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Smg1 is aPI3K-relatedkinase (PIKK)associatedwithmultiple cellular
functions, including DNA damage responses, telomere mainte-
nance, and nonsense-mediatedmRNAdecay (NMD). NMDdegrades
transcripts that harbor premature termination codons (PTCs) as
a result of events such as mutation or alternative splicing (AS).
Recognition of PTCs during NMD requires the action of the Up-
streamframeshift proteinUpf1,whichmustfirst bephosphorylated
by Smg1. However, the physiological function of mammalian Smg1
is not known. By using a gene-trap model of Smg1 deficiency, we
show that this kinase is essential for mouse embryogenesis such
that Smg1 loss is lethal at embryonic day 8.5. High-throughput RNA
sequencing (RNA-Seq) of RNA from cells of Smg1-deficient embryos
revealed that Smg1 depletion led to pronounced accumulation of
PTC-containing splice variant transcripts from approximately 9% of
genes predicted to contain AS events capable of eliciting NMD.
Among these genes are those involved in splicing itself, as well as
genes not previously known to be subject to AS-coupled NMD,
including several involved in transcription, intracellular signaling,
membrane dynamics, cell death, and metabolism. Our results
demonstrate a critical role for Smg1 in early mouse development
and link the loss of this NMD factor to major and widespread
changes in the mammalian transcriptome.

gene trap | Smg-1

Smg1 is a member of the PI3K-related kinase (PIKK) family
of mammalian genes that includes ATM, ATR, the DNA-

dependent protein kinase catalytic subunit, and the mammalian
target of rapamycin (1, 2). These kinases play important roles in
the maintenance of genomic integrity and responses to cellular
stress. Like ATM, ATR, and the DNA-dependent protein kinase
catalytic subunit, Smg1 is linked to DNA damage responses (3, 4).
Smg1 may also function in telomere maintenance, responses to
hypoxia, and TNF-α–induced apoptosis (5–7). In vitro, Smg1 has
a critical role in the degradation of premature termination codon
(PTC)–containing transcriptsmediated by the nonsense-mediated
mRNAdecay (NMD)pathway (2, 3, 8).DuringNMD, Smg1 forms
part of the Smg1-Upf1-eRF1-eRF3 surveillance complex that as-
sociates with exon junction complexes formed on spliced mRNA
(9).This interaction induces the phosphorylation ofUpf1 by Smg1,
an indispensable step in mammalian NMD (2, 9).
NMD is a highly conserved process that removes PTC-

containing transcripts so that they are not expressed as aberrant,
and potentially deleterious, proteins (10). However, NMD also
controls transcript abundance by regulating alternative splicing
(AS) events that introduce PTCs; this process is referred to as
AS-coupled NMD (11). Microarray profiling combined with bio-
informatics has indicated that depletion of mammalian NMD
factors substantially increases levels of predicted PTC-containing
splice variants for a relatively small proportion of the total number
of genes containing AS events capable of PTC introduction (12–
16). To date, the genes associated with the greatest changes in

PTC-containing splice variant transcripts upon NMD disruption
include those encoding splicing factors or other RNA-binding/
processing proteins (17–19). Increasing evidence indicates that
AS-coupled NMD of splicing factor transcripts may play an im-
portant role in both autoregulation and cross-regulation of these
and other RNA processing proteins.
To investigate the physiological role of Smg1, we have used a

murine gene-trap model and RNA sequencing (RNA-Seq) to
study the consequences of Smg1 deficiency. Smg1-deficient mice
die by embryonic day 8.5 (E8.5) with marked developmental
defects. Cells derived from these mutants display specific changes
in their transcriptome relative to cells derived fromWTembryos at
the same developmental stage. Loss of Smg1 resulted in marked
disruption of AS-coupled NMD in transcripts from a small subset
of expressed genes. These transcripts encode splicing factors, as
well as a variety of proteins involved in biological processes not
previously known to be regulated by AS-coupled NMD.

