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Abstract

Curcumin has gained immense importance for its vast therapeutic and prophylactic applications. Contrary to this, our study
reveals that it regulates the defense pathways of Salmonella enterica serovar Typhimurium (S. Typhimurium) to enhance its
pathogenicity. In a murine model of typhoid fever, we observed higher bacterial load in Peyer’s patches, mesenteric lymph
node, spleen and liver, when infected with curcumin-treated Salmonella. Curcumin increased the resistance of S.
Typhimurium against antimicrobial agents like antimicrobial peptides, reactive oxygen and nitrogen species. This increased
tolerance might be attributed to the up-regulation of genes involved in resistance against antimicrobial peptides - pmrD
and pmrHFIJKLM and genes with antioxidant function - mntH, sodA and sitA. We implicate that iron chelation property of
curcumin have a role in regulating mntH and sitA. Interestingly, we see that the curcumin-mediated modulation of pmr
genes is through the PhoPQ regulatory system. Curcumin downregulates SPI1 genes, required for entry into epithelial cells
and upregulates SPI2 genes required to intracellular survival. Since it is known that the SPI1 and SPI2 system can be
regulated by the PhoPQ system, this common regulator could explain curcumin’s mode of action. This data urges us to
rethink the indiscriminate use of curcumin especially during Salmonella outbreaks.
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Introduction

In the last few years, curcumin has been widely used as an

herbal medicine [1,2]. Curcumin’s anti-bacterial activity in vitro

(against S. aureus, E.coli, S. lutea) has been attributed to its

phototoxic effect which produces H2O2, a toxic moiety for the

bacteria [3]. Same study reported that Salmonella enterica serovar

Typhimurium (S. Typhimurium) is susceptible but more resistant

to curcumin than S. aureus [3]. In B. subtilis, curcumin inhibits FtsZ

assembly dynamics by perturbing its GTPase activity [4]. It affects

the growth of H. pylori by inhibiting shikimate dehydrogenase, a

vital enzyme [5]. However, curcumin protects S. Typhimurium

TA1535/pSK1002 and E. coli K-12 strains by inhibiting SOS

induction and mutagenesis by UV light [6]. Curcumin also confers

resistance to E. coli, B. megaterium, and B. pumilus against the

inactivation of DNA, induced by gamma radiation [7]. The

knowledge of the effect of curcumin on pathogenicity of bacteria is

still in its infancy. In our work, we have addressed the role of

curcumin on pathogenicity of S. Typhimurium, a Gram-negative

facultative intracellular pathogen that causes systemic disease in

mice similar to the typhoid fever caused by serovar Typhi in

humans. S. Typhimurium is an important causative agent of

gastroenteritis in humans. The pathogenicity of S. Typhimurium is

largely dependent on its ability to evade and resist host innate

factors like antimicrobial peptides (AMPs), reactive oxygen (ROS)

and nitrogen species (RNI) [8,9,10,11,12] encountered during its

pathogenic life cycle. Presence of scavengers [13], antioxidant

enzymes [13], iron and manganese transport systems [14], LPS

modification systems [15], proteases, DNA repair systems [13] etc.

help the bacteria to protect themselves from the innate immune

factors of the host. S. Typhimurium have acquired Salmonella

Pathogenicity Island 1 (SPI1) and Salmonella Pathogenicity Island 2

(SPI2) that play an important role in the entry and survival of

bacteria inside the host cells, respectively [16].

In the following study, we demonstrate that curcumin enhances

the pathogenicity of S. Typhimurium in murine typhoid model.

We have attempted to delineate the pathway for the same. We

show that curcumin increases the resistance of S. Typhimurium

against the antimicrobial defenses viz. AMPs and oxidative stress,

exerted by the host. We further implicate that curcumin modulate

the expression of antioxidant genes through its iron chelation

property and SPI2 and pmr (LPS modification) genes through

PhoPQ two component system.

Materials and Methods

Bacterial strains, media and growth conditions
S. Typhimurium strain 12023 was used as wild-type (WT). WT,

WT with GFP (pFPV25.1) phoP-(phoPQ mutant, CS015 [17]) (Kind

gift from Prof. M. Hensel, Institut fűr Klinische Mikrobiologie,

Germany) and DsitA, generated in this study [18] were grown at

37uC in Luria broth (LB) containing 50 mg/ml nalidixic acid,

ampicillin, 20 mg/ml chloramphenicol and 50 mg/ml kanamycin

respectively. Curcumin (20 mM; Sigma), ferric chloride (32 mg/ml)
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and ferrous sulphate (20 mM) were added to the media wherever

required. Alternatively, the bacteria were also sub-cultured and

grown in F-media [19] for observing growth pattern.

