Skip to main content
. Author manuscript; available in PMC: 2010 Dec 1.
Published in final edited form as: Nature. 2010 Jun 10;465(7299):704–712. doi: 10.1038/nature09229

Figure 1. Three approaches to nuclear reprogramming to pluripotency.

Figure 1

a, Nuclear transfer. In this approach, the nucleus of a somatic cell (which is diploid, 2n) is transplanted into an enucleated oocyte. In the environment of the oocyte, the somatic cell nucleus is reprogrammed so that the cells derived from it are pluripotent. From this oocyte, a blastocyst is generated, from which embryonic stem (ES)-cell lines are derived in tissue culture. If development is allowed to proceed to completion, an entire cloned organism is generated. b, Cell fusion. In this approach, two distinct cell types are combined to form a single entity. The resultant fused cells can be heterokaryons or hybrids. If the fused cells proliferate, they will become hybrids, and on division, the nuclei fuse to become 4n (that is, twice the number of chromosomes in a somatic cell) or greater. If the cells are derived from the same species, their karyotype will remain euploid (that is, they will have balanced sets of chromosomes); however, if they are from different species, they will be aneuploid, as chromosomes will be lost and rearranged. Heterokaryons, by contrast, are short-lived and do not divide. As a result, they are multinucleate: the nuclei from the original cells remain intact and distinct, and the influence of one genotype on another can be studied in a stable system in which no chromosomes are lost. If the heterokaryons are of mixed species, the gene products of the two cell types can be distinguished. By altering the nuclear ratio in the fusion, and hence the stoichiometry of the regulators provided by each type of cell, the heterokaryon is reprogrammed towards the desired cell type (Fig. 3). Culture medium also has a role and needs to have a composition favoured by the desired cell type. Dashed arrows indicate slower processes (involving multiple rounds of cell division) than solid arrows (no division). c, Transcription factor transduction. This approach can be used to form induced pluripotent stem (iPS) cells, which have similar properties to ES cells and can be generated from almost any cell type in the body through the introduction of four genes (Oct4, Sox2, Klf4 and c-Myc) by using retroviruses. The pluripotent state is heritably maintained, and vast numbers of cells can be generated, making this approach advantageous for clinical applications. 1n, haploid.