Results
Characterization of Smg1-Deficient Embryonic Stem Cells.Using data
from the International Gene Trap Consortium (20), we identified
an embryonic stem (ES) cell line (designatedRRT449) as having a
sequence tag corresponding to a putative intronic insertion of the
pGT0Lxf exon trap construct into the Smg1 genomic locus. The
resulting Smg1 gene-trap (Smg1gt) allele was expected to be hy-
pomorphic as a result of fusionof exon 12 to the splice acceptor site
upstreamof the β-galactosidase/neomycin (β-Geo)ORF(Fig. 1A).
The gene trap construct also harbors a stop codon and a premature
polyadenylation signal that should abrogate expression of Smg1
exons 13 to 63.Only a relatively small N-terminal protein fragment
representing aa 1 to 583 of the 3,658-aa native Smg1 protein
should be produced, and this peptide should lack critical domains
of Smg1, including its catalytic domain. A single GT0Lxf insertion
within the Smg1 locus was confirmed by Southern blot analysis
(Fig. 1B), and the presence of the hypomorphic allele was con-
firmed by RT-PCR detection of the corresponding fusion tran-
script. The gene trap ES cells were then used to produce mutant
mice whose genotypes were confirmed by PCR (Fig. 1C).

Smg1 Deficiency Results in Embryonic Lethality. After backcrossing
for 10 generations into a C57BL6 congenic background, Smg1+/gt

mice were viable and fertile, and had a normal appearance and
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lifespan. Intercrosses of these Smg1+/gt mice resulted in Smg1+/+

and Smg1+/gt pups at the expected Mendelian ratio but never
Smg1gt/gt pups (Table 1). Smg1gt/gt embryos were present in utero
until E12.5, after which only empty or debris-filled conceptuses
were observed. These data indicate that Smg1 is essential for early
murine embryogenesis.
We next derived murine embryonic fibroblasts (MEFs) from

E8.5 Smg1+/+ (WT) and Smg1gt/gt (GT) embryos and transformed
them using retroviral E1A/H-rasV12 expression to generate WT
and GT transformed MEFs (tMEFs) (21). To examine Smg1 pro-
tein in these cells, we used a polyclonal antibody raised against an
epitope corresponding to aa 1,623 to 1,673 of the Smg1 protein;
this epitope is not present in the gene trap fusion peptide (aa 1–
583). Immunoblotting readily detected the expected band of the
mouse Smg1 protein (approximately 400 kDa) in WT but not GT
tMEFs (Fig. 1D). Thus, expression of full-length Smg1 is sup-
pressed by the gene trap insertion in GT tMEFs.

We also examined the phosphorylation status of Upf1, a major
target of Smg1 kinase activity. Endogenous Upf1 was immuno-
precipitated from lysates prepared from WT and GT tMEFs and
immunoblotted with an anti–phospho-S/T-Q–specific antibody.
Compared with WT, GT tMEFs showed reduced levels of an
anti–phospho-S/T-Q antibody–detected band comigrating with
Upf1 in both the lysate and anti-Upf1 immunoprecipitate (Fig.
1E). This result confirms that disruption of Smg1 expression in
Smg1gt/gt embryos reduces the phosphorylation levels of Upf1.

Developmental Defects in Smg1gt/gt Embryos. Examination of
Smg1gt/gt embryos in utero showed that they implant, gastrulate,
and begin somitogenesis before arresting at E8.5. Somites were
clearly visible in both Smg1+/+ and Smg1gt/gt unturned embryos
at E8.0, but the mutants were already smaller in size and lacked
a developed heart field and optic pit indentation (Fig. 2A). By
E10.5, the Smg1gt/gt embryos had turned but were much smaller
than E10.5 Smg1+/+ embryos and did not exhibit the advanced
brain and heart development characteristic of this stage (Fig.
2B). Specifically, the three primary brain vesicles did not form and
heart looping and the development of a multichambered heart
structure did not occur. At E12.5, Smg1gt/gt embryos showed signs
of resorption but hematopoiesis apparently did initiate as pooled
blood was detected in the thoracoabdominal region (Fig. 2C).
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Fig. 1. Generation of Smg1 gene trap mutant mice. (A) Genomic Smg1
locus (WT) and structure of the RRT449 Smg1 allele containing the pGTOLxf
exon trap (Mut). Black boxes, exons; SA, splice acceptor; Beta-geo, β-Geo
selection gene; pA, polyadenylation sequence. Arrows indicate forward
(Fwd) and reverse (Rev) primer binding sites for PCR genotyping. (B) Single
integration of pGTOLxf. Genomic DNA from Smg1+/+ and Smg1+/gt ES cells
was digested with Xba1 or Sac1 and subjected to Southern blotting to detect
pGTOLxf. (C) Embryonic genotyping: genomic DNA from Smg1+/+, Smg1+/gt,
and Smg1gt/gt embryos was subjected to PCR to detect the WT Smg1 allele
(Fwd/Rev) or the gene trap Smg1 allele (Fwd/GT-rev). (D and E) Confirmation
of Smg1 deficiency and reduced Upf1 phosphorylation. (D) Protein lysates
from embryonic fibroblasts derived from Smg1+/+ and Smg1gt/gt mice were
analyzed by Western blotting with anti-Smg1 antibody and with anti–β-
tubulin antibody as a recovery and loading control. (E) Immunoprecipitates
(IP) collected by using anti-Upf1 antibody from the cell lysates were subject
to sequential Western blotting with anti-Upf1 antibody or anti–phospho-S/T-
Q antibody to detect phospho-Upf1. β-Tubulin loading control: phospho-
specific bands in input (Left) comigrate with Upf1. For all figures, results
shown are representative of at least three independent experiments.