Construction of sitA deletion mutant in S. Typhimurium
One step inactivation strategy described by Datsenko and

Wanner [18] was used. Briefly, S. Typhimurium strain carrying a

red helper plasmid (pKD46) were grown in LB with 50 mg/ml

ampicillin and 10 mM L-arabinose at 30uC to an OD600 nm of

0.3–0.4. The electrocompetent cells were prepared by harvesting

the cells and then washing two times with sterile MilliQ water and

then with ice-cold 10% (v/v) glycerol. The PCR product

containing the kanamycin-resistance gene (from plasmid pKD4)

flanked by sequences upstream and downstream of sitA was

electroporated into electrocompetent cells. The knockout was

selected for kanamycin resistance and confirmed by PCR using the

confirmatory primers. The knockout obtained was non-polar.

Cloning of sitA gene in DsitA
The sitA gene was amplified using the cloning primers

(Supplementary table S1) and S. Typhimurium genomic DNA.

The amplified product was digested with BamHI and HindIII.

The digested product was purified and ligated with the predigested

pQE60 plasmid. The product was transformed into competent

E.coli cells and positive colonies were selected. Plasmid was isolated

from the positive clone and transformed into DsitA strain to obtain

the complement.

Construction of lacZ transcriptional fusions and b-
galactosidase assay

LacZ transcriptional fusions to mntH, sitA, sodA, and hilA

promoters were constructed as described previously [20] using

primers listed in supplementary table S1. pmrD, pmrHFIJKLM

(pmrHM) and spiC lacZ construct were kindly provided by Vidya

Negi and Priyanka Das (our lab). Transcriptional activity of each

gene was determined by performing b-galactosidase assay as

described previously [21].

Eukaryotic cell lines and growth conditions
RAW 264.7 cells were a kind gift from Prof. Anjali Karande

(Department of Biochemistry, IISc, Bangalore). Intestine 407 and

Caco-2 cells were kind gift from Dr. Patole (National Center for

Cell Science, Pune). BMDM were isolated from NRAMP1+/+

mice (SWISS ALBINO) as described previously [20]. The cells

were grown in Dulbecco’s Modified Minimum Essential Medium

supplemented with 10% fetal bovine serum and maintained at

37uC and 5% CO2. For Caco-2 cells, 1% non-essential amino

acids was added to the medium.

Intracellular survival assay
The gentamicin protection assay was performed as described

previously [8].

Immunoblot
Curcumin treated and untreated bacteria were subcultured in

F-media (pH 5). Bacteria were pelleted at different time points and

lysed in SDS lysis buffer. Equal amount of protein was processed

for immunoblotting using anti-SseB antibody (a kind gift from

Prof. Michel Hensel).

H2O2 and NO. tolerance assay
H2O2 and NO. tolerance tests were done as described by

Buchmeier et al. [22] and Chakravortty et al. [23] respectively, with

some modifications. Briefly, overnight cultures of the wild type S.

Typhimurium grown under different conditions were diluted to

105 CFU in F-media (pH 5) and incubated with 1 mM H2O2 or

NaNO2 at 37uC and 180 rpm for 4 h. NaNO2 (NaNO2, Sigma-

Aldrich) and hydrogen peroxide (30% H2O2, Qualigens) solutions

were prepared freshly. Serial dilutions were made and plated onto

LB agar plates for the enumeration of surviving bacteria.

Antimicrobial peptide sensitivity assay
The assay was done as described by Fields et al. [24], with some

modifications. Bacteria, in the exponential phase (3 h incubation

at 37uC, 180 rpm, after 1:33 dilution of overnight culture in LB)

were taken for the assay. Bacteria (2–56105 for CFU analysis and

5–7.56106 for flow cytometry) were diluted in 0.5% tryptone-

0.5% sodium chloride solution and incubated with AMPs

[polymyxin B, 1 mg/ml (for CFU analysis), 0.5 mg/ml (Flow

cytometry) and protamine, 50 mg/ml (for CFU analysis), 30 mg/ml

(Flow cytometry)] at 37uC and 180 rpm. After 1 h, the samples

were either plated on LB agar for the enumeration of surviving

bacteria or were incubated with 1 mg/ml of bis-(1,3-dibutylbarbi-

turic acid)-trimethine oxonol [DiBAC4(3); Invitrogen] for 10 min

followed by 2 washes with PBS. The DiBAC4 (3) treated samples

were further analysed in FACS scanner (BD Biosciences) to test for

the change in membrane permeability upon AMP treatment.

Bacterial RNA extraction and RT-PCR analysis
RNA was isolated from the log phase bacteria grown in LB with

and without curcumin. cDNA was prepared from the bacterial

RNA using a reverse transcription system (Fermentas). cDNA was

amplified (35 cycles or 25 cycles for 16S rRNA) using primers

(supplementary Table S1) that amplify the intergenic region of the

specific genes.

