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Purpose: To investigate the genetic basis of recessively-inherited congenital, non syndromic, bilateral, total sclerocornea
in two consanguineous pedigrees, one from the Punjab province of Pakistan and the other from the Tlaxcala province of
Mexico.
Methods: Ophthalmic examinations were conducted on each family member to confirm their diagnosis and magnetic
resonance imaging (MRI) or ultrasonography of the eyes was performed on some family members. Genomic DNA was
analyzed by homozygosity mapping using the Affymetrix 6.0 SNP array and linkage was confirmed with polymorphic
microsatellite markers. Candidate genes were sequenced.
Results: A diagnosis of autosomal recessive sclerocornea was established for 7 members of the Pakistani and 8 members
of the Mexican pedigrees. In the Pakistani family we established linkage to a region on chromosome 1p that contained
Forkhead Box E3 (FOXE3), a strong candidate gene since FOXE3 mutations had previously been associated with various
anterior segment abnormalities. Sequencing FOXE3 identified the previously reported nonsense mutation, c.720C>A,
p.C240X, in the Pakistani pedigree and a novel missense mutation which disrupts an evolutionarily conserved residue in
the forkhead domain, c.292T>C, p.Y98H, in the Mexican pedigree. Individuals with heterozygous mutations had no ocular
abnormalities. MRI or ultrasonography confirmed that the patients with sclerocornea were also aphakic, had
microphthalmia and some had optic disc coloboma.
Conclusions: This is the fourth report detailing homozygous FOXE3 mutations causing anterior segment abnormalities
in human patients. Previous papers have emphasized aphakia and microphthalmia as the primary phenotype, but we find
that the initial diagnosis – and perhaps the only one possible in a rural setting – is one of non-syndromic, bilateral, total
sclerocornea. Dominantly inherited anterior segment defects have also been noted in association with heterozygous
FOXE3 mutations. However the absence of any abnormalities in the FOXE3 heterozygotes described suggests that genetic
background and environmental factors plays a role in the penetrance of the mutant allele.

Sclerocornea is a nonprogressive, non inflammatory
developmental anomaly in which the normal scleral tissue
extends beyond the limbus into the peripheral cornea, causing
opacification and vascularization (scleralization) [1]. It is
usually bilateral, although it can be asymmetric, and can vary
in severity from total opacification of the cornea, which limits
the visualization of intraocular structures, to mild peripheral
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corneal vascularization. It is thought to result from a
disordered migration of neural crest cells between the corneal
epithelium and endothelium during fetal development [2,3].
Sclerocornea is usually seen in sporadic cases but familial
clustering is also well documented, with recessive inheritance
leading to a more severe phenotype than the dominant form
[4,5]. The condition can occur alone, in association with other
ocular symptoms or with systemic features as part of a
syndrome.

The genes implicated in sclerocornea include FOXE3
(Forkhead Box E3; OMIM 601094) on chromosome 1p.
Mutations in FOXE3 cause recessive sclerocornea in
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association with microphthalmia, bilateral aphakia, absence
of the iris and retinal dysplasia (OMIM 610256) [5-7]. Other
mutations in the same gene cause dominant disease with
various anterior segment abnormalities [4,6,8]. In addition
mutations in the Rax gene (OMIM 601881) on chromosome
18q caused sclerocornea, anophthalmia and autism (OMIM
611038) in a 12-year-old boy born to non-consanguineous
parents [9]. The defective genes remain to be identified for a

locus on Xp22.31, which is associated with microphthalmia-
dermal aplasia-sclerocornea syndrome (MIDAS; OMIM
309801) [10], for sclerocornea associated with 22q11.2
deletion syndrome [11] and for an interstitial deletion on
chromosome 6p in a dysmorphic infant [12]. The purpose of
this study was to look at two consanguineous pedigrees with
multiple affected members that appear to have a homogeneous
phenotype of congenital, non-syndromic, bilateral, total

Figure 1. Clinical description of the families. A: The pedigree structures are shown for MEP54 and the Mexican pedigree. Affected individuals
are depicted with filled-in symbols. The numbers highlight the family members from whom blood was taken for DNA extraction. B: Anterior
segment photos were taken using a Nixon Camera for affected member 1971 (aged 8 years) from the Pakistani and 1855 (aged 12 years), 1652
(aged 40 years), 1655 (aged 38 years) and 1851 (aged 48 years) from the Mexican pedigrees. Note total sclerocornea. Acuity was hand
movements only.

