
pandemic, the University of Pittsburgh Models of Infectious Disease Agents Study group employed
an agent-based computer simulation model (ABM) of Allegheny County, Pennsylvania, to explore
the effects of various school closure strategies on mitigating influenza epidemics of different
reproductive rates (R0).

Results—Entire school system closures were not more effective than individual school closures.
Any type of school closure may need to be maintained throughout most of the epidemic (ie, at least
8 weeks) to have any significant effect on the overall serologic attack rate. In fact, relatively short
school closures (ie, 2 weeks or less) may actually slightly increase the overall attack rate by returning
susceptible students back into schools in the middle of the epidemic. Varying the illness threshold
at which school closures are triggered did not seem to have substantial impact on the effectiveness
of school closures, suggesting that short delays in closing schools should not cause concern.

Conclusions—School closures alone may not be able to quell an epidemic but, when maintained
for at least 8 weeks, could delay the epidemic peak for up to a week, providing additional time to
implement a second more effective intervention such as vaccination.
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The recent and ongoing 2009 H1N1 influenza pandemic has sharpened debate over the impact
of school closure in the control of an influenza epidemic. Students interacting very closely in
schools transmit influenza virus to one another and then subsequently to their families and
others in the community.1,2 Closing schools will curtail these interactions in the school and
therefore eliminate an important potential transmission site.

However, closing schools is not a trivial decision. Closing schools can cause significant social
and economic disruption to the local community by placing additional burdens on parents,
causing loss of income to school staff, and interfering with children’s education, nutritional
status, and other activities.1,3 Parents who are forced to stay at home to care for their children
when schools are closed may have to sacrifice needed income or even lose their jobs, which
could be disproportionately more likely among low-income families. In addition, those parents
may have essential skills (such as healthcare) that are consequently temporarily lost to the
system. Beyond education, schools are the sources of many vital community services, such as
lunches and after-school programs. Therefore, a thorough understanding of the potential
benefits and effects of school closure should accompany school closure policy-making.

School closures rose in prominence as a possible epidemic mitigation strategy after studies
suggested that schools play an important role in influenza transmission. Glezen wrote in 1996
that “the fires of the epidemic are carried by healthy school-age children,” a perspective
supported by extensive historical data from the 1918–19 and 1957 pandemics and the 1978
influenza season in Houston.4–6 School classes with children in kindergarten through 12th
grade have “high potential for virus transmission” according to social network analyses
conducted in the United States,7 Germany,8 and Belgium.9

Public health and school officials face numerous decisions when preparing for a potential
influenza epidemic. They need to decide whether and when to close schools, how many schools
to close, and how long they should keep schools closed. An official may choose to keep schools
open and simply isolate students who contract influenza, close schools in which influenza cases
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appear (individual school closure), shut down the entire school system as soon as enough cases
appear in the community, or some combination of these various strategies. The optimal choice
depends on the potential effectiveness of each strategy and any synergistic effects in mitigating
an influenza epidemic. However, decision makers may not have enough available data to make
effective choices between the different strategies, and prospective studies may be difficult or
impossible to perform. Retrospective data may be limited and not generalizable to different
situations and circumstances. Computer simulations can help decision makers explore different
possible strategies and their probable consequences.

In May 2009, to assist the Allegheny County Health Department (ACHD) during the spring
wave of the H1N1 influenza pandemic, the University of Pittsburgh Models of Infectious
Disease Agents Study (MIDAS) group employed an agent-based computer simulation model
(ABM) of Allegheny County, Pennsylvania. This model included explicit representations of
the county’s population, school system, work-places/commutes, households, and communities.
The model also represented individual county residents, which allowed us to simulate different
influenza epidemic scenarios and the ACHD to explore the effects of various school closure
strategies. Our model incorporated many methods from other previously published MIDAS
simulation models.10,11 The objectives of this study were to determine how school closures as
an isolated strategy may minimize the course of an epidemic (as measured by the number of
infected cases) and how these effects may vary with differing school closure durations, triggers,
and types. Understanding the impact of school closure in isolation is important when other
major mitigation strategies are not available or practical because the epidemic arrived
unexpectedly (eg, the 2009 H1N1 pandemic when vaccines were not available and mass
prophylaxis with antiviral medications was not attempted) or the infectious agent is completely
novel. The model could be applied to other infectious diseases transmissible by casual contact,
such as severe acute respiratory syndrome, by incorporating parameter values (eg, incubation
period and transmissibility) specific to that infectious disease.