Mice experiment
4–6-weeks-old BALB/c mice (obtained from Central Animal

Facility, Indian Institute of Science, Bangalore, India) were

maintained under specific-pathogen-free conditions. All the

procedures with animals were carried out in accordance with

approved protocols of Indian Institute of Science, Bangalore. Mice

were infected intra-gastrically or intra-peritoneally with 107 or 103

CFU of S. Typhimurium respectively. 3 days after infection, liver,

spleen, mesenteric lymph nodes (MLN), Peyer’s patches (PP) and

kidney were isolated under aseptic conditions, weighed and

homogenized in a tissue homogenizer. The homogenate was

plated at different dilutions to get CFU per gram weight of organ.

For invasion assay, the mice were sacrificed 1 h post-infection.

PP were isolated aseptically, weighed, homogenized and plated at

different dilutions to determine the CFU.

Mucus sensitivity test
Mucus was recovered from the small intestine of the BALB/c

mice and diluted (2 times) with PBS to reduce the viscosity. The

suspension was then centrifuged at 1000 xg for 5 min to settle the

cellular debris. 107 bacteria from overnight culture were incubated

in mucus under shaking condition (180 rpm) at 37uC. After 1 h,

the suspensions were plated onto Salmonella Shigella-agar to

determine the amount of surviving bacteria per milligram of the

mucus protein.

Statistical analysis
Each experiment was performed in triplicate and repeated a

minimum of 3 times. Data are shown as means 6 SE. Student’s

t-test or Mann Whitney U test were used for data analysis. All the
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analyses were done with Sigma plot (version 10) or Graph Pad

Prism (version 5) softwares. Wherever applicable, P value #0.05

was considered as statistically significant.

Results

Presence of curcumin during growth of S. Typhimurium
increases its rate of proliferation

The concentration of curcumin was fixed at 20 mM based on

the MTT assay for eukaryotic cells and growth curve for bacterial

cells (Supplementary Figure S1, Materials and Methods S1). We

first assessed the effect of curcumin on pathogenicity of S.

Typhimurium by intracellular survival assay in macrophages and

epithelial cells. The fold-proliferation, from 2 h to 16 h post

infection, of S. Typhimurium grown in the presence of curcumin

(curcumin-treated) was 2–3 fold higher compared to that of the

untreated (Figure 1) in RAW 264.7, Intestine 407 and Caco-2

cells. These results suggest that curcumin treatment aids survival of

S. Typhimurium inside the host cells.

BALB/c mice infected intragastrically or intraperitoneally with

curcumin-treated or untreated S. Typhimurium were either

monitored for survival or dissected 3 days post infection to analyse

the bacterial burden in PP, MLN, spleen and liver. The mice

infected with curcumin treated S. Typhimurium had significantly

more bacterial burden in the organs tested (Figure 2A) and showed

lower survival rate (Figure 2B). The cecum weight (a hallmark of

salmonellosis) [25] of the mice infected (intragastrically) with

curcumin-treated S. Typhimurium was significantly less than that

of the mice infected with untreated S. Typhimurium (Figure 2A).

These observations strongly show that curcumin increases the

pathogenicity of S. Typhimurium.

Curcumin treatment altered the expression of SPI2 genes
of S. Typhimurium

Inside the host cell, S. Typhimurium exists in a compartment

known as Salmonella containing vacuole (SCV) [26]. SCV has pH

of 5, low Mg2+ concentration, low phosphate concentration, high

K+ concentration, and limited amino acid availability. F-medium

mimics to some extent the SCV environment [27]. To test

whether curcumin treatment gives any growth advantage to S.

Typhimurium under the stringent conditions of SCV, the growth

pattern of curcumin-treated bacteria was assessed in F-media.

There was no significant difference in the growth pattern of

curcumin-treated and untreated S. Typhimurium in F-media

(supplementary Figure S2), implying that curcumin does not

increase the proliferation of S. Typhimurium in SCV but might be

increasing its resistance against the host antimicrobial agents.

To defend itself from the host antimicrobial agents, S.

Typhimurium uses SPI2 effector proteins [27,28]. SPI2 genes

play an important role in the intracellular survival of bacteria,

especially in macrophages [23,28] by preventing the fusion of the

NADPH oxidase containing vesicles with the SCV [23,29,30].

SpiC, is a SPI2 protein that is necessary for the translocation of

SPI2 effectors into infected macrophages [31] and preventing the

fusion of SCV with endosome/lysosome [32]. Inside the host,

curcumin-treated bacteria survive better than the untreated ones.

So the regulation of SPI2 genes, if any, by curcumin was assessed

by reporter assay and western blotting. The promoter activity of

spiC was examined in curcumin treated and untreated bacteria,

grown in F media or isolated from RAW 264.7 cells. For this S.

