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Abstract
To investigate the association between physical activity and health, we need accurate and detailed
free-living physical activity measurements. The determination of energy expenditure of activity
(EEACT) may also be useful in the treatment and maintenance of nutritional diseases such as diabetes
mellitus. Minute-to-minute energy expenditure during a 24-h period was measured in 60 sedentary
normal female volunteers (35.4 ± 9.0 years, body mass index 30.0 ± 5.9 kg/m2), using a state-of-the-
art whole-room indirect calorimeter. The activities ranged from sedentary deskwork to walking and
stepping at different intensities. Body movements were simultaneously measured using a hip-worn
triaxial accelerometer (Tritrac-R3D, Hemokentics, Inc., Madison, Wisconsin) and a wrist-worn
uniaxial accelerometer (ActiWatch AW64, MiniMitter Co., Sunriver, Oregon) on the dominant arm.
Movement data from the accelerometers were used to develop nonlinear prediction models
(separately and combined) to estimate EEACT and compared for accuracy. In a subgroup (n = 12), a
second 24-h study period was repeated for cross-validation of the combined model. The combined
model, using Tritrac-R3D and ActiWatch, accurately estimated total EEACT (97.7 ± 3.2% of the
measured values, p = 0.781), as compared with using ActiWatch (86.0 ± 4.7%, p < 0.001) or Tritrac-
R3D (90.0 ± 4.6%, p < 0.001) alone. This model was also accurate for all intensity categories during
various physical activities. The subgroup cross-validation also showed accurate and reproducible
predictions by the combination model. In this study, we demonstrated that movement measured using
accelerometers at the hip and wrist could be used to accurately predict EEACT of various types and
intensity of activities. This concept can be extended to develop valid models for the accurate
measurement of free-living energy metabolism in clinical populations.

Introduction
Physical activity has been known to be have beneficial effects on overall health, particularly
in decreasing the incidence of morbidity/mortality associated with common chronic diseases
such as coronary heart disease, hypertension, and type II diabetes.1,2 However, little
quantitative evidence has yielded causal relationships,3,4 mostly because of the large individual
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and time variations in the characteristics of the parameters of activity and health, and the lack
of ability to accurately quantify physical activity. For example, both observational studies and
clinical trials in a variety of populations have supported the hypothesis that physical activity
plays a significant role in the prevention and treatment of type II diabetes, but what is less clear
is how much physical activity is needed.5,6 Objective and accurate measurements of physical
activity and energy expenditure (EE) are crucial in the treatment and maintenance of such
chronic diseases.

EE of activity (EEACT) varies within and among individuals, and contributes the largest
variability to total EE in humans.7 This contribution has significant consequences on overall
energy balance, which determines the long-term body weight outcome. The current standard
in objective measuring methods for EE are doubly labeled water8,9 and indirect calorimetry.
10,11 The doubly labeled water method provides a mean value of EE for the entire measurement
period, usually around 10–14 days, and does not allow one to calculate the day-to-day variation
in EE. The other disadvantages of the technique are its high cost and the limited availability
of 18O. The indirect calorimeter is the best method to measure the components of daily EE
[resting EE (REE), thermic effect of food, and EEACT]. It is relatively simple, and can be used
either with a ventilated hood system (for a resting subject) or in a respiratory chamber for a
longer period of time.12 A major advantage of indirect calorimetry is the immediate response
of oxygen consumption. Another advantage of indirect calorimetry in comparison with other
methods is the possibility of assessing nutrient oxidation rates. However, it can only measure
EE accurately under laboratory conditions.