TABLE 1. OLIGONUCLEOTIDE PRIMER PAIRS FOR THE AMPLIFICATION OF THE FOXE3 GENE.

Amplicon Forward primer Reverse primer Size of PCR product
(bp)

Temp.
(°C)

1 TTGGGAATGATCCAAAGGAG GGCAGGGAAGCCAGAGAA 400 56
2 GGGGCCGTGTCCATATAAAG CCGCTGCCGTTGTCGAAC 554 58
3 AACGACTGCTTCGTCAAGGT GCGCAGGCTCACAGGTGAG 593 58
4 TGGGGAGGCCTACCTGAG ACTCACTGGAGGCGAGTCA 392 56
5 ACAGAAGCGTCCCCTTTGAC AGGCAGCCAGGTGTGTCTAC 398 58
6 TCCTGGGTTCATGACTTACTTG CCATGTGGCAACCCAAGAT 397 56
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sclerocornea, to determine the underlying genetic
abnormality.

METHODS
Patients: Participants in this study gave informed consent in
accordance with the tenets of the Declaration of Helsinki,
using a protocol approved by the Leeds East Ethics committee
and the “Conde de Valenciana” Institute ethics committee.
The pedigrees ascertained were from Multan in the Punjab
province of Pakistan and the Tlaxcala province of Mexico. A
detailed family history revealed that within each pedigree the
families were connected by multiple consanguineous loops
(see Figure 1A). Corneal opacities were present from birth or
very early in life in the affected subjects and none of the
patients had previous ophthalmic surgery. Ophthalmic
examination revealed complete corneal opacification and
absence of the corneal limbus. Multi-plane, sequential
magnetic resonance imaging of the brain and orbit and
conventional eye ultrasonography was performed in some
patients.
Homozygosity mapping: DNA aliquots from five affected
members of the Pakistani family were mixed in equal amounts
to form a single sample, which was genotyped on a single
Affymetrix 6.0 SNP array (AROS Applied Biotechnologies,
Aarhus, Denmark). Regions of homozygosity were
highlighted by conditional formatting in excel. Linkage was
confirmed with fluorescently-labeled polymorphic
microsatellite markers on a 3130xl Genetic Analyzer (Applied
Biosystems, Warrington, UK) using GeneMapper version 4.0
(Applied Biosystems).
DNA sequencing: Specific primer pairs for the amplification
of the coding regions as well as the exon-intron boundaries,
of the FOXE3 gene are presented in Table 1. PCR products
were digested with ExoSAP-IT (GE Healthcare, Chalfont St.
Giles, UK) and sequenced using the BigDye Terminator

version 3.1 Cycle Sequencing Kit. Products were resolved on
a 3130xl Genetic Analyzer according to the manufacturer’s
instructions (Applied Biosystems).
Bioinformatics: Conservation of protein sequence across
mammalian and non-mammalian vertebrates was investigated
at the University of California Santa Cruz (UCSC) Genome
Browser using the Vertebrate Multiz Alignment and
PhastCons Conservation package.
Molecular modeling: The sequences of the forkhead domain
of human FOXE3 wild type (Uniprot accession number
Q13461) and Y98H mutant were modeled using our
previously described method [13]. Two templates were used
to model the target sequences: the DNA-binding domain of
the human transcription factor FREAC-11 [14] and DNA-
binding domain of rat FoxE3 [15]. The average sequence
identity between target sequences and templates was >75%,
assuring high-fidelity structural modeling [16]. The quality of
the models was assessed using ProSA-II [17] and
PROCHECK [18].

RESULTS
We studied two consanguineous pedigrees, one from the
Punjab province of Pakistan and the other from the Tlaxcala
province of Mexico, with multiple blind members each of
whom had a poorly defined cornea with no anatomic limbal
boundary between the cornea and sclera. Patients had no
neurologic or systemic abnormalities so the diagnosis was
established as non-syndromic, bilateral, total sclerocornea
(Figure 1). The absence of any anterior segment abnormalities
in the parents of the affected individuals, together with the
presence of multiple affected siblings within a family,
suggested recessive inheritance.