Typhimurium harboring a spiC-lacZ construct (spiC promoter

cloned upstream of promoterless lacZ gene in pHG86 plasmid)

was used. The b-galactosidase assay was performed to check for

the change in promoter activity, if any. The increased b-

galactosidase activity in curcumin treated cells indicates that

curcumin increased the promoter activity of spiC at early time

points (upto 4–5 h) after which the activity remained similar to

that of the untreated bacteria (Figure 3A). Immunoblot for SseB, a

SPI2 encoded translocon protein, (for bacteria grown in F-media)

also reflected that curcumin increases SPI2 expression upto 4–5 h

(Figure 3A). As PhoPQ regulates SPI2 genes, it was speculated that

curcumin acts via PhoPQ. When phoP- strain was used, there was

no difference in the activity of SPI2 gene (spiC) on curcumin

treatment, as assessed by b-galactosidase assay (Figure 3A). Also,

the intracellular proliferation of curcumin treated and untreated

phoP- strain was similar (Figure 3B) indicating that curcumin might

be regulating SPI2 gene through PhoPQ. Thus, the increased

proliferation of curcumin-treated bacteria in macrophages could at

least be partially attributed to the up-regulation of SPI2 genes (at

least sseB and spiC) by curcumin.

Figure 1. Fold proliferation (2 h to 16 h) of S. Typhimurium. The
cells (RAW 264.7, Intestine 407 & Caco-2) infected with solvent (S),
curcumin (C, 20 mM) treated or untreated (UT) S. Typhimurium were
lysed at 2 h & 16 h post infection and fold replication of the bacteria
was calculated. *** P,0.001.
doi:10.1371/journal.pone.0011511.g001
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Iron chelating property of curcumin partially protects S.
Typhimurium against ROS and RNI by regulating mntH
and sitA

Phagocytes exhibit their antimicrobial activity through the

production of ROS and RNI. The abilities of curcumin treated

and untreated bacteria to protect themselves from the cell

damaging intermediates, ROS (H2O2) and RNI (NO.) were

compared. NaNO2 protonates into HNO2, which rapidly

dismutates to produce several nitrite species including NO.

[33]. The toxicity of NaNO2 solution is maximum in pH 4.4–5.5

range [34]. At low pH, H2O2 is quite stable and toxic. Survival of

the bacteria was evaluated in the presence of either 1 mM H2O2

or NaNO2 at pH 5. Curcumin treated S. Typhimurium showed

2–3 fold higher survival in the presence of H2O2 and NO. as

Figure 2. Curcumin treated S. Typhimurium showed enhanced virulence in murine model of typhoid fever. A. Bacterial load in different
organs of the mice infected with solvent (S) curcumin (C, 20 mM) treated or untreated (UT) S. Typhimurium. 3-days post-infection, different organs of
infected mice were aseptically isolated, weighed, homogenized and plated to get the CFU/gm. Cecum weight was plotted for mice infected
intragastrically. B. Survival of mice after infection with either curcumin treated or untreated S. Typhimurium. ** 0.001#P,0.01 and * 0.01#P,0.05.
doi:10.1371/journal.pone.0011511.g002

Figure 3. Modulation of SPI2 genes by curcumin. A. Promoter assay for spiC gene using a reporter strain (WT harbouring lacZ fusion of spiC
promoter in pHG86 plasmid) and immunoblot for SseB protein. b-galactosidase assay was done at different time points for bacteria, subcultured
(1:33) from overnight culture in F-media (pH 5) or isolated from RAW 264.7 cells. B. Fold proliferation of WT and phoP- S. Typhimurium. RAW 264.7
infected with curcumin (C, 20 mM) treated or untreated (UT) S. Typhimurium were lysed after 2 h & 16 h and fold replication of the bacteria was
calculated.
doi:10.1371/journal.pone.0011511.g003
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compared to untreated S. Typhimurium (Figure 4A & B

respectively).

MntH and SitABCD, iron and manganese transport systems are

required for the resistance against H2O2 and virulence of S.

Typhimurium [35,36,37] especially in NRAMP+/+ mice [38].

Manganese is required for the catalysis of enzymes like superoxide

dismutase (SodA) [37], involved in resistance to the early oxygen-

dependent microbicidal mechanisms of phagocytes [39]. The

regulation of sitA, mntH and sodA by curcumin was determined by

promoter assay. Promoters of respective genes were cloned

upstream of the promoterless lacZ gene in pHG86 plasmid and

the b-galactosidase assay was carried out to determine the change

in promoter activity on curcumin treatment. Curcumin increased

the promoter activity of these genes (Figure 4C). In addition,

curcumin treatment did not alter the resistance of the DsitA strain

against H2O2 and NO. (Figure 4D & E) implicating that curcumin

increases resistance of the bacteria against oxidative stress by

regulating the expression of sitA and possibly mntH. As compared

to untreated DsitA the fold proliferation of curcumin treated DsitA

was high in RAW 264.7 (Figure 4F) cells but was indifferent in

NRAMP+/+ BMDM (Figure 4G). The complement of DsitA strain

behaved similar to wildtype. However, curcumin treated and

untreated complement bacteria behaved similarly (Figure 4G) as

the sitA gene was cloned without the promoter sequence.