Portable accelerometers, developed to objectively measure body movements and record
detailed data for an extensive period, have been adopted to assess physical activities and
EEACT.13–20 We previously showed that EE estimated by a hip-worn triaxial accelerometer
(Tritrac-R3D, Hemokentics, Inc., Madison, WI) significantly underestimated EEACT as
compared with EEACT measured by a whole-room indirect calorimeter.15 We then developed
and validated a nonlinear model that used the acceleration components from the Tritrac-R3D
for the estimation of EEACT. Although the estimation was accurate for the group, individual
variation in EEACT prediction still existed, potentially because of undetected upper body
movements. Since small errors over time can be significantly contributed to overall energy
balance, our mission is to minimize individual errors. Therefore, we hypothesize that by adding
an upper-body acceleration component (measured by ActiWatch AW64, MiniMitter Co.,
Sunriver, OR) to our previous hip-worn accelerometer model, the overall estimation accuracy
of EEACT would be improved, compared with using each individual monitor alone. This
investigation was also to demonstrate the process of using a whole-room indirect calorimeter
to develop subject-specific EEACT predictive equations from portable accelerometers in
humans.

Subjects and Methods
Subjects

The data were part of a prospective study looking at possible seasonal variations in physical
activity in sedentary women. Normal healthy women (n = 60) of heterogeneous characteristics
and sedentary by self-report were recruited from local areas. Signed informed consent approved
by the Institutional Review Board at Vanderbilt University was obtained before their
participation in the study. Women were eligible for participation if they were apparently
healthy, with no evidence of past or present metabolic diseases (e.g., thyroid disorders and type
II diabetes), were not pregnant as determined by a serum pregnancy test, did not use drugs
known to affect energy metabolism, were eating a balanced diet, and were non-smokers. All
participants were studied between days 3 and 12 after the onset of menses (follicular phase) to
eliminate the influence of menstrual function on energy expenditure.21 Study participants were
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compensated for taking part in the study. During the 2 weeks prior to the study, all participants
were encouraged to maintain their normal pattern of activity. To cross-validate the models
developed from this study, a randomly selected subgroup of subjects were asked to volunteer
to repeat the protocol under identical conditions within 4 days of the first study. Characteristics
of all study participants are shown in Table 1.

Experimental procedures
All participants reported to the General Clinical Research Center (GCRC) after a 10-h
overnight fast. The 24-h study protocol involved spontaneous daily activities and an exercise
protocol that was similar to the manual work and leisure activities that participants would
perform in daily life. Specifically, the exercise protocol consisted of three 10-min walking
periods with average speeds of 0.6 m/s, 0.9 m/s, and 1.2 m/s across the room and three 10-min
stepping periods with average speed of 12 steps/10 s, 18 steps/10 s, and 24 steps/min,
respectively, all with at least 10-min resting periods between each exercise. During the walking
and stepping segments, subjects followed the appropriate exercise cadence set by a metronome.
The spontaneous physical activities included various types and intensities, such as sitting, TV
viewing, deskwork, walking around the room, and even some voluntary exercises using the
provided treadmill and stepper. Meals designed by the registered dietitian to maintain
approximate energy balance were prepared at the Vanderbilt University GCRC metabolic
kitchen and provided to the subject at 8:30 a.m., 12:30 p.m., and 5:00 p.m. The participants
were asked to go to bed from 9:30 p.m. until 6:00 a.m.

Measurement of physical activity—The Tritrac-R3D monitor (weighing 170 g and
measuring 11.1 × 6.7 × 3.2 cm) was placed in a nylon pouch secured to the belt at the waistline
on the right hip to measure body acceleration in three dimensions (x or anteroposterior, y or
vertical, and z or medial–lateral axis). The ActiWatch (weighing 17 g and measuring 2.8 × 2.7
× 1 cm), a uniaxial accelerometer, was worn at the wrist of the dominant hand to assess arm
movements. The ActiWatch was worn during the entire study period, while the Tritrac-R3D
was not worn during sleep for better comfort. Both monitors were set to record data at 1-min
intervals.