Whole genome SNP genotyping in the Pakistani pedigree
revealed a 20.6 Mb region on chromosome 1p between the
markers D1S496 and D1S200 which was linked with the

Figure 2. Molecular analysis of the Pakistani pedigree. A: Confirmatory microsatellite genotyping highlighted a homozygous region on
chromosome 1q between the markers D1S496 and D1S200 as being linked with the disease phenotype. The physical distance for each marker
is represented based on the human February 2009 assembly (hg19) of the UCSC Genome Browser. The FOXE3 gene is marked within the
refined interval at 47.9Mb. B: The sequencing chromatogram shows the c.720C>A mutation in the FOXE3 gene in an affected member of the
Pakistani pedigree.
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disease phenotype (Figure 2A). Within this interval was the
FOXE3 gene, which encodes a transcription factor, that is
expressed in the formation of the lens placode during
embryonic development [19,20] and is confined to the anterior
lens epithelium in adults [6,19]. Furthermore, FOXE3
mutations have been found in patients with sclerocornea,
microphthalmia, and bilateral aphakia [5-7]. Upon sequencing
FOXE3 in an affected member of the Pakistani family, we
identified the previously reported homozygous C→A
mutation that replaced the normal cysteine residue with a stop
codon at the 240th amino acid in the protein (c.720C>A,
p.C240X; Figure 2B).

As the Mexican patients presented with a similar
phenotype, the FOXE3 gene was sequenced and a
homozygous T→C mutation was identified, resulting in a
non-conservative substitution of the 98th residue in FOXE3
from a tyrosine to a histidine (c.292T>C, p.Y98H; Figure 3A).
This mutation, which disrupts an evolutionarily conserved
residue (Figure 3B), was shown by direct sequencing of
genomic DNA to segregate with the disease phenotype in the
pedigree (data not shown) and was also absent from 250
control chromosomes. This mutation is only the second
human missense mutation within the FOXE3 forkhead
domain that has been reported in a recessive phenotype. At

Figure 3. Molecular analysis of the Mexican pedigree. A: Sequencing chromatogram showing the c.292T>C mutation in the FOXE3 gene in
an affected member of the Mexican pedigree. B: Protein sequence conservation. Diagram showing part of the amino acid sequence of the
FOXE3 protein within the forkhead domain. Note the evolutionary conserved tyrosine (Y) residue in the normal sequence that is mutated to
a histidine in the patients with sclerocornea. The F93 and F98 residues that are mutated to give rise to the dysgenetic lens mouse mutant are
also depicted. C: Structural model of the forkhead domain of human FOXE3 wildtype and p.Y98H. (i) Ribbon representation of the DNA –
fork head domain complex. DNA is depicted in gray and forkhead domain in red, yellow or green depending if helix, beta strand or loop
regions. Structural microenvironment of Y98 (ii) and H98 (iii), residues within 6 Angstrom of Y98, or H98, is shown in stick representation
and labeled in black boxes. (iv) Structural overlay of wild type (Y98) and mutant (H98). Figures were generated using PyMOL.
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the molecular level, the mutation replaces a neutral, polar side
group in the tyrosine residue of the normal protein with a
positively charged imidazole side chain of histidine. This
change in physical and chemical properties of the amino acid
residue alters the local structural microenvironment around
the alpha helix that usually interacts with the major groove of
DNA, and is likely to abrogate the DNA binding capacity of
the protein (Figure 3C).

Since previous reports with homozygous FOXE3
mutations described sclerocornea in association with aphakia
and microphthalmia [5-7], magnetic resonance imaging
(MRI) was used to examine the eyes in 2 affected individuals
from the Pakistani family and ultrasound was used to examine
the eyes in 5 affected individuals from the Mexican pedigree
(Figure 4). MRI confirmed that affected individuals in these
families are indeed aphakic and have shortened axial lengths
(Figure 4A). Ultrasonography also demonstrated bilateral
optic disc coloboma in 3 out of 5 Mexican affected subjects
(Figure 4B). Based on clinical findings and family history, the
disease segregating in these families was therefore classified
as non-syndromic, bilateral, total sclerocornea, aphakia,
microphthalmia and optic disc coloboma.