Materials and Methods
Model structure and synthetic census-based population

Our ABM represented each person in Allegheny County (a total of 1 242 755 agents living in
households) with a synthetic computer agent assigned a set of characteristics and behaviors:
age, sex, employment status, occupation, household location, household membership, school
assignment of students and teachers, work location assignment of employed adults, work status
as employed or unemployed, and disease status.12 Construction of the agent population used
a method developed by Beckman et al, US Census Bureau’s Public Use Microdata files, and
Census aggregated data to first generate a synthetic US population and then extract the
Allegheny County population.13,14

Our model also represented individual households, schools, and workplaces in Allegheny
County. The model included a total of 537 405 households, each containing a specific set of
agents based on the US 2000 Census data.15,16 The model also consisted of 35 333 work-place
locations. Assignment of Allegheny County’s 563 874 employed adults to each workplace
used the Census 2000 Special Tabulation: Census Tract of Work by Census Tract of Residence
(STP 64) database.16 A fraction of the workplaces consisted of 35 hospitals in Allegheny
County, which employ an estimated 25 766 persons, of which 11 672 are HCWs who see
patients on a daily basis.

Assignment of the 212 315 school-aged children to each school location was based on school
capacity (used a similar method detailed by grade) and distance to schools as described by
Ferguson et al10 and Wheaton et al.14 There are 43 school districts in Allegheny County
including the city of Pittsburgh. These represent approximately 155 000 public school students
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in 289 schools. The additional schools and students attend in either private or parochial schools
in the region. There is tremendous variability in socioeconomic status, race, and ethnicity by
school district, with the city of Pittsburgh school system being the most diverse.

At any given time, each agent is in one of four mutually exclusive states: susceptible (S),
exposed (E), infectious (I), or recovered (R). All people are initially susceptible (S) to disease
until infectious individuals are introduced into the model. Contact with an infectious person
has an assigned probability of disease transmission from the infectious person to the susceptible
person, as listed in Table 1, derived from studies by Longini et al,17 Ferguson et al,10 Germann
et al,18 and Halloran et al,19 on the basis of the 1957–58 Asian influenza pandemic. For
example, as the third row in Table 1 indicates, an infectious child coming into contact with a
susceptible adult in a shared household has a .3 probability of transmitting the virus to the adult.
By comparison, the fifth row of Table 1 indicates that an infected student who comes into
contact with a susceptible student has a .0435 probability of transmitting the virus. The lower
half of Table 1 delineates the frequency at which different individuals contact other individuals
at different locations (eg, a student will contact 13.5 other students within his or her classroom
and 15 students in the same school but other classrooms each school day). A newly infected
person then moves to the exposed (E) state for the duration of the disease’s incubation period
and then to the infectious state (I) in which the person may infect others. Consistent with the
results of the MIDAS combined-model study, only two-thirds of infectious patients exhibit
symptoms.11 After the duration of the infectious period, the person proceeds to the recovered
state (R) and remains immune to subsequent infections for the remainder of the simulation.

These simulations incorporated a set of assumptions describing movements and contact
patterns within the county population, with each individual represented by a computer agent,
and is based on research done in other MIDAS network models.10,11,18 Each weekday (in
computer time), the computer agents moved back and forth from their households to their
designated workplaces (if they were employed adults) or schools (if they were school-aged
children), where they interacted with other agents in close proximity based on the contact rates
shown on Table 1. Each agent interacted daily with other family members who shared the same
household. In schools and workplaces, each student or worker agent contacts a fixed mean
number of agents per day (representing that agent’s classroom or office) and has an additional
random probability of interacting with other agents within the same school or firm but in
different classrooms or offices. Worker agents in firms that have only one office repeatedly
contact the same people each day. Every day, all agents, including students, potentially interact
with each other in the community, although with a fairly low probability of transmitting the
virus. On weekends, student agents do not go to school but have community interactions with
an increase of 50 percent in frequency. Our base model also assumed that 20 percent of working
adult agents work on weekends.20 Our base case scenario assumed that 50 percent of sick
students and workers stay home with no community contacts unless they see a doctor, and 40
percent of patients with influenza symptoms visit a clinic or emergency department, values
that have been used in previous studies.10,19,21–23 Our model also assumed that students would
continue to maintain their usual community contacts during school closure, which included
increasing community contacts by 50 percent during weekends.24

Model calibration
Initial model calibration utilized the Ferguson et al approach with data from historical (1957–
58 and 1968–69) influenza pandemics.10 Calibration targeted an epidemic with an attack rate
(AR) of 33 percent as measured in the 1957–58 pandemic and established daily contact rates
to satisfy the 30–70 rule developed by Ferguson et al, which posits that 70 percent of all
transmission occurred outside the household (which includes 33 percent that occurred in the
general community and 37 percent in schools and workplaces).10 Once this is accomplished,
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straight multipliers of the transmission probabilities are used to strengthen or weaken the
overall infection to produce desired ARs.