Measurement of EE—The rate of EE was measured minute-by-minute in a whole-room
indirect calorimeter (Fig. 1), an airtight environmental room that is temperature and humidity
controlled. To provide facilities for daily living and to bridge the difference between laboratory
and free-living environments, the room is equipped with a desk, chair, outside window, toilet,
sink, telephone, TV/VCR, audio system/alarm clock, and fold-down mattress. It has been
validated as a highly accurate system for determining detailed EE and physical activity.11,22

Oxygen consumption (VO2) and carbon dioxide production (VCO2) are used to calculate
minute-by-minute EE with a system error of less than 1%.11 This accuracy is critical for
validation and model development of EE.

Anthropometry—Body weight was measured to the nearest 0.05 kg with a digital scale.
Height was measured to the nearest 0.5 cm with a stadiometer.

Model development
The model development algorithm was similar to our previous studies.15,16 The body
accelerations ascertained from the Tritrac-R3D and the ActiWatch were used to fit the
measured EEACT (EE – REE), first in separate models, and then combined in one model. REE
was calculated during the 30-min resting supine posture while awake and immediately
following overnight fasting and sleeping. A nonlinear model was previously proven to be
superior compared with linear models,7 and thus was also adopted for the current study. After
synchronizing the acceleration outputs with the measured EE, the acceleration counts from the
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Tritrac-R3D were stratified into the horizontal component (denoted H, where ), and
the vertical component (denoted V, V = y). Each component was modeled by nonlinear power
parameters to model individual EEACT as the following:

(1)

(2)

(3)

where EÊACT(k) represents the estimated EEACT at the kth minute, and parameters such as a,
b, c, p, p1, p2, and p3 were optimized to predict EEACT that had the best fit compared with the
measured EEACT.

Statistical analysis
Descriptive data were expressed in mean ± 1 standard deviation (SD). Optimization was
performed using the least sum of squared error algorithm with universal minimum. Correlation
coefficient (Pearson's r) and standard errors of estimation (SEE) were used as the evaluation
criteria:

(4)

where EEestimated represents the estimated EE value by each model, and EEmeasured represents
the EE measured by the indirect calorimeter for each study participant. The MATLAB software
package (for Windows, version 6.1, Math-Works, Inc., Natick, MA) was used for the model
development and evaluation of final predictions. Differences were compared by analysis of
variance (ANOVA, Tukey's test) using SPSS for Windows (for Windows, version 11.0, SPSS,
Inc., Chicago, IL); 95% confidence interval and p < 0.05 were used to identify statistical
significance. Bland–Altman23 plots, which express the difference with respect to the mean of
the two measurements in a scatter graph, were used to explore differences between modeled
and measured total EEACT across the study population.

To further evaluate the accuracy of the models for various activity intensities, the time periods
of the study day were categorized according to the intensity. We stratified the non-sleeping
activities into four categories: 1–2.5, 2.5–4.0, 4.0–6.0, and >6.0 times the REE (METs,
including EEACT and REE), using measured EE as the standard. The estimated EE from the
prediction models within the same time periods of these intensities was also categorized and
compared with the measured EE using ANOVA.

Results
Table 1 presents descriptive data for the 60 study participants and for the cross-validation
subgroup (n = 12).
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The 24-h EE was 2,132 ± 335 kcal, total EEACT was 821 ± 167 kcal, and REE was 1,403 ±
233 kcal for the entire group. Physical activity, measured in counts per minute for each
individual by the Tritrac-R3D (vector magnitude) and ActiWatch, was significantly correlated
with measured EEACT (R = 0.825 ± 0.046 and 0.646 ± 0.093, respectively, p < 0.001). The
estimated EEACT yielded from the predictive models (Eqs. 1–3) was significantly (p < 0.001)
correlated with measured EEACT, and was higher (p < 0.001) than the correlation between the
raw counts and measured EEACT (Table 2). However, compared with the EEACT measured in
the room calorimeter, models using ActiWatch (Eq. 2) and Tritrac-R3D (Eq. 1) individually
significantly underestimated total EEACT: −113 (−189, −38) kcal (p < 0.001) and −85 (−161,
−10) kcal (p = 0.019), respectively. The total EEACT predicted using the Tritrac+ActiWatch
model (Eq. 3) was not statistically different from the measured EEACT: −28 (−103, 48) kcal
(p = 0.781). The degrees of agreement between estimated EEACT using each of these three
predictive models and EEACT measured in the room calorimeter are presented by the Bland–
Altman plots in Figure 2. These plots show that the main differences among the three predictive
models were the magnitude of mean error and the range of deviations in estimating total
EEACT. This analysis demonstrates that the combination of two accelerometers improved both
parameters over the two individual models.

