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Abstract
Marine-derived small molecules and peptides have played a central role in elaborating
pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors
(iGluRs), the primary mediators of excitatory synaptic transmission in the central nervous system
(CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute
a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing
molecules could prove useful as lead compounds for the development of therapeutics for
neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter
we discuss natural source origins and pharmacological activities of those marine compounds that
target ionotropic glutamate receptors.

1 Introduction
Marine organisms have provided some of the most well-known and widely used ligands for
mammalian iGluRs (Fig. 1). Indeed, one family of iGluRs, the kainate receptors, was named
for a molecule derived from a common variety of seaweed that was used extensively in Japanese
native medicine as an anthelmintic to treat ascariasis. Despite the prominence in neuroscience
research of a limited set of marine natural products that target iGluRs, in sheer numbers far
more iGluR-active secondary metabolites, particularly amino acid derivatives, have been
derived from terrestrial sources (Moloney 1998,1999,2002). Notable examples include
quisqualic acid, from the fruit of the Rangoon creeper Quisqualis indica (Takemoto et al.
1975;Takemoto 1978), and willardiine, from the pea seedling of Acacia willardinia (Gmelin
1959;Ashworth et al. 1972), both of which have played important roles in the pharmacological
characterization of iGluRs. Wasp toxins also are sources of metabolites with affinity for
iGluRs. Philanthotoxins, which are polyamine-containing toxins from the digger wasp
Philanthus triangulum, and Joro spider toxins (JSTX) from the Joro spider Nephila clavata
are open-channel blockers for a subset of glutamate receptors (Clark et al. 1982;Bruce et al.
1990;Blagbrough et al. 1994;Usherwood 2000;Estrada et al. 2007). Numerous other examples
of molecules derived from terrestrial organisms exist whose activity on iGluRs have been
characterized to varying degrees (e.g., Takemoto et al. 1964;Evans and Usherwood
1985;Konno et al. 1988;Shin-ya et al. 1997a,b;McCormick et al. 1999;Watanabe and Kitahara
2007). This rich abundance of iGluR ligands from terrestrial sources perhaps explains why
comparatively few new molecules have been isolated from marine organisms, which are often
more difficult to collect and exhibit more limited diversity at the species level. Nevertheless,
molecules isolated from marine sources are structurally novel in many cases and for that reason
could serve both as important tools in neurobiological research and as templates for
development of clinically relevant drugs.
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In this chapter we will discuss several broad families of marine-derived iGluR ligands,
including peptides isolated from Conus snails that target N-methyl-Daspartate (NMDA)
receptors and rigid analogs of the excitatory amino acid L-glutamate that predominantly
activate non-NMDA receptors, which consist of (S)-α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) and kainate receptor families. Molecules that target non-
NMDA receptors include kainic acid (KA) and domoic acid (DOM), which are algal products
collectively referred to as kainoids because they share a 2,3,4-trisubstituted pyrrolidine core
structure (Laycock et al. 1989). The terrestrial excitotoxin acromelic acid, from the Japanese
mushroom Clitocybe acromelalga, also falls into this structural class. More recent studies
discovered two new natural iGluR ligands, dysiherbaine and neodysiherbaine A (Sakai et al.
1997, 2001a), underscoring the potential utility of screening marine benthic organisms for
neuroactive molecules. These molecules are structurally distinct from the kainoids and thus
constitute a third family of marine-derived ligands for ionotropic glutamate receptors. As a
necessary introduction to the molecules themselves, we first briefly review the genetics,
pharmacology, and neurophysiology of the three primary members of the iGluR family of
subunits, the AMPA, kainate and NMDA receptors.

2 Ionotropic Glutamate Receptors
Ionotropic glutamate receptors are essential to the appropriate function of the mammalian CNS.
They mediate chemical synaptic transmission at the vast majority of excitatory synapses,
underlie well-characterized cellular models of learning and memory, modulate excitability of
neuronal networks, and are required for maturation of synaptic connections during early
development (reviewed in Mayer et al. 1992; Hollmann and Heinemann 1994; Aamodt and
Constantine-Paton 1999; Dingledine et al. 1999; Huettner 2003; Lerma 2006; Paoletti and
Neyton 2007). Modulation of the strength of excitatory synaptic transmission by enhancing or
inhibiting glutamate receptor function is under active investigation for therapeutic benefits in
a number of neuropathologies, including mild to moderate cognitive impairment and chronic
pain (Bleakman et al. 2006; Lynch and Gall 2006; Planells-Cases et al. 2006).

Ionotropic glutamate receptors have been highly conserved during evolution of marine and
terrestrial organisms. They subserve similar functional roles in neurotransmission in higher
and lower vertebrates, including fish (Nawy and Copenhagen 1987; Kung et al. 1996), and
structurally related homologues have been identified from invertebrates such as Drosophila
melanogaster (Schuster et al. 1991) and Caenorhabditis elegans (Hart et al. 1995; Maricq et
al. 1995). Their central role in excitatory neurotransmission in a wide variety of organisms in
part accounts for the occurrence of natural iGluR ligands used aggressively for prey
immobilization (e.g., conantokins). In the following section we confine our brief discussion to
the structure, physiology and pharmacology of mammalian iGluRs, because the vast majority
of such research has been focused on these molecules. The general principles of receptor
function, however, are likely applicable to the true targets of marine excitotoxins in fish and
other predatory marine organisms. Reviews with significantly greater detail on the structure,
function and significance of each type of mammalian iGluR are available in the recently
published book The Glutamate Receptors (Gereau and Swanson 2008).

2.1 iGluR Gene Families and Structure
Ionotropic glutamate receptors are ligand-gated cation channels formed from subunit proteins
of the AMPA, kainate, NMDA or delta receptor gene families. In mammalians, these gene
families are known by the acronyms GRIA, GRIK, GRIN, and GRID, for Glutamate Receptor,
Ionotropic, AMPA (Kainate, NMDA, or Delta) (Fig. 2a). While these subunits have shared
structural features and similar primary amino acid sequences, assembly of functional tetrameric
receptors is strictly controlled so that each subunit only oligomerizes with partners within its
gene family. This restriction ensures, for example, that functional AMPA receptors in the
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mammalian CNS only contain AMPA receptor subunits; similar stoichiometric restrictions
exist for other iGluRs.

A functional iGluR is composed of four subunit proteins, which can be identical (homomeric
receptors) or heterogeneous (heteromeric receptors). The secondary structure of a single iGluR
subunit has a generally modular design, with different domains in the proteins playing distinct
roles in receptor biogenesis, trafficking, or function (Madden 2002; Greger and Esteban
2007) (Fig. 2b). All iGluR subunits have three transmembrane domains (M1, M3 and M4) and
one re-entrant P-loop (M2) similar to that found in voltage-gated channels. The M2 domains
form the pore of the channel, whereas other membrane domains are intimately involved in
channel gating processes. The large extracellular amino-terminal domain (NTD) is critical for
appropriately restricted oligomerization during early steps in receptor assembly and contains
allosteric modulatory sites in NMDA receptor subunits (Paoletti and Neyton 2007). The
extracellular ligand-binding domain (LBD) is formed from two discontiguous segments of the
protein, with the first (S1) located immediately before M1 and the second (S2) between M3
and M4 (Stern-Bach et al. 1994). Each subunit protein contains one binding site for its primary
ligand, which in most cases is the excitatory neurotransmitter L-glutamate. While several
subunits bind ligands other than glutamate, the tertiary structures of the ligand binding domains
of each iGluR subunits are remarkably conserved (e.g., Armstrong et al. 1998; Furukawa et al.
2005; Mayer 2005; Naur et al. 2007), suggesting the fundamental mechanisms for ligand
binding and channel gating are common to the different receptor families. Finally, the
intracellular carboxy-terminal domains of receptor subunits interact with signaling systems
and other protein complexes to modulate function and control trafficking and targeting to
synaptic and non-synaptic sites in neurons (Perez-Otaño and Ehlers 2004; Jaskolski et al.
2005; Greger and Esteban 2007).