Epidemic simulations
To account for the spectrum of potential influenza-transmission characteristics and dynamics,
our simulation runs explored the effects of varying the basic reproductive rate (R0), which is
the expected number of secondary cases that a typical infected individual will produce in a
completely susceptible population. Each simulation started with a single case (adult or child)
and introduced the case into Allegheny County in a random location. The ABM was
programmed in C++ and is naturally parallel with regards to statistical realizations. Simulations
were performed at the Pittsburgh Supercomputing Center on Axon, an Intel Xeon-based
Infiniband cluster. Each simulation run took on average 2 minutes over 100 computational
cores.

School closure strategies
Different simulation runs depicted various combinations of the following school-focused
strategies:

• Isolating sick students: This strategy focuses on identifying and confining
symptomatic sick students to their households while leaving schools open. As a
request from the previously mentioned work with the ACHD, the base case scenario
supposes that parents are able to identify and keep 60 percent of symptomatic children
at home. Schools then are able to identify and send home 25 percent of symptomatic
students within the first 2 hours of their arrival at schools. Schools can then identify
and send home 10 percent of symptomatic students on the second day of symptoms.
Schools and parents thus allow five percent of all symptomatic students to remain in
schools throughout the duration of their illness. Sensitivity analyses varied the
percentage of influenza cases that are symptomatic and the probabilities of parents
and schools detecting symptomatic cases.

• School system closure: This strategy involved shutting down the entire school system
once a certain trigger, that is, a threshold number or percentage of cases, was reached.
For our base scenario, school system closure occurred when the total number of
influenza cases of all ages in the county exceeded 1 percent of the Allegheny County
population. Sensitivity analyses ranged this threshold and the duration of school
system closure.

• Individual school closure: This strategy entailed closing only those schools in which
influenza cases were identified. Our base case scenario assumed school closure 1 day
after a case appeared in that school. Each school remained open until at least one case
was identified among its students. Sensitivity analyses varied the number of cases that
can occur in a school before closing the schools and the duration of the school closure.

Results
All of the presented epidemic curves are the averages of 100 simulation runs that resulted in
epidemics after seeding the population with one randomly infected individual. The continuous
lines represent 4-day moving average trend lines, which smoothed out irregular patterns
produced by the weekend effect (ie, students and workers having different weekend contact
patterns).
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Baseline runs with no mitigation
Figure 1 presents 4 baseline (no interventions) epidemic curves of increasing severity (R0
values of 1.4, 1.7, 1.9 to 2.4). The R0 = 1.4 baseline is of particular interest because it was used
as part of the model calibration process,17 with an AR targeted at 35 percent. Our calibration
of the model at R0 = 1.4 (averaged over 100 statistical realizations) produced an AR of 35.1
percent, which corresponds to 435 745 infected persons. The AR for adults was 29.2 percent
(274 342 infected adults) and students 70 percent (163 005 infected students). This higher AR
for students was consistent with the other MIDAS models of R0 = 1.4 epidemics.17,25 Figure
1(a) shows incidence infections curves with no mitigations implemented for the various R0
values calibrated for the research in the article, and Figure 1(b) displays incidence infection
curves for the same values with systemwide school closure of a duration of 8 weeks.

Identification and isolation of sick students
Isolation (identification of ill students and keeping them from attending schools) had minimal
effect on the epidemic (Table 2). In our sensitivity analyses, the maximal effect showed a
decrease in the overall AR to 29 percent and a delay in the peak of the epidemic by 1 week
(when parents were able to identify and prevent 60 percent of symptomatic children from going
to schools). When parents were able only to catch 20 percent of symptomatic children before
they went to schools, this strategy had no significant effect on the epidemic. Isolation as a
strategy did not prevent asymptomatic infectious students from entering schools and spreading
disease. In fact, the effectiveness of isolation as a strategy was highly sensitive to the percentage
of infectious children who were symptomatic: decreasing this percentage from 75 to 25
increased the overall attack mean rate for an R0 = 1.4 epidemic from 27.4 percent to 35.4
percent.