Furthermore, both the Tritrac-R3D model (Eq. 1) and the Tritrac + ActiWatch model (Eq. 3)
significantly (all p < 0.001) increased correlation coefficient (R) values and reduced SEE
compared with the ActiWatch model (Eq. 2). The improvements from the Tritrac-R3D model
to the combination model, although all in positive directions, did not reach statistical
significance in terms of R (p = 0.278) or SEE (p = 0.218). The summary results of the fitting
parameters of the models for Tritrac-R3D, ActiWatch, and the two monitors combined (Eqs.
1–3) are summarized in Table 2. When compared among different intensity categories, we
found the performance from the three predictive models varied (Fig. 3). The ActiWatch model
underestimated the EE when intensity exceeded 4 METs (p < 0.001). Only the combination
model was able to produce nonsignificant differences in EEACT values in all physical activity
intensities.

In the smaller cross-validation subgroup, 12 subjects (characteristics summarized in Table 1)
who repeated the 24-h measurements expended 2,008 ± 260 kcal/day and 2,000 ± 295 kcal/
day for the first and second study day (p = 0.840), respectively. EEACT was also comparable
between the two days (820 ± 199 kcal/day and 761 ± 201 kcal/day, p = 0.763). One of the two
study days was selected randomly for model development. The fitting parameters in the
combined model (Eq. 3) for each of these individuals were then applied to the acceleration
output from the other study day, thus deriving the predicted EEACT. The comparison between
the predicted and measured EEACT from the room calorimeter would then yield the cross-
validity of the models. Total EEACT during the study period used for modeling was 710.4 ±
96.7 kcal and 665.2 ± 92.1 kcal for measured and fitted (6.4 ± 2.3%, p = 0.014), respectively.
Total EEACT during the cross-validation study day was 724.5 ± 108.3 kcal and 684.2 ± 104.2
kcal for measured and predicted (4.3 ± 4.8%, p = 0.140), respectively. The scatter plot for the
measured versus predicted EEACT (Fig. 4) further illustrates that the model appears stable and
is able to accurately reproduce total EEACT for the majority of these subjects.

Discussion
The need for accurate assessment of physical activity and its associated EE under free-living
conditions is underscored by the rising toll of chronic diseases, such as obesity, type II diabetes,
and cardiovascular disease. While considerable evidence supports a relationship between
physical inactivity and type II diabetes,5,6 the appropriate amount of physical activity needed
to aid in the prevention or amelioration of this disease epidemic is somewhat speculative,
largely because of the lack of accurate and validated methodology for measuring free-living
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physical activity and its associated EE. Portable accelerometers have been recognized as a
reliable and objective technique for measuring physical activities under free-living conditions.
18,19 However, their ability to estimate EEACT has been an area that needs great improvement.
Results of this study have shown that EEACT could be accurately assessed using these
noninvasive movement monitors.