2.2 AMPA Receptors
AMPA receptors are the “workhorses” of mammalian excitatory synapses. Glutamate release
from presynaptic vesicles binds to closely apposed receptors, resulting in channel gating and
a brief, localized depolarization of the postsynaptic neuron. Typically, AMPA receptor-
mediated excitatory postsynaptic potentials (EPSPs) have a half-time of less than 10 ms,
ensuring that receptors are available for re-activation during periods of relatively high
frequency input. Summation and propagation of these depolarizing signals to the cell soma can
result in initiation of action potentials. Generalized inhibition of AMPA receptors results in
cessation of excitatory neurotransmission and, essentially, brain activity.

AMPA receptors are formed from a combination of four individual gene products known as
GluR1–4 (with the corresponding genes named GRIA1–4) (Hollmann and Heinemann 1994).
All AMPA receptor subunits contain a binding site for glutamate and form channels that are
permeable primarily to monovalent cations. Notably, receptors lacking the GluR2 subunit are
also weakly permeable to calcium (Hollmann et al. 1991). Incorporation of a GluR2 subunit
restricts divalent cation permeability as a result of a single amino acid difference from GluR1,
GluR3, and GluR4 subunits in the critical pore-forming M2 domain (Dingledine et al. 1992).
This amino acid difference (an arginine instead of a glutamine) arises not from a difference in
the gene sequence, but rather from a post-transcriptional enzymatic alteration (RNA editing)
of an adenosine within the glutamine codon in the mRNA, resulting in its translation as an
arginine (Sommer et al. 1991). Functional diversity between receptor subunits is further
introduced by an additional RNA editing event, as well as alternative splicing in both
extracellular and intracellular domains (Sommer et al. 1990; Lomeli et al. 1994).

Neurons in the mammalian brain appear to use AMPA receptors with distinct stoichiometric
combinations of subunits. For example, AMPA receptor excitatory postsynaptic currents
(EPSCs) at hippocampal Schaffer collateral–CA1 pyramidal neuron synapses are thought to
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arise primarily from GluR2/GluR3 receptors. This is altered during periods of strong synaptic
stimulation, which induce insertion of GluR1/GluR2 or GluR2/GluR4 AMPA receptors
(Hayashi et al. 2000; Zhu et al. 2000; Shi et al. 2001). In contrast to pyramidal neurons,
hippocampal interneurons tend to express AMPA receptors that lack the GluR2 subunit and
thus have calcium-permeable populations of receptors (Geiger et al. 1995), which make them
sensitive to open-channel blockage by natural polyamine toxins such as philanthotoxin and
Joro spider toxin (Iino et al. 1996; Washburn and Dingledine 1996). In principle, this diversity
suggests that specific populations of receptors could be targeted pharmacologically, but in
actuality there are few identified ligands that exhibit high degrees of selectivity between AMPA
receptor subunits.

As will be discussed in subsequent sections, a number of marine-derived agonists that activate
kainate receptors with high affinity also act upon AMPA receptors with lower affinity. Kainic
acid itself is the best-known example of an agonist with overlapping but divergent affinities
for AMPA and kainate receptors. It is clear now, however, that the potent excitant activity
elicited by kainoids and dysiherbaines arise largely (though perhaps not exclusively) from their
affinity for and activation of kainate rather than AMPA receptors (Mulle et al. 1998; Sakai et
al. 2001b).

2.3 Kainate Receptors
Kainate receptors play a variety of roles in the mammalian CNS (Lerma 2006). They modulate
excitatory and inhibitory synaptic transmission (Rodriguez-Moreno et al. 1997; Contractor et
al. 2000; Kamiya and Ozawa 2000; Schmitz et al. 2000; Frerking et al. 2001; Jiang et al.
2001), modulate some forms of synaptic plasticity (Bortolotto et al. 1999; Contractor et al.
2001; Lauri et al. 2001; Schmitz et al. 2003), control neuronal excitability through inhibitory
actions on intrinsic conductances (Melyan et al. 2002, 2004; Fisahn et al. 2005), and can
contribute to temporal summation of postsynaptic depolarization in response to bursts of action
potentials (Castillo et al. 1997; Vignes and Collingridge 1997; Frerking and Ohliger-Frerking
2002; Jin et al. 2006). Despite these widespread actions in neuronal function, inhibition of
kainate receptors (or genetic ablation of one or more subunits) does not have the profound
impact on brain activity observed upon inhibition of AMPA receptors (Mulle et al. 1998,
2000; Simmons et al. 1998; Smolders et al. 2002; Contractor et al. 2003; Alt et al. 2007;
Pinheiro et al. 2007). This has led to the hypothesis that the roles subserved by kainate receptors
are largely modulatory, fine-tuning the balance between excitation and inhibition in the CNS,
rather than being obligatory constituents of central synaptic transmission.

Kainate receptors are formed from a combination of five individual gene products, which are
further subdivided into two groups based on primary sequence identity and pharmacological
specificity. GluR5, GluR6, and GluR7 comprise the first sub-family to be isolated (with the
corresponding genes GRIK1–3) (Hollmann and Heinemann 1994). These three subunits are
collectively referred to as “low-affinity” kainate receptor subunits, because they have a lower
affinity for the eponymous ligand, kainic acid, than do the two members of the second sub-
family, KA1 and KA2 (GRIK4 and GRIK5), which consequently have been referred to as the
“high-affinity” kainate receptor subunits. There are important differences in the physiological
function of these receptor subunits as well: low-affinity subunits can assemble into functional
homo-oligomeric receptors, whereas high-affinity subunits KA1 and KA2 must combine with
GluR5, GluR6 or GluR7 to form functional hetero-oligomeric receptors (Egebjerg et al.
1991; Herb et al. 1992; Sommer et al. 1992; Schiffer et al. 1997; Ren et al. 2003). For this
reason, KA1 and KA2 are also denoted “auxiliary” subunits to the “principal” GluR5, GluR6
and GluR7 subunits. This concept is somewhat misleading, however, because the majority of
neuronal kainate receptors are likely composed of one or more members of both sub-families
of subunits as heteromeric receptors (Wisden and Seeburg 1993; Bahn et al. 1994), and thus
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both “principal” and “auxiliary” subunits are obligatory to the appropriate functioning of these
receptors in the brain.

While inhibition of kainate receptors appears to be well-tolerated by mammalian nervous
systems, activation of neuronal kainate receptors with potent and high-affinity agonists, such
as kainic or domoic acid, elicits characteristic stereotyped behaviors, tonic-clonic seizures, or
even death at high concentrations (Nadler 1979; Ben-Ari 1985). Long-term pathological
consequences of sub-lethal exposure to kainate receptor agonists include deterioration of
hippocampal pyramidal neurons and lesions similar to that observed in human patients with
mTLE (Nadler 1981; Ben-Ari 1985). A similar neuropathology can arise from ingestion of
marine organisms (fish or shellfish) containing highly concentrated domoic acid, as is
discussed in more detail in the subsequent section.