School closure duration
Table 3 compares the overall AR, peak incidence day of epidemic, and peak incidence of
infected individuals in an unmitigated epidemic (no school closures) with school closures of
entire systems or individual schools and for varying durations (1, 2, 4, 8, and 16 weeks).
Whether the school closure strategy was systemwide or individual made no consistent or
significant difference on these epidemic parameters. For both school closure strategies,
durations of less than 8 weeks had little impact on the overall AR and durations of 2 weeks or
less actually slightly increased the overall AR.

For an R0 of 1.4, 1-week systemwide school closure peak timing was similar to the unmitigated
epidemic (day 68), but slightly higher levels of peak incidence compared with no school closure
(12 841 vs 12 113 cases) and overall AR (35.3% vs 35.1%). A 2-week system closure also
resulted in a slightly higher overall AR (35.0%) with a slightly delayed peak (between days 68
and 76). Only with a 4-week closure did the overall AR (33.2%) dip below the unmitigated
level. Systemwide closures of 8 weeks or longer resulted in substantially lower ARs (25.1%
for 8 weeks and 21.9% for 16 weeks), as well as a peak that was delayed by 8 days (day 76).
Although the effects on overall ARs were modest, the peak incidence was substantially
decreased for closures of over 4 weeks. The simulation runs showed similar results at the higher
R0 values for all systemwide closures, ARs were higher, and epidemic peaks were same as
earlier. For individual school closure, variations of duration and R0 value generated findings
very similar to those observed for school system closures. Figures 2a and 2b present epidemic
curves for varying lengths of school system closure and reactive school closures, respectively,
for an R0 = 1.4 influenza epidemic.
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Thresholds for implementing school closures
Table 3 summarizes the simulations for 8-week school closures using different thresholds for
implementation. For individual school closures, at the threshold the number of symptomatic
cases was 1, 5, and 10. For systemwide school closures, the rate of symptomatic cases within
the population was 0.10, 0.50, 1.00, or 1.50 percent. Interestingly, the overall ARs fell slightly
when the thresholds were higher for both school closure strategies and all R0 values.

Effects of changing the initial seed cases
Additional scenarios explored the effects of changing the number and timing of introducing
new influenza cases to Allegheny County. Changing the initial seed from 1 to 10, 100, and
1000 cases made school closures even less effective. We also examined the effects of adding
daily and weekly seeds; that is, 10 or 100 new cases are introduced every day or week. These
changes did not affect the following general findings also listed above: school closure duration
of less than 8 weeks had little impact on the overall AR and durations of 2 weeks or less actually
slightly increased the overall AR, isolation (identification of ill students and keeping them from
attending schools) had minimal effect on the epidemic, and closing schools earlier was not as
important as ensuring that schools were closed until the majority of the epidemic was completed
(ie, adequate herd immunity was achieved).

Discussion
The results of his modeling exercise emphasize the importance of keeping schools closed until
the epidemic curve is far past its peak. Closing schools quickly was less important than keeping
them closed continually throughout the epidemic once they were closed. Very early school
closure at the start of the epidemic actually worsened the AR when schools were reopened in
the middle of the epidemic, releasing a whole population of susceptible students to mix and be
infected and extend the length of the epidemic.

While other mitigation strategies (eg, vaccination and antivirals) may accompany school
closures, there are many situations in which school closures may be the only major intervention
option. Epidemics or pandemics, such as the 2009 H1N1 influenza pandemic, may arrive
unexpectedly, leaving little time to design, produce, and distribute an effective vaccine (eg,
egg-based cultures require 4–6 months to produce influenza vaccine). Even if the infectious
agent is influenza and susceptible to antiviral medications, mass continuous prophylaxis with
antivirals throughout the course of an epidemic may not be practical. Moreover, our model is
not limited to influenza and could apply to any infectious disease transmitted by casual contact
(eg, other respiratory diseases such as severe acute respiratory syndrome or measles) as long
as the relevant parameter values for the disease are available. Adequate pharmaceutical
interventions may not be readily available for such diseases, especially if the infectious agent
is novel.