Curcumin treated phoP- bacteria showed higher fold proliferation

in NRAMP+/+ cells indicating that curcumin also acts on

pathways other than PhoPQ (may be sitA, mntH and sodA) to

modulate intracellular survival of the bacteria in NRAMP+/+ cells.

This suggests that the enhanced proliferation of curcumin treated

bacteria in RAW 264.7 cells is not through the regulation of sitA.

However, the regulation of sitA by curcumin may play a role on

intracellular proliferation of bacteria in NRAMP+/+ host cells.

The iron binding property of curcumin has been implicated to

play a role in the treatment of cancer and neurodegenerative

disorders [40,41,42]. When tested, we found that iron chelation by

curcumin had a role in partially protecting S. Typhi-

murium against H2O2 and NO. toxicity. Supplementation of iron

(32 mg/ml of FeCl3 or 20 mM FeSO4) in the growth media caused

reversal of the phenomena observed in the presence of curcumin

(Figure 4 A–C) implicating that iron chelating property of

curcumin might regulate the antioxidant genes (sitA and mntH)

and improve resistance against oxidative stress.

Increased expression of pmr genes by curcumin protects
the bacteria against AMPs

Intestine 407 cells, derived from embryonic intestinal cells are

rich producers of AMPs. To account for the improved survival of

curcumin-treated S. Typhimurium in these cells (Figure 1), the

sensitivity of the bacteria to AMPs (polymyxin B and protamine)

was evaluated by CFU and flow cytometry. AMP attack leads to

change in membrane permeability. This change in membrane

permeability was quantified using a fluorescent, membrane

potential sensitive dye, DiBAC4 (3). Curcumin-treated S. Typhi-

murium showed greater survival on AMP treatment (Figure 5 A &

B) and exhibited greater membrane integrity as demonstrated by

the decreased uptake of DiBAC4 (3) (Figure 5C).

S. Typhimurium protects itself from AMPs via different

mechanisms, one of them being the modification of LPS residues

reducing the net negative charge on the cell surface [43]. PmrAB

and PhoPQ regulatory system sense specific environmental cues

(low pH, low Mg2+, high Fe3+) and upregulate the genes involved

in LPS modification like pmrD, pmrHM, pmrE, pmrC, cld. [15,43].

High iron (Fe3+) activates PmrAB which in turn upregulates

pmrHM and pmrE. The iron chelation caused by curcumin should

lead to down-regulation of pmrHM, pmrC etc. The promoters of

pmrD and pmrHM were cloned upstream of the promoterless lacZ

gene in pHG86 plasmid. S. Typhimurium harboring pmrD and

pmrHM-lacZ constructs were used to evaluate the change in

promoter activity of these genes on curcumin treatment. We

surprisingly found that curcumin increased the promoter activity

of pmrD and pmrHM operon (Figure 6A). Hence, we hypothesized

that curcumin might regulate pmrD and pmrHM through PhoPQ

and not through PmrAB. The pmrD and pmrHM-lacZ fusions were

transformed into phoP- strain and the promoter activity of

respective genes was analysed on curcumin treatment. We found

that curcumin failed to increase the promoter activity of pmrD and

pmrHM in phoP- (Figure 6A) bacteria. It did not alter the

susceptibility of phoP- to polymyxinB nor did it improve the

survival of phoP- in Intestine 407 cells (Figure 6B) indicating that

curcumin might regulate the expression of pmr genes through

PhoPQ. The increased expression of pmrD and pmrHM may be the

reason for the improved resistant (through LPS modification) of

curcumin treated-bacteria against polymyxinB.

Down-regulation of SPI1 genes by curcumin leads to
reduced entry of S. Typhimurium into the epithelial cells

Even though curcumin treatment increased the pathogenicity of

S. Typhimurium, the treated-bacteria were defective in entry into

the host cells in vitro (Figure 7A). This defect in entry could be due

to downregulation of SPI1 genes required for entry into non-

phagocytic host cells. HilA is a master regulator of SPI1 genes like

sipB, sipC, sopD, sopB etc. (24). hilA is also required by the bacteria

to colonize in the extracellular luminal compartment of the

intestine [44].S. Typhimurium harboring hilA and sopD-lacZ

fusions were constructed as described previously [20]. The change

in promoter activity of these genes on curcumin treatment was

examined by b-galactosidase assay. Curcumin indeed decreased

the promoter activity of the SPI1 genes tested.Thus the defect in

invasion could be ascribed to the down-regulation of SPI1 genes

(hilA and sopD) by curcumin (Figure 7C & D). Down-regulation of

hilA should result in reduced bacterial load in the small intestinal

epithelia. Nevertheless, to our surprise we found that, 1 h post-

intragastric infection, the bacterial load was high in the PP (small

intestine) of the mice infected with curcumin-treated S. Typhi-

murium (Figure 7B).