2.4 NMDA Receptors
NMDA receptors are essential mediators of many forms of learning and memory, and NMDA
receptor activation is a requisite early step in most models of long-term synaptic plasticity of
excitatory neurotransmission in the mammalian CNS (Dingledine et al. 1999). These receptors
have a number of unusual functional features central to their important roles at excitatory
synapses. For example, they are the only type of glutamate receptor that requires binding of
two distinct agonists, glutamate and glycine, for channel gating (Johnson and Ascher 1987).

As well, NMDA receptors are occluded at physiological membrane potentials by the presence
of a Mg2+ ion bound to a high-affinity site within the channel pore (Nowak et al. 1984). Voltage-
dependent channel block by Mg2+ is relieved upon strong depolarization of the postsynaptic
membrane, which can occur as a result of robust AMPA or kainate receptor activation or from
back-propagating action potentials in the dendritic arbor (Bliss and Collingridge 1993;
Spruston et al. 1995; Magee and Johnston 1997). Thus, NMDA receptors function as
“coincidence detectors”: in order to gate current, they must receive both a presynaptic signal
(glutamate released from the synaptic vesicle) and a postsynaptic signal (depolarization). If
these conditions are met, NMDA receptors will open and allow permeation of both monovalent
and divalent cations. Relative to AMPA and kainate receptors, NMDA receptors are highly
Ca2+ permeable (MacDermott et al. 1986; Mayer and Westbrook 1987; Burnashev et al.
1995), and this Ca2+ entry through the channel plays a unique role in mediating downstream
signals that lead to alterations in synaptic strength. Calcium- and calmodulin-dependent kinase
II (CaMKII) and the Ca2+ dependent phosphatase calcineurin are perhaps the best-
characterized signaling proteins that play central roles in synaptic plasticity downstream of
Ca2+ entry through NMDA receptors. In addition, Ca2+ entry stimulates gene expression to
effect protein synthesis-dependent stabilization of alterations in synaptic strength (Nicoll and
Malenka 1999; Xia and Storm 2005).

NMDA receptors are formed from heteromeric combinations of three subfamilies of gene
products: the NR1, NR2, and NR3 subunits. A single NR1 gene exists in mammals (named
GRIN1). NR2 subunits are encoded by four distinct genes (GRIN2A–GRIN2D). NR3 subunits,
the most recent sub-family to be cloned and characterized, are produced by two distinct genes
(GRIN3A and −3B). Further diversity is introduced into the NR1 family of subunits by alternate
splicing events in both the amino-and carboxy-terminal domains, such that a total of eight
unique transcripts are utilized in mammalian brains. Functional NMDA receptors are
composed of NR1 in combination with either NR2 or NR3 subunits (or, potentially, both types
of subunits) (Dingledine et al. 1999; Chatterton et al. 2002; Awobuluyi et al. 2007; Smothers
and Woodward 2007). As with all ionotropic glutamate receptor subunits, each NMDA
receptor subunit contains a single binding site for a neurotransmitter, but the identity of the
endogenous agonist molecule differs between NMDA receptor subunits. Glycine is the native
ligand for NR1 and NR3 subunits (Kuryatov et al. 1994; Chatterton et al. 2002), whereas
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glutamate binds selectively to NR2 subunits (Laube et al. 1997). Thus, NR1/NR2 NMDA
receptors (likely the predominant form found in the brain) have glutamate and glycine as
obligate coagonists and are the primary contributors to plasticity in the CNS. NR1/NR3
“NMDA” receptors, in contrast, can be gated by glycine alone (Chatterton et al. 2002); the
importance of these unusual receptors in excitatory neurotransmission is not well-
characterized.

2.5 Delta Receptors
Delta receptors are a fourth family of receptors that are classified as iGluRs based on structural,
rather than functional, similarity (Araki et al. 1993; Lomeli et al. 1993). Glutamate does not
bind to or activate either delta-1 (δ1) or -2 (δ2) receptors to produce a current. Indeed, the
endogenous ligand remains unknown for these receptors, which were classified for many years
after their cloning as “orphans.” Recent data suggests that glycine or D-serine could represent
physiological ligands (Naur et al. 2007), based on binding studies and resolved crystal
structures, but neither elicit a detectable current from the receptors when applied in voltage-
clamp experiments. Thus, their mechanism of action remains a mystery. No marine-derived
molecules have been identified that target delta receptors, and for that reason we limit our
discussion here of these interesting molecules. Several in-depth reviews discuss their potential
function and role in development and neuropathology (Yuzaki 2004; Hirano 2006).

3 AMPA/Kainate Receptor Ligands: Kainoids
3.1 Natural Sources and Synthetic Analogs of Kainoids

Kainic acid (KA), the original member of the kainoid family of molecules, was first found from
marine red alga Digenea simplex (Ceramiales, Rhodomelaceae) (Fig. 3a, b). Aqueous extracts
of D. simplex were used as anthelmintics in traditional Chinese and Japanese medicine for
many centuries (Nitta et al. 1958; Pei-Gen and Shan-Lin 1986), but the isolation and structural
determination of KA as the vermicidal principle was first achieved by Takemoto in 1953
(Murakami et al. 1953; Takemoto and Daigo 1958). KA has also been isolated from other
species of Ceramiales red algae such as Alsidium helmithochorton (Calaf et al. 1989),
Caloglossa leprieurii (Pei-Gen and Shan-Lin 1986), Centroceras clavulatum (Impellizzeri et
al. 1975), and certain variety of non-Ceramiales red algae Palmaria palmata (Laycock et al.
1989). Tank cultures of a naturally occurring “dwarf” mutant of P. palmata provided a source
for isolation of KA and other excitatory amino acids such as D-homocysteic acid and glutamate
(Laycock et al. 1989). A survey of 46 marine red and green algae found KA or the structural
analog domoic acid (DOM) in four and five Rhodomelaceae species, respectively.
Interestingly, D. simplex itself contained a small amount of DOM (100-fold less than KA),
which had not been noted previously (Sato et al. 1996).

In addition to use as a veterinary anthelmintic, KA is well-established as a standard probe in
neurological research to elicit currents from neuronal or recombinant kainate receptors and to
induce seizure-related behaviors and pathology in animal models of epilepsy. Production of
KA for these purposes has relied on both total synthesis and isolation of natural product from
algae. The latter process provided a stable and economical resource until the last decade, when
isolation from D. simplex for commercial purposes ceased, leading to a widespread shortage
of KA (Tremblay 2000). Recently, cultivation of P. palmata by Ocean Produce International
Inc. and synthetic production by other commercial agents re-established a stable production of
KA.

Two natural congeners of KA have been isolated from marine organisms. Allokainic acid is
the C-4 epimer of KA and was isolated from D. simplex. 1′-hydroxykainic acid was found from
a KA-producing mutant of P. palmata (Ramsey et al. 1994). In addition, a “kainic-peptide”
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was isolated from a red alga A. helminthocorton; this molecule appears to be a naturally
occurring peptide that contains kainic acid as two of its 37 amino acids residues (Calaf et al.
1989), but no further structural information, beyond amino acid analysis, or biological activities
have been described.