Estimation of EE by accelerometers has been studied under laboratory and free-living
conditions. In earlier studies in which uniaxial accelerometers were attached at different
anatomic sites, vertical acceleration at the hip had the highest correlation coefficient with
measured EE during common activities such as walking and stepping. 13,24,25 Subsequent
studies have demonstrated improvements of the EE–acceleration associations with three-
dimensional (triaxial) accelerometers in walking, running, and step exercise under laboratory
conditions.26,27 The current prediction models adopted by the Tritrac-R3D use the linear
regression approach and only the vector magnitude of counts from all three axes. The
performance of this model was shown to be acceptable for level walking and jogging (40–70%
VO2max on a treadmill) for a small group of young and fit individuals in one study,28 but both
overestimations19,20,29,30 and underestimations17,31 have been reported in walking and other
free-living physical activities. Previously, we also found a significant underestimation of total
EEACT by 50–70% using the Tritrac-R3D linear regression model.15

Furthermore, we developed an approach to model EEACT using a hip-worn triaxial
accelerometer (Tritrac-R3D) by separating horizontal and vertical components and using a
nonlinear power model to associate acceleration and EEACT over the broad intensity range of
daily physical activities. Both approaches significantly (p < 0.01) improved the estimation
accuracy of EEACT.15,16 However, the Tritrac-R3D monitor was mainly sensitive to body
movements at the center of mass, and thus could not adequately measure changes in EE due
to physical activities performed by the upper body, which are a major part of many sedentary
activities.

Swartz et al.32 reported a bivariate regression model that combined hip and wrist acceleration
data (uniaxial) and significantly improved prediction of EE in free-living physical activities.
In our current study, we added a wrist-worn uniaxial accelerometer to our previously tested
hip-worn triaxial accelerometer model, and further advanced this modeling concept using
nonlinear modeling. One major advantage of this type of nonlinear modeling was that if a better
fitting could be achieved with a linear model, then the power parameters (p values in Eqs. 1–
3) would then be equal or very close to 1. In all three models, all power parameters were
significantly less than 1 (all p < 0.01). This was in agreement with our previous findings.15

By comparing the results from different models, the estimated EEACT using Tritrac-R3D (Eq.
1) was significantly better than using ActiWatch (Eq. 2), in terms of SEE and R (Table 2). This
indicated stronger associations between EEACT and the acceleration components measured at
or close to the center of body mass rather than at the wrist, logically reflecting higher energy
costs due to weight-bearing movements. Movements from the arm can often be quick even
with little force exertion, thus leading to the slight overestimation of EEACT (6.2 ± 4.7%, p =
0.121) during low-intensity activities (1–2.5 METs) by the ActiWatch model (Fig. 3). In
contrast, the ActiWatch model significantly underestimated EEACT during activities of higher
intensity (>4.0 METs) because of less upper body motion during walking and stepping. The
Tritrac-R3D model in Eq. 1 slightly underestimated the lower-intensity physical activities
(−4.3 ± 6.9% during 1–2.5 METs, p = 0.459), very likely because of the lack of signals picked
up by the monitor during upper body movements, which was consistent with our previous
study.15 By adding the ActiWatch, the combination model slightly improved SEE and R values,
compared with the Tritrac-R3D model (Table 2). Although neither achieved statistical
significance, this model was the only one that showed nondifferential estimation of EEACT
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during all non-sleeping physical activity intensity categories. As a result, total EEACT was
predicted most accurately by the combined model (97.7 ± 3.2%), compared with ActiWatch
(86.0 ± 4.7%) and Tritrac-R3D (90.0 ± 4.6%) models. The contributions to the total estimated
EEACT by the combination model were 67 ± 23% and 33 ± 18% from the acceleration
components from the Tritrac-R3D and the ActiWatch, respectively. In line with our hypothesis,
these findings collectively suggest that the combination model used Tritrac-R3D data for most
of the weight-bearing activities when EE intensities were relatively high, and used the
ActiWatch data for upper body activities during more sedentary activities when the intensities
were lower.