Bacteria face a myriad of environmental stress during their

passage through the gastrointestinal tract to reach the intestine,

where they invade the M cells and epithelia of the small intestine.

In the intestine within the mucus, they encounter a plethora of

antimicrobial agents. Hence, the survival efficacy of curcumin

treated-bacteria was tested in the mucus isolated from the small

intestine of mice. The treated-bacteria showed higher survival in

Figure 4. Regulation of antioxidant genes by curcumin to improve resistance of bacteria against oxidative stress. Survival of S.
Typhimurium grown in presence or absence of curcumin (20 mM) and iron (32 mg/ml FeCl3 or 20 mM FeSO4) against1 mM H2O2 (A, D) or NaNO2 (B,
E). C. Effect of curcumin on the transcriptional activities of mntH, sitA, sodA genes. b-galactosidase assay was performed 6 h post-incubation of S.
Typhimurium harboring either sitA or sodA-lacZ construct in presence or absence of curcumin (20 mM) and iron (32 mg/ml FeCl3 or 20 mM FeSO4)
in LB. F & G. Intracellular proliferation of curcumin treated and untreated bacteria in RAW 264.7 and NRAMP+/+ BMDM respectively. *** P,0.001,
** 0.001#P,0.01 and * 0.01#P,0.05. UT- untreated, C- curcumin treated, DsitA – sitA knockout and sitAc – sitA complement in DsitA.
doi:10.1371/journal.pone.0011511.g004

Curcumin and Salmonella

PLoS ONE | www.plosone.org 7 July 2010 | Volume 5 | Issue 7 | e11511



Curcumin and Salmonella

PLoS ONE | www.plosone.org 8 July 2010 | Volume 5 | Issue 7 | e11511



mucus (Figure 7 E). This improved survival against antimicrobial

agents could lead to increased number of bacteria reaching the

intestinal epithelia and invading it.

Thus, curcumin enhances the pathogenicity of S. Typhimurium

by increasing its resistance against different immune components.

Discussion

The intracellular survival assay demonstrated that curcumin

treatment improved the pathogenicity of S. Typhimurium. The

ability of S. Typhimurium to survive the oxidative stress inside the

SCV determines the progression of disease [23,29]. SPI2 genes

play a very important role in determining this progression [45]. It

interferes with the cellular functions and the innate immune

components of the host. The increased activity of SPI2 genes in

curcumin treated bacteria during the initial 4–5 h might accelerate

the progression of disease. The improved pathogenicity of

curcumin-treated S. Typhimurium can also be ascribed to its

increased resistance against the damaging effects of the oxidative

congeners, H2O2 and NO., and AMPs (polymyxin B and

protamine).

S. Typhimurium harbors quite a few mechanisms to counteract

oxidative stress. One such mechanism is through the acquisition of

Mn2+ ions. Horsburgh et al. demonstrated that accumulation of

manganese in the bacterial cell catalytically detoxifies reactive

oxygen species and protects the bacteria from the oxidative

damage [46]. It is known that mutants of sitABCD and mntH are

attenuated for the survival within the host [35,37,47] and are

required for full virulence especially in NRAMP1+/+ mice [38]. S.

Typhimurium also has SodA which is important for resistance

Figure 5. Sensitivity of S. Typhimurium to antimicrobial peptides. Survival of S. Typhimurium grown in presence (C) or absence (UT) of
curcumin (20 mM) and iron (32 mg/ml FeCl3 or 20 mM FeSO4) against A. Polymyxin B (1 mg/ml) and B. Protamine (50 mg/ml). C. Membrane potential
assay. The polymyxinB or protamine treated S. Typhimurium were stained with DiBAC4 (3) and analysed in FACS scanner.
doi:10.1371/journal.pone.0011511.g005

Figure 6. Regulation of pmr genes by curcumin to improve resistance of bacteria against AMPs. A. Effect of curcumin on the
transcriptional activities of pmrD and pmrHFIJKLM genes. b-galactosidase assay was performed 3 h post-incubation of S. Typhimurium harboring
either pmrD or pmrHFIJKLM -lacZ construct in presence or absence of curcumin (20 mM) and iron (32 mg/ml FeCl3 or 20 mM FeSO4) in LB. B.
Susceptibilty of phoP- strain to polymyxin B. C. Intracellular survival assay of phoP- strain in Intestine 407 cells. The Intestine 407 cells infected with
solvent (S), curcumin (C, 20 mM) treated or untreated (UT) S. Typhimurium were lysed at 2 h & 16 h post infection and fold replication of the bacteria
was calculated. *** P,0.001, ** 0.001#P,0.01 and * 0.01#P,0.05.
doi:10.1371/journal.pone.0011511.g006
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against early oxygen dependent killing in macrophages and