Recently Sakai and co-workers determined the cellular and subcellular localization of KA in
D. simplex using immunohistochemical and immunocytochemical techniques (Sakai et al.
2005). A KA-specific antibody localized immunoreactivity within the outmost layer cells in
the algal thallus. In subcellular observations using transmission electron microscopy, KA
immunoreactivity was found in electron dense cytosolic granule bodies, nuclei, and pit plugs
of the cells. No immunoreactivity was observed in epibionts, including bacteria attached to the
outer surface of the thallus. Localization of KA in nuclei is of particular interest because the
accumulation of secondary metabolites in this structure had not previously been reported. The
function of KA in the nucleus, however, remains unknown. The pit plugs are cell-to-cell
connective apparatus unique in Rhodophyceae; their physiological role(s) have been elusive
but could involve transport of nutritive materials based on morphological observations.
Localization of KA immunoreactivity in the pit plug constitutes the first evidence for
translocation of cellular material through this structure.

The distribution and occurrence of another marine-derived kainoid, domoic acid (DOM), bears
significant importance in the realms of public health and food hygiene. This kainoid is produced
by algae that enter the food chain of marine mammals and seabirds, and potentially humans,
through accumulation in marine primary producers and higher filter feeders, such as anchovies
and certain shellfish (Olney 1994; Watters 1995; Clark et al. 1999; Lefebvre et al. 1999; Mos
2001). DOM was first isolated from red alga Chondria armata (Takemoto 1978), and several
related compounds – isodomoic acids A to D, isodomoic acid G and H, and domoilactones A
and B – were later identified from the same source (Takemoto 1978; Maeda et al. 1986,
1987; Zaman et al. 1997). To date, ten stereo- and regio-isomers or congeners of DOM have
been detected (Clayden et al. 2005).

The ecological and toxicological threat posed by DOM has become evident over the last two
decades. DOM-containing algae were also used as vermifugal agents in Japanese folk
medicine, similar to D. simplex, because DOM is a potent neuronal excitant in both vertebrates
and invertebrates arising from its high affinity for kainate receptors (indeed, significantly
greater affinity than that of KA itself) (Debonnel et al. 1989; Lomeli et al. 1992). The use of
DOM-containing algae for medicinal purposes in humans did not result in any reported
incidences of severe toxicity. However, an outbreak of food poisoning resulting from ingestion
of DOM-containing blue mussels on Prince Edward Island Canada in 1987 demonstrated its
potential for toxicity in humans and was the proximal cause of three deaths (Bates et al.
1989; Wright et al. 1989; Perl et al. 1990b). The clinical manifestation of DOM toxicity
included moderate to severe gastrointestinal disorders and neurological symptoms that
included disorientation, seizure and memory deficits in a subset of individuals (Perl et al.
1990b; Teitelbaum et al. 1990). One elderly individual who survived the initial intoxication
later developed complex partial seizures and exhibited hippocampal neuronal loss and sclerosis
similar to that observed in animals following KA-induced toxicity (Cendes et al. 1995). As a
result of the striking degree of acute and, in some cases, long-term anterograde amnesia, the
term “Amnesiac Shellfish Poisoning” (ASP) was used to describe the clinical consequences
of DOM intoxication resulting from consumption of contaminated shellfish (Perl et al.
1990a; Jeffery et al. 2004).

Pennate diatoms belonging to Pseudo-nitzschia multiseries species were identified initially as
the source organisms that led to ASP after consumption of blue mussels in Canada (Bates et
al. 1989). The toxic events localized to the western coast of North America are attributed to
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Pseudo-nitzschia australis (Fritz et al. 1992; Lefebvre et al. 1999; Scholin et al. 2000).
Additionally, DOM has been detected in diatoms in Japan (P. multiseries) (Fig. 3c, d) (Kotaki
et al. 1999), the United Kingdom (P. australis Frenguelli, P. seriata f. seriata) (Cusack et al.
2002; Fehling et al. 2004), and Vietnam (Nitzschia navis-varingica) (Kotaki et al. 2000;
Lundholm and Moestrup 2000; Kotaki et al. 2004), demonstrating that DOM-producing
diatoms can occur throughout many marine ecologies (Bates 2000). Accumulation and
depuration of DOM following ingestion of Pseudo-nitzschia algae occur at variable rates and
in distinct tissues in marine organisms, with the highest concentrations found in anchovies,
razor clams and blue mussels following algal blooms on the Pacific coast of North America
(Wekell et al. 1994; Lefebvre et al. 2002a, b, 2007).

Mass mortalities of sea mammals and coastal birds of California and Baja California, including
the sea lions Zalophus californianus (Lefebvre et al. 1999; Scholin et al. 2000), brown pelicans
Pelecanus occidentalis (Fritz et al. 1992; Work et al. 1993; Sierra Beltran et al. 1997), and
Brant’s cormorants Phalacrocorax penicillatus (Fritz et al. 1992; Work et al. 1993), were
attributed to consumption of DOM-containing anchovies Engraulis mordax. A decade long
monitoring study suggested that increasing numbers of California sea lions with neurological
dysfunction and neuroanatomical damage (hippocampal atrophy and sclerosis) was attributable
to chronic sub-lethal exposure to DOM (Goldstein et al. 2008). As well, krill (Euphasia
pacifica) have been identified as a potential source of DOM toxicity that pose a risk to
planktivorous organisms (Bargu et al. 2002; Lefebvre et al. 2002a). Governmental and fisheries
organizations now routinely screen marine food sources for DOM levels. The US Food and
Drug Safety sets a critical limit of 20 ppm DOM in the “edible portion of raw shellfish” (Guide
for the Control of Molluscan Shellfish, 2005, available at http://www.cfsan.fda.gov), which is
well below the levels toxic to humans (Iverson and Truelove 1994). Detection of supra-
threshold DOM accumulation in marine organisms has resulted in several instances of
temporary bans on fishing of particular species or within affected geographical areas (Trainer
et al. 1998; Lefebvre et al. 2002a; Bill et al. 2006).

The physiological function of unusual secondary metabolites such as the kainoids within their
marine ecosystem remains a matter of speculation. The most obvious possibility is that their
potent and excitotoxic activity on vertebrate and invertebrate iGluRs serves in a defensive
capacity to discourage attack.

Intraperitoneal or intracoelomic injection reproduces neurotoxicity observed in vertebrates,
but oral gavage or ingestion of DOM is not neurotoxic in fish; (Hardy et al. 1995; Lefebvre et
al. 2001, 2007). Furthermore, DOM accumulates without apparent lethality in a variety of
benthic organisms (Lefebvre et al. 2002a, b, 2007), although more subtle neurological effects
have been observed following exposure during development (Tiedeken et al. 2005). DOM also
does not appear to subserve an allelopathic role to discourage competition between algal
species (Lundholm et al. 2005). More recently, it was suggested that the excitotoxin might
serve as a physiological defense mechanism against krill, which consume the diatoms (Bargu
et al. 2006). In this intriguing study, the authors found that DOM effectively reduced krill
grazing behaviors and thereby could serve to perpetuate algal blooms.