In February 2007, the Centers for Disease Control and Prevention (CDC) published a detailed
“community strategy” as the first line of defense against a novel pandemic virus.26 This strategy
focused on “nonpharmaceutical interventions” since vaccine would be initially unavailable and
medications would likely be unavailable or in very short supply. These guidelines focused on
six strategies intended to be implemented as “targeted and layered defense,” including

• closing schools,

• canceling public gatherings,

• planning for liberal work leave policies,

• tele-working strategies,
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• voluntary isolation of cases, and

• voluntary quarantine of household contacts.26

These strategies were developed in part on the basis of the established public health principles
and supported by Markel et al2 in their detailed study of the use of nonpharmaceutical
interventions in 43 major US cities during the 1918–19 pandemic.2 Markel et al noted that a
strong association between reduced total mortality and early, sustained, and layered application
of these interventions during this time period, with school closure appearing to play an
important role.2 A previous survey by Aledort et al27 had found disagreement about using
school closures during a pandemic in either its early localized phase or its advanced phase.

However, as the 2009 H1N1 influenza pandemic emerged and continues, considerable
controversy persists over whether and how to close schools. In the spring of 2009, the World
Health Organization recommended utilization of school closure as a potential strategy,
although it noted that “class suspensions” instead of full school closures might be considered.
28 The CDC said that school closures should be implemented “at the discretion of local
authorities based on local considerations.”28 The CDC-affiliated scientists have emphasized
the need to close schools early in the course of a pandemic and to do so in combination with
other mitigation measures.29

Our analysis implied that school closures as an isolated mitigation strategy (under the epidemic
conditions explored) are not effective unless implemented and sustained for at least 8 weeks.
At best, shorter school closures delayed the epidemic peak only briefly and, at worst, actually
resulted in a slightly higher peak incidence. Increasing the peak incidence could tax the
healthcare system especially if its daily capacity is severely limited (eg, clinics and emergency
departments cannot handle an additional surge of cases on a given day). School closures were
effective in reducing the overall AR only when schools remain closed throughout the bulk of
the epidemic and reopened after the epidemic has subsided (or an additional effective
mitigation strategy such as vaccination is implemented in the interim). Reopening schools
during the epidemic simply released a population of susceptible children to be subsequently
infected and may continue to fuel the epidemic. However, school closures for 4 weeks or more
did have a significant impact in reducing the peak incidence, which would be of value in
mitigating medical service needs during the epidemic.

In addition, our results showed no significant differences between individual reactive school
closures and the more radical systemwide entire school system closure. This has several
potential policy implications. First, systemwide school closures will result in more lost school
days and, consequently, be much more costly than individual school closures. Second, an entire
school system closure may be more difficult to coordinate and implement, depending on the
location and jurisdiction, although it would certainly reduce confusion. It raises the questions
of who has ultimate decision-making power and which schools in a county fall within the scope
of those decisions. For example, in a given county, there may be different officials who hold
authority to close public schools in various school districts and private schools. Individual
schools with symptomatic students may be more willing and able to close quickly; ironically,
schools may close in response to expressed parental concern or to reduce potential litigation.

There is also debate over the “illness” thresholds at which to close schools. Should schools be
closed after a certain number of cases appear in schools, the community, or both? Will it make
a difference if this threshold is based on the number of deaths or the severity of the observed
cases? Our results suggested that the impact of school closures on overall ARs is not highly
sensitive to changes in this threshold level, that is, when exactly school closure is initiated.
Delays in closing schools did not have substantial effects on the epidemic. Instead, the most
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important factor seemed to be keeping schools closed for a long duration, that is, throughout
most of the epidemic, once they are closed.

Our study also found that simply identifying and confining symptomatic cases will do little to
mitigate an epidemic. Such a strategy will be effective very early in the epidemic only if it
rapidly identifies and confines nearly all infectious cases before they can transmit the virus to
others. This appears to be unlikely, since many infectious students will be asymptomatic and
compliance among parents and schools will fall far short of 100 percent. So while this strategy
may be locally beneficial, it will do little to stem the overall epidemic and essentially “chases”
the epidemic without preventing asymptomatic infectious students from staying in schools and
continuing to transmit the virus.

All computer models are simplifications of reality and can never account for every possible
factor or interaction. Rather than make decisions, computer models provide information to
decision makers about possible scenarios and relationships. An influenza pandemic and the
resulting circumstances may not necessarily conform to the data and assumptions that our
model drew from referenced sources or previously published models. School closures may still
be effective under epidemic conditions not explored in our study (eg, R0 <1.4 or >2.4).