protection against oxidative stress under iron limiting conditions

[39]. Our work demonstrate that curcumin increase the expression

of sitA, mntH and sodA conferring protection against oxidative

stress. Curcumin also downregulates hilA which correlates well

with the findings of Ellermeier et al. where they show that addition

of metal chelator 2,2-dipyridyl to the growth medium increase the

expression of sitA and decrease the expression of hilA [48]. It is also

known that sitA and mntH are regulated by iron concentration [14]

and cation chelators [36,49]. As curcumin acts as an iron chelator

Figure 7. Curcumin treated bacteria show reduced entry in-vitro but not in-vivo. A. The entry of curcumin (C, 20 mM) treated and
untreated (UT) S. Typhimurium in Intestine 407 cells. The entry in Intestine 407 cells was determined by lysing the infected cells 30 min post-infection.
B. CFU per gram weight of Peyer’s patch of mice infected intragastrically with curcumin-treated and untreated S. Typhimurium. 1 h post-infection
Peyer’s patch were aseptically isolated, processed to get CFU/gm. C. Effect of curcumin on the transcriptional activity of hilA and sopD promoter. b-
galactosidase activity was performed using S. Typhimurium harboring either hilA or sopD -lacZ construct grown in presence or absence of curcumin
to know the transcriptional activity. D. RT-PCR analysis to check the expression of hilA in curcumin-treated and untreated S. Typhimurium. RT-PCR
with the mRNA isolated from curcumin treated and untreated S. Typhimurium was performed. E. Percentage survival of bacteria in the mucus from
small intestine of mice. Curcumin-treated and untreated bacteria were inoculated in the mucus for 1 h and their survival calculated. *** P,0.001 and
* 0.01#P,0.05.
doi:10.1371/journal.pone.0011511.g007
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[40,41] we implicate that the iron chelation caused by curcumin

may modulate the expression of the genes, sitA and mntH,

protecting the bacteria from oxidative stress, and hilA, hindering

its entry into epithelial cells. Iron chelators are known to govern

the expression of phoP and other SPI2 genes [47]. The regulation

of SPI2 genes (atleast spiC and sseB) by curcumin could also be

explained through the iron chelation property of curcumin.

Zaharik et al. showed that depletion of Fe2+ and Mn2+ in SCV

causes up-regulation of mntH and sitA. Martin-Orozco et al.

demonstrated that NRAMP1 has no effect on PhoP induction and

the bacteriostatic/cidal effect of NRAMP1 is independent of

PhoPQ. Our result show that curcumin has no effect on

intracellular proliferation of DphoP in RAW 264.7 cells but

increases its proliferation in NRAMP1+/+ cells, as compared to

untreated bacteria. Curcumin does not alter the proliferation of

DsitA in both RAW 264.7 cells and NRAMP+/+ BMDM. This

suggests that the action of curcumin on sitA is also important for

the survival of bacteria especially in NRAMP1+/+ cells.

The ability of curcumin to scavenge free radicals might also

offer protection against oxidative stress [50]. Curcumin was found

to be incorporated into S.Typhimurium (Materials and Methods

S1, 50 to 75 mg/gm of bacterial dry mass, Supplementary Figure

S3, Previous report suggest that iron chelators that penetrate

bacteria (dipyridyl, o-phenanthroline, and desferrioxamine) can

protect the DNA from damage by exogenous H2O2 [51].

Similarly, curcumin that enters the cell might also protect the

bacteria against the oxidative stress.

Salmonella counteracts the effect of AMPs either by LPS

modification or secretion of some proteases [43]. PhoPQ and

PmrAB regulate the LPS modifying system. These two-component

regulatory systems are activated by different environmental cues.

Upon activation, PhoPQ increases the transcription of pmrD whose

protein product stabilizes activated PmrA which in turn activates

the genes involved in LPS modification, e.g. pmrHM, pmrE etc (22).

PmrA is also activated independently by high Fe3+/Al3+, low pH

etc. [15]. Iron chelation caused by curcumin should lead to down-

regulation of PmrAB system and hence pmrHM, pmrE etc.

However, we found that in presence of curcumin pmrD and

pmrHM are upregulated.

Curcumin has been shown to modify the function of membrane

proteins by changing the lipid bilayer properties [52]. In a similar

way, curcumin might modulate the function of PhoQ, a

membrane bound sensor kinase that is activated upon conforma-

tional change [53], further leading to the enhanced transcription

of pmrD and hence the activation of LPS modifying system. Iron

chelators increase the expression of phoP [47]. Iron chelation by

curcumin might also contribute to the above phenomena. Further

study needs to be done to elucidate the exact mechanism by which

curcumin might regulate PhoPQ system. It is also known that

activation of PhoPQ leads to the down-regulation of hilA and other

Figure 8. Schematic summary representing the mode of action of curcumin. Iron chelation caused by curcumin might increase the
expression of different genes involved in defense of S. Typhimurium against host immune response.
doi:10.1371/journal.pone.0011511.g008
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SPI1 genes, [54,55,56] which conforms to our data of down-

regulation of hilA by curcumin.