3.2 Biological Activities of Kainoids
All kainoids elicit currents from both kainate and AMPA receptors. In general, they exhibit
higher affinity and potency for kainate receptors, depending on structure and stereochemistry
of the side chain functional groups. KA itself exhibits >10-fold higher binding affinity for
kainate receptors as compared to AMPA receptors (reviewed in Hollmann and Heinemann
1994). It is a full (or nearly so) agonist that elicits desensitizing currents from most
combinations of kainate receptors (see examples in Fig. 4), but only weakly activates AMPA
receptors to produce steady-state currents with a very small desensitizing component. Within
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the kainate receptor subunit family, KA1 and KA2 kainate receptor subunits have a higher
binding affinity for kainate (KD values of 5–15 nM) than do GluR5, GluR6, and GluR7 (KD
values of 13–95 nM) (Bettler et al. 1990, 1992; Werner et al. 1991; Herb et al. 1992; Lomeli
et al. 1992; Swanson et al. 1997). As mentioned previously, KA1 and KA2 have been referred
to as “high-affinity” kainate receptor subunits and GluR5–7 as “low-affinity” subunits; it is
important to keep in mind that this nomenclature, while useful for categorizing the two sub-
families of subunits, is not relevant to their sensitivities to the endogenous neurotransmitter,
glutamate.

Application of KA to almost all types of neurons in the mammalian brain causes marked
depolarization through the activation of kainate and AMPA receptors, in a concentration- and
receptor composition-dependent manner. Thus, KA is only a moderately selective agonist and,
in general, currents evoked by high concentrations of kainate (>100 μM) will arise largely from
AMPA receptors, because these receptors tend to be present at much higher density in neuronal
membranes compared to kainate receptors. The respective contributions of AMPA and kainate
receptors to KA-evoked currents can be differentiated more effectively using a selective AMPA
receptor antagonist, such as GYKI 53655, to isolate kainate receptor currents (Paternain et al.
1995, 1996; Wilding and Huettner 1997). Currents evoked by low concentrations of KA (<5
μM) are largely carried by kainate receptors because of their significantly higher affinity for
the marine toxin. This approach has been used, for example, to characterize the modulatory
action of presynaptic kainate receptors on AMPA receptor-mediated synaptic currents in the
hippocampus (e.g., Kamiya and Ozawa 1998; Contractor et al. 2000). KA played an important
role in the early pharmacological and structural differentiation of iGluRs. It was central to
definitively establishing its cognate receptor family as a distinct pharmacological entity from
AMPA receptors (or Quisqualate receptors, as they initially were denoted) in seminal studies
from dorsal root ganglion sensory neurons (Agrawal and Evans 1986; Huettner 1990), which
constitute a relatively unique population of neurons that predominantly express kainate
receptors as their sole type of iGluR. KA was a critical tool in the iGluR pharmacologist’s
armamentarium for nearly a decade because of its unparalleled selectivity, commercial
availability and low cost.

A variety of synthetic analogs of KA have been generated, but in large part these molecules
have not been characterized as extensively on defined combinations of recombinant kainate or
AMPA receptors or on neuronal iGluRs. Structure-activity relationship studies with the KA
template indicated that the configurations at C2 and C4 and the composition of the C4 side-
chain are particularly critical determinants of receptor selectivity. For example, dihydrokainate,
which has a fully saturated C4 isopropenyl group, is a potent competitive substrate for electro-
genic glutamate transporters rather than a high-affinity kainate receptor agonist (Johnston et
al. 1979; Shinozaki 1988), whereas trans-2-carboxy-3-pyrrolidineacetic acid, which lacks the
C4 group entirely, exhibits agonist activity on NMDA receptors (Tsai et al. 1988). Also, high
affinity binding to and agonist activity on human recombinant GluR6 receptors was maintained
in a variety of analogs with aryl substitutions of the C4 side-chain, but stereochemical reversal
of the C4 position greatly reduced affinity for the receptor subunit (Cantrell et al. 1996). The
natural terrestrial toxin acromelic acid is a C4 aryl-substituted KA analog (Konno et al.
1988) and thus may show a similar high affinity for a subset of kainate receptor subunits,
although this has not been demonstrated formally.

The pharmacological actions of DOM are similar to that of KA; it is a high-affinity kainate
receptor agonist and somewhat lower affinity AMPA receptor agonist. It binds, activates and
desensitizes all homomeric and heteromeric kainate receptors, albeit to differing degrees and
with distinct potencies. GluR5–2a receptors, which exhibit a particularly high affinity for
domoate, gate a slowly desensitizing current upon activation by the marine toxin, whereas
GluR6a receptors rapidly desensitize to a stable equilibrium current (Fig. 4) (Herb et al.
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1992;Swanson et al. 1997). DOM is more potent and has a higher binding affinity for kainate
receptors than KA (Ki values of ~2–60 nM) (reviewed in Hollmann and Heinemann 1994).
Like KA, it is a partial agonist for AMPA receptors that elicits steady-state currents with a
minimal desensitizing component. The actions of KA and DOM on non-NMDA receptors have
been compared in a detailed review (Hampson and Manalo 1998).

Those natural analogs of DOM (the isodomoic acids) that have been examined generally
display a lower potency and affinity for kainate and AMPA receptors. The radioligand binding
affinities of isodomoic acid A and C for the GluR6 subunit are ~40- and ~240-fold lower than
that that of DOM, respectively (Holland et al. 2005; Sawant et al. 2007); consistent with this
observation, isodomoic acids A and C were less effective than DOM in reducing hippocampal
population spike amplitudes (an effect known to be mediated predominantly by neuronal
kainate receptors) (Sawant et al. 2007). Isodomoic acids D, E, and F have 5–280-fold lower
affinities for high-affinity KA binding sites in the rat brain, which (at low radioligand
concentrations) primarily arise from kainate receptors (Hampson et al. 1992).

In addition to its central importance to iGluR pharmacology research, KA has been widely
used as an excitotoxic agent in behavioral and neuropathological studies (Nadler 1979, 1981;
Ben-Ari 1985; Ben-Ari and Cossart 2000). Acute administration of kainoids induces
characteristic acute behavioral changes in rodents, including stereotyped movement such as
scratching behavior, head bobbing, and frequent grooming after ~10 min (Sperk 1994). The
symptoms progress into more frequent and violent behaviors and, dependent upon the
concentration of the toxins, animals display clonic whole body convulsions. At high doses,
animals die after severe seizure episodes similar to those observed in humans. Repeated
administration of KA will induce a permanent hyperexcitable state in animals marked by
recurring convulsions, thought to mimic status epilepticus in humans (Ben-Ari and Cossart
2000). The seizurogenic action of DOM is more potent than that of KA, and it can induce long-
lasting status epilepticus persisting for hours in mice (Chiamulera et al. 1992; Sakai et al.
2001b).

The neuroanatomical alterations and damage to the limbic regions produced by kainoid
injection into rodents or ingestion of environmental DOM by some marine organisms partially
reproduces that observed in patients with mTLE (Ben-Ari 1985). The rodent kainate-induced
neuropathology model continues to be used as one diagnostic assay in screening potential anti-
epileptic drugs (Loscher 2002). A discussion of the extensive literature on this model is beyond
the scope of this chapter, but it has been the subject of a number of excellent reviews and book
chapters (Sperk 1994; Dudek et al. 2006; Ratte and Lacaille 2006).