Table 1. Genotype distribution of progeny of Smg-1+/gt

intercrosses by gestational age

Stage +/+ +/gt gt/gt Ratio χ2 value P value

E 6.5–10.5 12 23 13 0.25/0.48/ 0.27 0.1 >0.5
E 14.5–18.5 7 6 0 0.54/0.46/0.00 7.6 <0.05
P ≥1 124 136 0 0.48/0.52/0.00 118.8 <0.001

E, embryonic day; P, postnatal day; P value determined by Student t test.
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Fig. 2. Morphology and histology of Smg1gt/gt embryos. Representative age-
matched littermate Smg1+/+ (Left) and Smg1gt/gt (Right) embryos are shown
(N = 48). (A–C) Light microscope images of whole embryos. (D–F) Sequential
sagittal sections of E12.5 embryos. Insets: Highmagnification images (×40). (A)
Unturned E8.0 embryos are partially ensheathed by the yolk sac. Extending
allantois (A) and somites (S) are visible in both genotypes, but the Smg1gt/gt

embryo lacks the enlarged heart field (H) and indented optic pits (O) visible in
the Smg1+/+ embryo. (B) E10.5 stage. The Smg1+/+ embryo shows visible de-
lineation of brain ventricles (BV), brachial arches (BA), and typical heart de-
velopment (H), whereas the developmentally arrested Smg1gt/gt embryo
shows an abnormal heart (H) and pooled blood (Bl) in the thoracoabdominal
region. (C) E12.5 stage: Smg1gt/gt embryo ismuch smaller than the control and
shows inappropriate heart (H) formation and pooled blood (Bl) in the thor-
acoabdominal region. (D) H&E staining at E12.5 shows the undeveloped tissue
architecture of an Smg1gt/gt embryo. (E) Reduced BrdU incorporation by
a Smg1gt/gt embryo indicates a lack of cell proliferation. (F) Increased TUNEL
staining by a Smg1gt/gt embryo indicatesmassive cell apoptosis. This embryo is
dead and undergoing resorption.
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However, in these embryos, no development of the vascular sys-
tem was observed.
Histological analyses of littermate Smg1+/+ and Smg1gt/gt em-

bryos at E12.5 showed that the tissue architecture was severely
disrupted in the mutants (Fig. 2D). Analyses of cell proliferation
using BrdU incorporation confirmed that Smg1gt/gt embryos were
unable to grow (Fig. 2E). Furthermore, TUNEL staining indicated
that apoptosis was massive in Smg1gt/gt embryos (Fig. 2F). Thus,
the embryonic lethality occurring in the absence of Smg1 is asso-
ciated with profound developmental defects.

Altered Expression of PTC-Containing Splice Variants in Smg1-
Deficient Cells. We used RNA-Seq to quantitatively compare
mRNA splicing and expression patterns in primary cells derived
fromSmg1+/+ and Smg1gt/gt mice. PolyA+RNAwas isolated from
primary MEFs derived from one E8.5 embryo/genotype and se-
quenced to yield approximately 56 million 50nt-reads per sample.
As described inMaterials andMethods, theseRNA-Seq reads were
mapped to a database containing more than 11,000 cassette-type
AS events, of which 2,859 had sufficient read coverage in both
genotypes to allow detection of differences in levels of alterna-
tively spliced transcripts. Based on bioinformatic analysis of ge-
nome:EST/cDNA sequence alignments (13) (Materials and
Methods), 51% of the 2,859 events were predicted to introduce
a PTC by including an exon (i.e., PTC upon inclusion) or by ex-
cluding an exon (i.e., PTC upon exclusion). We asked whether
Smg1 deficiency predominantly results in splice isoform level
changes for those events predicted to introduce aPTC, aswould be
expected upon loss of a critical NMDfactor.We grouped the 2,859
AS events according to the magnitude of the change in their per-
cent exon inclusion (%In) level between WT and GT cells, and
plotted the data according to whether the alternative splicing
events were predicted to result in the incorporation of a PTC (Fig.
3A). Notably, the AS events displaying the largest %In changes
were predominantly PTC-introducing AS events, consistent with
an important role for Smg1 in regulating the levels of a subset of
PTC-introducing alternatively spliced transcripts. For example, of
15 exons showingmore than a 30%In change betweenWTandGT
cells, 87%were PTC events, representing a significant enrichment
of these events over the 51% found in the total set (P < 0.005, χ2
test). Also consistent with a critical role for Smg1 in NMD, the
direction of %In changes in GT versus WT cells was consistently
biased toward increased accumulation of PTC-containing tran-
scripts in the mutant cells (Fig. 3B). More specifically, GT cells
showed increased %In of alternative exons that introduce a PTC
upon inclusion, and decreased %In of alternative exons that in-
troduce aPTCupon exclusion, comparedwithWTcells (P< 0.005;
Fig. 3C). Furthermore, the largest changes in %In between WT
and GT cells were observed for events that gave rise to increased
abundance of PTC-containing transcripts in GT cells.
Previous results obtained by profiling AS events following the