Curcumin-treated WT bacteria but not DphoP (data not shown)

are defective in entry into the epithelial cells under in vitro

condition. However, 1 h post-intragastric infection, higher num-

bers of bacteria were found in PP of mice infected with curcumin

treated bacteria. The resistance offered by curcumin against

different antimicrobial agents might benefit the bacteria when

inside intestinal lumen where it encounters hoard of antimicrobi-

als. This may result in increased number of bacteria crossing the

mucus barrier and invading the M-cells in PP. Further, the

bacterial load was high in the different organs of the mice infected

(intragastrically or intraperitoneally) with curcumin treated S.

Typhimurium. This corroborates with the observations that

curcumin protects S. Typhimurium against the innate immune

components of the host viz. ROS, RNI and AMPs that the

bacteria encounter in the intestinal lumen, macrophages and

neutrophils that disseminate them to different systemic organs.

The schematic summary for the possible mode of action of

curcumin is given in Figure 8.

Curcumin treated Salmonella enterica serovar Typhi also shows

higher fold proliferation in Intestine 407 and RAW 264.7 cell-lines

(Supplementary Figure S4). Treatment of RAW 264.7 cells with

curcumin (20 mM) also lead to increased intracellular proliferation

of S. Typhimurium (S. A. Marathe and D. Chakravortty,

unpublished data) indicating that treatment of either pathogen

or host with curcumin enhances its pathogenicity.

Turmeric is widely used as a therapeutic as well as a food

ingredient especially in Asia [1]. Certain Southeast Asian

communities consume 1.5 g/person/day of turmeric that corre-

sponds to 0.03–0.12 g of curcumin/person/day [1]. According to

Centers for Disease Control and Prevention, the prevalence of

Salmonella infection is more in Asia, Africa and Latin America. In

addition, the prevalence of typhoid is highest in Asia. Of 2,16,000

deaths due to typhoid in the year 2000, more than 90% of

morbidity and mortality occurred in Asia [57].We hypothesize

that the high consumption of curcumin could be one of the reason

for the widespread occurrence of Salmonella infections in Asian

countries (especially in Southeast Asia). Even though curcumin has

protective action against cancer [1,42] and H.pylori infections [58]

it should be consumed with a caution especially during the

outbreak of Salmonella infections and in the endemic areas.

Curcumin is not a panacea for all! Our data is the first of its

kind which suggest that the curcumin can increase the pathoge-

nicity of Salmonella by making it more robust. Hence, during

Salmonella infection, the consumption of curcumin should be

avoided.

Supporting Information

Figure S1 Cytotoxicity of curcumin. A. MTT test for cytotox-

icity in RAW 264.7, Intestine 407 and Caco-2 cells after 24 h of

curcumin (20 mM) treatment. B. Growth curve in LB media: The

growth pattern of S. Typhimurium was checked in presence or

absence of curcumin (20 M).

Found at: doi:10.1371/journal.pone.0011511.s001 (0.07 MB

TIF)

Figure S2 Growth curve of S. Typhimurium in F-media. S.

Typhimurium grown overnight in LB, either in presence (C,

20 mM) or absence of curcumin (UT) was subcultured in F-media,

pH 5, incubated at 37uC under shaking conditions and the OD

measured at 600 nm at different time points and plotted.

Found at: doi:10.1371/journal.pone.0011511.s002 (0.03 MB TIF)

Figure S3 Incorporation of curcumin in S. Typhimurium. S.

Typhimurium grown in presence or absence of curcumin (C,

20 mM) was pelleted and then washed twice with PBS. The pellet

was dried and weighed. The dried pellet was resuspended in

DMSO to dissolve curcumin present, if any. The Absorbance of

the solution was taken at 420 nm. The weight of curcumin per

gram weight of bacterial dry pellet was analysed.

Found at: doi:10.1371/journal.pone.0011511.s003 (0.04 MB TIF)

Figure S4 Fold proliferation of S. Typhi. The cells (RAW 264.7

and Intestine 407) infected with curcumin (C, 20 mM) treated and

untreated (UT) S. Typhimurium were lysed at 2 h & 16 h post

infection. The fold replication of the bacteria from 2 h to 16 h was

calculated.

Found at: doi:10.1371/journal.pone.0011511.s004 (0.05 MB TIF)

Table S1 Primers used in this study.

Found at: doi:10.1371/journal.pone.0011511.s005 (0.04 MB

DOC)

Materials and Methods S1 Supplementary materials and

methods.

Found at: doi:10.1371/journal.pone.0011511.s006 (0.02 MB

DOC)
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