4 AMPA/Kainate Receptor Ligands: Dysiherbaines
4.1 Natural Sources and Synthetic Analogs of Dysiherbaines

Dysiherbaine (DH) is the first member of a new structural class of marine-derived iGluR
agonists with a high degree of specificity for kainate receptors. In the course of screening for
new excitatory amino acids from marine benthic organisms, Sakai and co-workers found that
an aqueous extract of a sponge initially identified as Dysidea herbacea, which later analysis
revealed was instead Lendenfeldia chodrodes (Fig. 3e), exhibited potent convulsant activity
when injected into mice. The active principal isolated from the sponge extract was
unprecedented and was comprised of a functionalized perhydro furanopyrane skeleton
furnished with a 2-ami-nopropanoic acid side-chain (Sakai et al. 1997,2006). Similar to
kainoids, the structure of L-glutamate was embedded in DH and thus the toxin can be
considered a C di-substituted analogue of L-glutamate. Subsequent searches for related
compounds from the same sponge species resulted in an isolation of neodysiherbaine A (NDH
A), an analog of DH with similar convulsant activity in mice (Sakai et al. 2001a). In addition
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to DH and NDH A, several structurally novel betaines, denoted dysibetaine PP, CPa and CPb,
were isolated from the same sponge (Sakai et al. 2004). Weak affinity for NMDA and kainate
receptors was observed in ligand-binding assays, but the pharmacological activity of the
dysibetaines is not well-characterized beyond these preliminary results. The production of this
array of structurally unusual molecules in the marine sponge underscores its diverse biosyn-
thetic machinery and suggests that additional bioactive molecules await discovery (Sakai et al.
2006).

Recently Sakai and co-workers examined the localization of DH within the sponge tissue using
immunohisto- and immunocytochemical techniques. Molecular analysis of the ribosomal DNA
sequence resulted revealed that the taxonomy of the sponge was in fact Lendenfeldia
chodrodes rather than D. herbacea. Moreover, localization of DH using a selective antibody
found the toxin exclusively in the cells of endosymbiotic cyanobacteria, of Synechosystis sp.
(Fig. 3f), suggesting that DH is in fact a metabolite of the cyanobacteria rather than the sponge
itself (Sakai et al. 2008).

Because of its intriguing structural and biological features, intense efforts were undertaken
towards the synthesis of DH. The first total synthesis by Hatakeyama and co-workers confirmed
the proposed structure and absolute stereochemistry of DH (Masaki et al. 2000). To date, four
total and one formal syntheses of DH, four total syntheses of NDH A, and structure-activity
relationship (SAR) studies of NDH A have been reported (Masaki et al. 2000; Sasaki et al.
2000, 2007; Snider and Hawryluk 2000; Phillips and Chamberlin 2002; Lygo et al. 2005;
Takahashi et al. 2006). A variety of DH analogues have been described, although only DH and
NDH A are natural products derived from the sponge (Sasaki et al. 1999, 2006; Cohen et al.
2006; Shoji et al. 2006). Extensive molecular pharmacological and electro-physiological
characterizations, as well as in vivo pharmacology, demonstrate that DH and its structural
analogues are a new generation of excitatory amino acids with distinct receptor selectivity and
agonist actions as described in the next section.

4.2 Biological Activities of Dysiherbaines
DH and neoDH are extraordinarily potent convulsants with high-affinity agonist activity on
mammalian kainate receptors, a lesser potency for AMPA receptors, and (in the case of DH)
an extremely weak activity on mGlu5 metabotropic glutamate receptors (Sakai et al. 2001b).
Their pharmacological specificity for different KAR subunits diverges significantly from
kainoids, which likely underlies their marked convulsant activity. Whereas KA exhibits highest
affinity for the KA1 and KA2 subunits, DH and neoDH instead bind with very high affinity to
GluR5, GluR6 and GluR7 KAR subunits (Ki values of ~0.5–1.5 nM) (Sakai et al. 2001b) but
only have very weak interaction with KA2 subunits (Ki value of 4.3 μM, comparable to their
affinity for AMPA receptor subunits) (Swanson et al. 2002). The action of DH on homomeric
GluR5 and GluR6 receptors is unusually long-lived because the marine toxin effectively
promotes a stable, desensitized conformation of the receptor, which can prevent unbinding of
the agonist and subsequent re-activation by agonists (Swanson et al. 2002). While the
nanomolar binding affinities exhibited by these molecules for the “primary” KAR subunits are
indeed quite high, they are not so high as to suggest that the ligand-receptor interaction would
be effectively irreversible (as is the case of DH and homomeric GluR5 receptors, for example).
Receptors composed of both high- and low-affinity subunits, and in particular GluR5/KA2
receptors, exhibit a further twist in their biophysical response to DH. Application of DH to
GluR5/KA2 receptors elicits a slowly desensitizing current, as is typical for many agonists,
but upon removal of the agonist from the bathing solution a slowly developing, steady-state
current emerges that arises from the stable association of DH with GluR5 subunits, resulting
in a tonic partial activation of the heteromeric GluR5/KA2 receptors (Swanson et al. 2002).
Thus, the pharmacological activity of the DH molecules on KARs is critically determined by
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the subunit composition of the receptors, which can be complex and which is not well
understood at the molecular level. A more detailed review of this topic can be found in Sakai
et al. (2006). Kainate receptors have diverse compositions in the mammalian brain, and
therefore DH will impact neuronal function dependent upon a variety of factors, including
toxin concentration and neuronal site of action (Sakai et al. 2001b).

DH has been shown to be the most potent seizurogenic excitatory amino acid isolated from
natural sources (Fig. 5a) (Sakai et al. 2001b). The convulsant activity of DH was found to be
approximately six-fold more potent than that of DOM (Table 1). Seizure behaviors induced by
injection of DH in mice were chiefly distinguished from those elicited by kainoids in the
duration of the status epilepticus. Mice receiving DH (40 pmol/mouse, i.c.v. or 1.6 mg/kg, i.p)
experienced severe whole body convulsions for more than 3 h, which then stabilized into
periodic recurrent seizures. This state, which was not replicated by KA or DOM, lasted for
more than 24 h. It is possible that this unique behavior arises from stable binding of the toxin
with a subset of kainate receptors similar to that observed with recombinant receptor subunits.
Indeed, a recent study showed that the seizurogenic potency of a diverse panel of DH-related
molecules was strongly correlated with their affinity for the GluR5 KAR subunit (Fig. 5b),
suggesting that activation of receptors comprised of this subunit primarily underlies toxin
convulsant activity (Lash et al. 2007). It remains unknown whether the longer-term
neuropathological consequences of seizure induction with DH closely resemble the well-
characterized pattern of limbic structural reorganization, neuronal loss, and sclerosis produced
in the kainate model of mTLE.

The structural determinants that underlie DH and neoDH affinity for kainate receptors have
been explored in studies with synthetic analogs (Shoji et al. 2006). The C8 and C9 functional
groups, in particular, confer specificity for the GluR5 and GluR6 KAR subunits. Elimination
or epimerization of the C9 hydroxyl essentially eliminates binding to GluR6 subunits, as does
similar alterations to the C8 group; in contrast, binding to GluR5 subunits is more tolerant to
modification at C9 and is unaffected by elimination of the C8 moiety (Lash et al. 2007). This
likely arises from the spatially larger binding pocket and the presence of favorable hydrophobic
and polar interactions in the GluR5 binding domain as compared to GluR6 (Mayer 2005; Naur
et al. 2005; Sanders et al. 2006). Interestingly, removal of both functional groups to produce
dideoxy-neoDH (also known as MSVIII-19) fundamentally altered pharmacological activity;
this molecule was an antagonist for homomeric GluR5 receptors, rather than an agonist
(Sanders et al. 2005). Molecules with similar pharmacological profiles are under active
examination for efficacy in a variety of animal models of neuropathologies, including epilepsy
and chronic pain. MSVIII-19 is weak convulsant that additionally promotes an reversible
unconscious state when injected intracerebroventricularly (i.c.v) in mice (Sasaki et al. 1999)
but has relatively modest effects on motor function when introduced via intrathecal or
intraperitoneal injection. Finally, epimerization of neoDH at the C4 position, which disrupts
the glutamate congener in the molecule, reduced but did not eliminate affinity for GluR5 and
GluR6 subunits (Lash et al. 2007). Given these precedents, further modifications to the DH
template structure may yet produce molecules with distinct pharmacological profiles or
activities on kainate receptor subunits.