DISCUSSION
In this paper, we report two consanguineous pedigrees, one
from Pakistan and the other from Mexico, that presented with
congenital, non-syndromic, bilateral, total sclerocornea.
Molecular investigations identified a previously documented
mutation in FOXE3, c.720C>A, p.C240X, in the Pakistani
pedigree and a novel FOXE3 missense mutation, c.292T>C,
p.Y98H, in the Mexican pedigree. Further clinical
investigations confirmed aphakia, microphthalmia, and optic
disc coloboma in affected members. Previous papers have
emphasized aphakia and microphthalmia as the primary
phenotype, but we find that the initial diagnosis – and perhaps
the only one possible in a rural setting – is one of non-
syndromic, bilateral, total sclerocornea. This is not surprising
since FOXE3 expression coincides with the formation of the
lens placode during embryonic development [19,20], and
mutations in genes that lead to lenticular abnormalities are
likely to cause anterior segment disease and retinal defects.

This is the fourth publication reporting homozygous
FOXE3 mutations in patients with these ocular symptoms,
bringing the total to nine families with six different mutations.
The original report describing the c.292T>C, p.C240X
mutation did not mention the ethnicity of the family involved

Figure 4. Retrospective analysis of the patients with sclerocornea for further ocular abnormalities. A: Axial and sagittal T2-weighted MRI
scans of the head and orbits of two affected members 1966 and 1967 (aged 25 and 22 years old) from the MEP54 pedigree. Both patients
demonstrate aphakia as depicted by the absence of a dark lens in the anterior part of the eye. In the absence of surgery, the left eye of patient
1966 seems to be phthisical. The axial lengths for 1966 are 10 and 17 mm and 1967 are 19 and 16 mm for the right and left eyes, respectively
confirming that there is also microphthalmia. The sagittal section shows that there are no obvious structural abnormalities of the brain. B: Left
eye ultrasound scan of patient 1654 from the Mexican pedigree showing an optic disc coloboma (white arrow).
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[5], however a recent report also identified this mutation in
patients from Bangladesh and Kuwait [7]. It is possible that
this may represent a founder mutation with all the families
related by a common distant ancestor. The second report of
homozygous FOXE3 mutations in human patients identified
c.244A>G, p.M82V and c.21_24del, p.M71IfsX216 in two
consanguineous pedigrees of Pakistani origin [6]. The third,
and most recent report, also identified the c.244A>G, p.M82V
mutation as a compound heterozygote with c.705delC,
p.E236SfsX71 in a Caucasian patient and another
homozygous mutation c.557delT, p.F186SfsX38 in a patient
from United Arab Emirates [7].

Heterozygous mutations in FOXE3 have also been
implicated in dominant disease and may give rise to various
anterior segment abnormalities [4,6,8]. These include a c.
942dupG, p.L315AfsX117 mutation found in a mother and
daughter with congenital cataract and posterior embryotoxon
[4]; a c.269G>T, p.R90L mutation in a patient with Peter’s
anomaly [8]; and c.885T>C, p.X320RextX72 in a family with
Peter’s anomaly, early onset cataract and coloboma as well as
a c.146G>C, p.G49A mutation in a family with
microphthalmia, cerulean type cataracts and chorioretinal
coloboma [6]. However, our study confirms previous
observations [5-7] that highlight the absence of any ocular
abnormalities in FOXE3 heterozygotes from families with
recessive disease, suggesting either that specific FOXE3
mutations cause phenotypes with different inheritance modes
or that genetic background as well as environmental factors
may play a role in the penetrance of the mutant alleles.

It is interesting to note that FoxE3 knock out mice [21]
and the dysgenetic lens (dyl) mouse which has two
homozygous missense mutations, p.F93L and p.F98S, in the
forkhead domain [19,20], both form a small lens that fails to
detach from the surface ectoderm during ocular development
and so remains partly attached to the cornea. This phenotype
is milder than the one described in humans with homozygous
FOXE3 mutations, who are aphakic. While heterozygote
knockout mice are normal during embryonic development,
some mutation carriers later develop keratolenticular
adhesions as adults [21]. Dyl heterozygotes display corneal
and lenticular abnormalities with incomplete penetrance,
similar to Peter’s anomaly in humans [8]. These observations
provide supportive evidence that the pathogenic effects of
FoxE3 haploinsufficiency could be dependant on other
modifiers that remain to be identified.

To conclude, we report that patients presenting with non-
syndromic, bilateral, total sclerocornea ought to be screened
for FOXE3 mutations in the first instance. Our findings also
highlight the absence of any obvious ocular abnormalities in
the FOXE3 heterozygotes, when examined in the rural setting,
contrasting with previous reports where anterior segment
defects have been associated with heterozygous FOXE3
mutations. These observations suggest that genetic

background and environmental factors may play a role in the
penetrance of the mutant allele.
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