This study had some limitations. First, it only included healthy normal adult females (11
African Americans, two Asian American, and 47 Caucasians), which may limit the
generalizability of these model parameters. Unlike our previous study, we did not derive the
generalized parameters for our models, mainly because this was a fairly homogeneous
population (middle-aged sedentary females) that lacked the spectrum of variations for
generalization. However, the concept of using activity monitors to assess EEACT has been
proven valid and feasible. Furthermore, we concentrated on a sedentary population with
relatively high body mass index. This approach, however, allows us to establish a baseline for
future studies on energy metabolism and physical activity in obesity and type II diabetes.

In conclusion, this investigation evaluated several EEACT prediction models using a hip-worn
triaxial accelerometer (Tritrac-R3D) and a wrist-worn uniaxial accelerometer (ActiWatch) in
a group of healthy women under close to free-living conditions in a whole-room indirect
calorimeter. We found that a combined model using both monitors better estimated EEACT
across all intensities compared with any single monitor model. In our study group, it has a
96.5% chance to detect total EEACT within ± 75 kcal, which may be clinically significant in
exercise or diet prescription. This model was further validated for its predictive accuracy and
stability in a subgroup. It is possible that the concept of developing predictive models for
healthy individuals described in this study can be extended and validated in disease populations,
such as type II diabetes. This may facilitate development of physical activity guidelines used
as adjuvant therapy for the prevention and treatment of type II diabetes. Currently, we are using
this approach to conduct a prospective study in assessing physical activity levels and EE in
type II diabetic patients under various intensities of disease management protocols.
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FIG. 1.
Schematic diagram of the whole-room indirect calorimetry chamber at Vanderbilt University.
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FIG. 2.
Mean ± 2 SD of the difference between the measured (calorimeter) and estimated 24-h
EEACT using prediction models (ActiWatch, Tritrac-R3D, and Tritrac-R3D+ActiWatch, in
Eqs. 2, 1, and 3, respectively), with respect to the mean of the EEACT values.
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FIG. 3.
Group mean EEACT in different intensity categories as measured by the calorimeter, modeled
by the ActiWatch, Tritrac-R3D, and combined (Tritrac-R3D+ActiWatch) models. *p < 0.05
compared with the measured values.
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FIG. 4.
Estimated total EEACT from the modeled day (dotted with dashed trend line) and the cross-
validation day (triangle with solid trend line), versus the measured EEACT in the subgroup (n
= 12). The line of identity is also shown for theoretical ″perfect″ fit.
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Table 1
Subject Physical Characteristics

All (n = 60) Subgroup (n = 12)

Mean ± SD Range Mean ± SD Range

Body mass (kg) 70.7 ± 16.4 45.0–131.1 65.9 ± 9.4 54.4–83.5

Height (cm) 164.9 ± 7.3 151.0–184.0 164.9 ± 8.3 156.0–184.0

Age (yrs) 35.4 ± 9.0 20.0–52.0 27.6 ± 5.1a 22.0–38.0

BMI (kg m−2) 30.0 ± 5.9 16.7–47.0 24.2 ± 2.3 21.4–30.3

BMI, body mass index.

a
Significantly different compared with the rest of the subjects (n = 48), p = 0.004.
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Table 2
Minute-by-Minute R and SEE Between EEACT Measured by the Indirect Calorimeter and
Estimated by the Models

Model R (estimated vs. measured EE) SEE (kcal/min)

Tritrac-R3D (Eq. 1)

 Mean ± SD 0.90 ± 0.03 0.364 ± 0.088

 Range 0.81–0.95 0.234–0.570

ActiWatch (Eq. 2)

 Mean ± SD 0.73 ± 0.08a 0.575 ± 0.142a

 Range 0.53–0.90 0.356–0.862

Tritrac ± ActiWatch (Eq. 3)

 Mean ± SD 0.92 ± 0.03 0.334 ± 0.087

 Range 0.81–0.96 0.212–0.546

a
Significantly different from the Tritrac-R3D model and the Tritrac + ActiWatch model, all p < 0.001.
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