5 NMDA Receptor Ligands: Amino Acids
5.1 Natural Sources of Amino Acid Ligands Acting on NMDA Receptors

Several compounds with selectivity for NMDA receptors have been identified from marine
organisms. NMDA itself was detected from foot muscle of blood shell, Scapharca
broughtonii (Sato et al. 1987). More recently, endogenous NMDA was discovered in the
tunicate Ciona intestinalis (D’Aniello et al. 2003), where it is was biosynthesized from
precursor D-aspartate; in the tunicate gonads, NMDA induced synthesis of gonadotropin-
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releasing hormone (GnRH), which in turn led to production of sex steroid hormones. A survey
in marine algae for N-methyl aspartic acid (with an unspecified stereochemical configuration)
found that eight out of 42 algae collected contained the compound (Sato et al. 1996); the
physiological function of these amino acids in the algae is unknown.

Two 4,5-substituted analogs of pipecolic acid with activity on NMDA receptors have been
isolated: cribronic acid [(2S,4R,5R)-5-hydroxy-4-sulfooxy-piperidine2-carboxylic acid], from
the Palauan sponge Cribrochalina olemda, and (2S,4S) 4-sulfooxy-piperidine-2-carboxylic
acid (trans-4-hydoroxypipecolic acid sulfate, t-HPIS) from the Micronesian sponges Axynella
carteri and Stylotella aurantium (Sakai et al. 2003). Cribronic acid was a new compound while
t-HPIS had been isolated previously from the legume Peltophorum africanum and
characterized as NMDA agonist (Evans et al. 1985; Moroni et al. 1995).

Lophocladines are alkaloids with 2,7-naphthyridine skeletons isolated from red algae
Lophocladia sp. collected in the Fijian Islands. One of the isolates, Lophocladine A, was shown
to have affinity for the MK-801 binding site in the channel pore of NMDA receptors, suggesting
that this compound might represent a novel class of naturally occurring small-molecule NMDA
receptor antagonists. Validation of this possibility awaits physiological studies. A closely
related analog, Lophocladine B, did not show equivalent affinity for NMDA receptors; rather,
it inhibited microtubule formation and was cytotoxic (Gross et al. 2006).

5.2 Biological Activities of Natural NMDA Receptor Agonists
Both cribronic acid and t-HPIS were potent convulsants when injected i.c.v. in mice, producing
dose-dependent behaviors, from running, jumping, and tonic extension to lethal convulsions,
with ED50 values of ~20–30 pmol/mouse (Sakai et al. 2003). t-HPIS and cribronic acid
displaced CGP 39653, a ligand for the glutamate binding site on NMDA receptors, from rat
cerebrocortical membrane preparations with IC50 values of 214 nM and 83 nM, respectively.
Neither compound displaced radiola-beled ligands from AMPA and kainate receptors. The
agonist activity of t-HPIS on NMDA receptors was confirmed earlier in mouse cortical wedge
preparations, in which the molecule caused dose-dependent depolarizations that were reduced
by AP-5, an NMDA-receptor antagonist (Moroni et al. 1995). The relative depolarization
potency of t-HPIS was about 5 times that of NMDA in the cortical preparation. Nothing is
known regarding the NMDA receptor selectivity of these compounds. Interestingly,
structurally related three- and four-substituted pipecolic acid analogs act as potent NMDA
receptor antagonists and have been modified and studied extensively in pursuit of
neurotherapeutic drugs (e.g., cis-4-phosphonomethyl-2-piperidine carboxylic acid, CGS
19755, Selfotel) (Lehmann et al. 1988). Thus far, however, this pharmacological approach has
not proven beneficial in clinical trials for stroke mediation, and instead have tended to
exacerbate neurotoxicity associated with ischemia (Davis et al. 2000).

6 NMDA Receptor Ligands: Conantokins
6.1 Natural Sources of Conantokins

Venoms from fish hunting snails, a genus of Conus, are a rich source of diverse neuroactive
peptides targeting various voltage-gated ion channels, neurotransmitter receptors and
transporters (Terlau and Olivera 2004). Conus peptides are categorized into a variety of families
based on pharmacological targets and structural characteristics. Until very recently, the
conantokin family of cone snail peptides contained four members, conantokin-G, -L, -R and
–T (con-G, con-L, con-R, and con-T), which were shown to act as NMDA receptor antagonists
(reviewed in Prorok and Castellino 2007). Conantokins are relatively unusual because they
lack the disulfide bridges critical for structural integrity in most conopeptides and because the
conantokins contain four to five γ-carboxyglutamates, a modified amino acid, in their structure.
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These first four conantokins range in size from 17 (Con-G) to 27 amino acids (Con-R). Con-
G, from Conus geographus (Fig. 3g), was the first member of the family discovered and was
isolated on the basis of its unusual bioactivity in mice: it produced a sleep-like state (McIntosh
et al. 1984). This “sleeper peptide” was proposed initially to target NMDA receptors based on
indirect biochemical assays (Mena et al. 1990) and later confirmed using physiological
recordings from NMDA receptor channels (Hammerland et al. 1992). Con-T was isolated from
Conus tulipa based on similar behavioral effects (“sleep” induction) in mice and found to have
structural similarities to con-G (Haack et al. 1990); namely the initial glycine-glutamate-γ-
carboxyglutamate-γ-carboxyglutamate residues were conserved in the two peptides. This
sequence is also present in con-R, from Conus radiatus (White et al. 2000), and con-L, from
Conus lynceus (Jimenez et al. 2002). A new, closely related series of conopeptides targeting
NMDA receptors, conantokin-Pr1 to -Pr3 (con-Pr1 to -Pr3), was recently discovered from
Conus parius (Teichert et al. 2007). Notably, this species of cone snail is the first whose venom
contains multiple conantokin peptides. They diverge structurally from the four original
conantokins, primarily in that the con-Pr toxins have only three γ-carboxyglutamate residues
and two of the members (con-Pr2 and con-Pr3) contain another modified amino acid, 4-trans-
hydroxyproline. Con-Pr peptides also induce a sleep-like state in mice (Teichert et al. 2007).