This simulation did not include mortality as an epidemic parameter, which could vary with
influenza viruses. Higher rates of mortality would probably influence decision makers to close
schools at lower thresholds of incidence and for longer durations. We did not model the effects
of hand hygiene measures because their quantitative effects on influenza transmission have
not been established, although preliminary results from the CDC-funded Pittsburgh Influenza
Prevention Project suggest that hand hygiene measures may have little effect on the overall
epidemic curve. Our future studies may model the effects of layering additional interventions
such as vaccination and antiviral medications on top of school closure.

Conclusions
Our study suggested that short-term school closures as an isolated mitigation strategy (under
the conditions we explored) will do little to mitigate overall ARs during an influenza epidemic,
but closures of 4 weeks or longer did have the effect of decreasing the peak incidence of illness.
Schools must remain closed for at least 8 weeks, that is, throughout most of the epidemic, to
have a significant impact on overall ARs. Simply, screening for ill students and keeping them
from attending schools had minimal effect on the overall extent of the epidemic. Individual
and systemwide school closures appeared to be equally effective so if the latter are more
difficult to execute, the former can suffice. In addition, our results did not support any specific
“illness” threshold level at which to close schools. In other words, short delays in school closure
may not have a significant effect on the AR, timing of epidemic peak, or peak incidence.
Finally, school closures may delay the epidemic peak for up to a week, which may provide
more time to implement a second more effective intervention such as vaccination. The observed
effect of reducing the peak incidence during an epidemic could place more importance on
school closures when medical care capacity is anticipated to become strained or overloaded
because of the number of patients needing care during the epidemic. This might be especially
important in the setting where flu vaccine was becoming available just at the beginning of the
school year. It is possible that delay of school opening for several weeks, in order to ensure
that students get vaccination prior to beginning the school year, could be highly effective. As
flu vaccine production becomes more efficient, this scenario becomes increasingly possible.
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FIGURE 1.
Epidemic Curve for Unmitigated Strategy vs Implementing an 8-Week Systemwide School
Closure at Varying Reproductive Rates (R0)
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FIGURE 2.
Epidemic Curves for Individual School Closures for Varying Durations (R0 = 1.4 and 1.9)
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TABLE 1

Model transmission and contact parameter valuesa

Social network Infected Susceptible Transmission probability

Household Adult Adult .4

Household Child Adult .3

Household Adult Child .3

Household Child Child .6

Elementary school Student Student .0435

Middle school Student Student .0375

High school Student Student .0315

Workplace Adult Adult .0575

Hospital HCW HCW .0575

Hospital HCW Patient .01

Hospital Patient HCW .01

Community All Child .00255

Community All Adult .00480

Individual Others Mean contacts/day

School Student Classmates 13.5

School Student Nonclassmates 15

Community (weekday) Student Outside of school 16.2

Community (weekend) Student Outside of school 24.3

Workplace Worker Office mates 2

Workplace Worker Other coworkers 8

Community Adults Community 32.4

Workplace Healthcare worker (HCW) Coworkers (in same clinic/ward) 2
2

Workplace HCW Other coworkers 8

Workplace HCW Patients 30

a
Transmission probabilities are obtained from Ferguson et al,10 Halloran et al,11 and Longini et al.17
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TABLE 2

Parents and schools identifying and isolating sick students

Scenario

Reproductive rate (R0) = 1.4

AR, % PD PI ΔPI, %

Unmitigated 34.6 68 12113 …

Varying probability of parents identifying and keeping at home sick student

Parents identify and keep at home 20% of sick students 32.6 68 10758 −11.2

…40% of sick children 31.0 76 9500 −21.6

…60% of sick children 28.9 76 8708 −28.1

Varying probability of schools identifying and sending home sick student

Schools identify and send home 10% of sick students the first day and 25% of sick students the second
daya

29.4 76 8764 −27.6

…11% the first day and 4% the second day 30.0 76 9003 −25.7

…18% the first day and 18% the second day 29.2 76 8669 −28.4

…18% the first day and 7% the second day 29.6 76 8830 −27.1

…25% the first day and 10% the second day 28.9 76 8565 −29.3

Abbreviations: AR, serologic attack rate; PD, epidemic peak day; PI, epidemic peak incidence; and ΔPI, change in peak incidence compare to
unmitigated scenario.

a
Some students will be detected the first day that they appear sick in schools and some will be caught the second day.
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