6.2 Biological Activities of Conantokins
Conantokins are peptide antagonists selective for NMDA receptors (Haack et al. 1990; Mena
et al. 1990; Hammerland et al. 1992; Jimenez et al. 2002; Prorok and Castellino 2007). Con-
G, the most extensively characterized conantokin, has appeared to have both competitive and
noncompetitive antagonist activity in different assays for NMDA receptor function (Prorok
and Castellino 2007). Competitive antagonism occurs at the glutamate binding site on the NR2
subunit (Hammerland et al. 1992; Donevan and McCabe 2000; Wittekindt et al. 2001), with
an IC50 of ~0.5–1 μM for inhibition of NMDA-evoked currents in cultured mouse cortical
neurons or for inhibition of synaptic NMDA-EPSCs in CA1 pyramidal neurons in rat
hippocampal slice preparations (Donevan and McCabe 2000; Barton et al. 2004). The
molecular binding site of con-G could be heterotopic, because the inhibitory activity is
enhanced by polyamines such as spermine (Donevan and McCabe 2000), which binds to an
extracellular allosteric modulatory site. Con-G also exhibits a high degree of subunit
selectivity; inhibition of NR1/NR2B NMDA receptors is potent, whereas NR1/NR2A receptors
(or those containing NR2C or NR2D) are relatively unaffected by the peptide (Donevan and
McCabe 2000; Klein et al. 2001). This degree of selectivity does not extend to all conantokins,
however, as con-R and con-T inhibit both NR2A- and NR2B-containing receptors (White et
al. 2000; Klein et al. 2001). Conantokins, and in particular con-G, have attracted significant
attention for their potential as therapeutics in a variety of neuropathologies (Layer et al.
2004). Con-G and con-T are effective antinociceptive agents in models of chronic pain
(Malmberg et al. 2003), although their peptide structures restrict potential routes of
administration. Con-G and con-R, but not con-L, also show anticonvulsant efficacy in a number
of mouse seizures models (White et al. 2000; Jimenez et al. 2002; Barton et al. 2003). Con-G,
which in its pre-clinical form is known as CGX-1007, also has neuroprotective effects in stroke
models (Williams et al. 2000, 2003). While CGX-1007 was found to be safe in Phase I clinical
trials, further clinical trials have not been disclosed (Olivera 2006).

Con-Pr peptides also induced the characteristic sleep-like state after injection observed decades
earlier with con-G (McIntosh et al. 1984) and inhibited recombinant NR1/NR2 NMDA
receptors expressed in Xenopus oocytes, with varying degrees of selectivity for NR2B-
containing receptors (Teichert et al. 2007). Their pharmacological profiles were distinct from
those of the earlier conantokins and consequently will provide additional tools and clues for
understanding how the structure of these unusual peptides determines their functional activity
and subunit specificity.
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7 Unpurified Bioactive Extracts
Several studies found crude extracts with bioactivity that appeared to target iono-tropic
glutamate receptors. For example, extracts of cultured bacteria associated with the marine
sponge Halichondria panacea activate rat cortical NMDA receptors; the active principle(s)
were not further isolated, however (Perovic et al. 1998). Garateix and colleagues carried out
an ecologically-inspired search for iGluR lig-ands from marine organisms that prey on
crustaceans, leading to the discovery of bioactive peptide-containing fractions from a sea
anemone, Phyllactis flosculifera (Garateix et al. 1996). Peptide fractions of extracts from the
animal diminished both the excitatory and the inhibitory responses to glutamate agonists in
neurons of the land snail Zachrysia guanensisin. Similarly, a crude extract from the sea
anemone Bunodosoma caissarum induced convulsions following intracerebro-ventricular
(i.c.v.) injection in mice. The convulsion was suppressed by chlorokynurenic acid, an
antagonist of the glycine site on the NMDA receptor (Gondran et al. 2002). Isolation and
structures for these sea anemone products have not been reported to date.

8 Conclusion
Marine-derived compounds have played key roles in iGluR research. The recent discovery of
the dysiherbaines and the con-Pr peptides, and the variety of bioactive extracts with unknown
active principles, suggest that additional and novel molecules await the attention of
neuroscience researchers. One of the central challenges for finding new molecules lies in the
very early steps of characterizing bioactivity. While stereotypic seizure behavior and
convulsions or sleep-inducing activity are obvious behavioral responses that lend insight into
potential biological activity, extracts containing bioactive molecules that elicit less dramatic
responses, but which have novel pharmacological profiles, could potentially be overlooked. It
is clear, however, that synthetic modification of natural analogs can dramatically alter their
pharmacological action (see, for example the DH analog MSVIII-19), and thus it is worthwhile
to pursue even those active principles lacking obvious clinical application (such as
convulsants). A revived appreciation of the potential utility of drugs from the sea and other
natural sources is evident in the form of new initiatives, from funding bodies such as the US
National Institutes of Health, which hope to spur development of higher-throughput
identification and isolation of natural source compounds that could impact human health. It is
likely that these efforts will produce molecules with new structures and specificities for iGluRs
to supplement those described in this chapter.
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Fig. 1.
Chemical structures of representative iGluR ligands discussed in this chapter
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Fig. 2.
a The mammalian ionotropic glutamate receptor gene families represented in a dendrogram,
with the distance of the connecting lines proportional to primary sequence identity. b The
structure of a representative iGluR subunit. The N-terminal domain (NTD) is involved in
assembly of tetrameric receptors. The ligand-binding domain (LBD) is extracellular and a bi-
lobate structure composed of two distinct domains (D1 and D2). Four membrane domains are
noted (M1–M4), with the M2 domain constituting a P-loop. The c-terminal domain contains
trafficking, targeting and modulatory determinants.
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Fig. 3.
Marine organisms that contain iGluR compounds. a Digenea simplex (Iriomote, Okinawa).
The algae are often covered by sand. b Digenea simplex in culture. c Light micrograph of
Pseudonitzschia multiseries. d Scanning electron micrograph of P. multiseries. e Lendenfeldia
chondrodes (Yap, Micronesia). f Transparent electron micrograph of a symbiotic Synecocystis
sp. in mesohyl of L. chondrodes. g Conus geographus in Palau. Images acquired by G. T.
Swanson (A), R. Sakai (B, E, F) Y. Kotaki (C), K. Koike (D), and K. Nomura (G)
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Fig. 4.
Representative currents evoked by natural products from kainate receptors. Homomeric
GluR5–2a (left column) or GluR6a (right column) receptors were expressed in HEK 293 cells.
L-glutamate (10 mM), kainate (KA, 1 mM), domoate (DOM, 30 μM), or dysiherbaine (DH,
100 μM) were rapidly applied to cells in whole-cell voltage clamp recordings
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Fig. 5.
Seizure activity of marine excitatory amino acids and synthetic analogs of neodysiherbaine A.
(a) Seizure behaviors induced by i.c.v. injection of dysiherbaine, kainic acid, and domoic acid
in mice were graded using a seven-point scale (Sakai et al. 2001b). Values, the mean scores
±S.E.M., were fit on a sigmoidal curve using Prism™ software. (b) Binding affinity at GluR5–
2a subunits correlates with seizure potency (r = 0.86; p < 0.01). Linear correlation graph is
plotted as Ki (nanomolar) versus ED50 (picomoles per mouse) after i.c.v. injection of the
following compounds: DH, neoDH, MSVII19, 8-deoxy-neoDH, 9-deoxy-neoDH, 8-epi-
neoDH, 9-epi-neoDH, 9-F-8-epineoDH, 2,4-epi-neoDH, and 4-epi-neoDH (Lash et al. 2007)
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Table 1

Convulsant activities of marine excitatory amino acids

ED50 compound i.c.v. (pmol/mouse) i.p. mg/kg

Dysiherbainea 6 0.97

Neodysiherbaine Ab 15

Kainic acida 280

Domoic acida 34 5.7

t-HPISc 20

Cribronic acidc 29

AMPAa 240

NMDAa 430

a
Sakai et al. (2001b)

b
Sakai et al. (2001a)

c
Sakai et al. (2003)
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