knockdown of Upf proteins in cell culture (13–15, 22), and from
analyses of NMD inhibition in Caenorhabditis elegans (16, 23),
indicate that PTC containing splice variant levels of only a rela-
tively small proportion of profiled genes are affected by NMD
disruption. Consistent with these data, we found that, in the ab-
sence of Smg1, approximately 9% of predicted PTC-containing
AS events displayed changes of more than 10%, and approxi-
mately 2% showed changes of more than 20%. To investigate the
functions of these NMD-regulated genes, we manually annotated
and applied Gene Ontology (GO) enrichment analysis (Materials
and Methods) to the set of genes for which there was more than
20%-In change favoring the accumulation of PTC-containing
transcripts in GT cells. As was found in previous reports on Upf
factor depletion, our subset of more than 20%In change genes
was significantly enriched for functions associated with RNA
binding and processing and included several splicing factors.
However, we also observed enrichment of genes (Flot1, Flot2)

that function in the formation of lipid rafts/caveolae, and addi-
tional genes (not enriched) that function in membrane dynamics
and signaling (Zyx, Cask), cell death (Bat3, Trim24), metabolism
(Mgea5, Gls), and transcriptional regulation (CCAR1, Gtf2f2;
Table 2, Dataset S1, and Table S1). Transcripts encoding three
other transcription factors (Maz, Nfyb/NF-Y, Hsf1) were also
subject to AS-coupled NMD, although they displayed a lower de-
gree of %In change in GT versus WT cells. Thus, Smg1-dependent
AS-coupled NMD appears to regulate the expression of func-
tionally diverse genes, including splicing and transcription factors
that may have additional secondary effects on gene expression
(as detailed later).
To assess the accuracy of the RNA-Seq read-predicted changes

in splice variant levels, and to confirm that Smg1 regulates levels
of PTC-containing splice variants, we performed semiquantitative
RT-PCR assays on a representative subset of the genes we ob-
served to produce NMD-regulated PTC-containing transcripts.
All (N = 14) the tested events predicted by RNA-Seq to result in
increased levels of PTC-containing transcripts in GT versus WT
cells were validated by the RT-PCR assays (Fig. 4). Furthermore,
for the analyzed events, quantification of%In changes detected in
the RT-PCR assays correlated well with the changes quantified
using the RNA-Seq data (Pearson r = 0.91; P < 0.0001; Fig. S1).
These results validate the accuracy of our RNA-Seq–based pre-
dictions of Smg1-dependent changes in PTC-containing splice
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variant levels, and support the conclusion that the expression of
a wider spectrum of gene functions is regulated by NMD than
previously appreciated.

Altered Total mRNA Levels in the Transcriptome of Smg1-Deficient
Cells. We also used our RNA-Seq data to assess Smg1-dependent
changes to total mRNA levels that might occur in addition to
changes to splice variant levels. To this end, we searched for genes
that displayed amore than twofold change inmRNAexpression in
GT versus WT cells. These changes were measured using the
average read counts per kb after normalizing for overall read
count differences between the genotypes. Remarkably, 19% (n=
3,396) of profiled genes displayed a more than twofold difference
in total transcript levels, and 2% (n = 366) of genes showed
a more than fivefold change. The genes displaying more than
fivefold changes were highly enriched in the GO categories re-
lating to development, differentiation, muscle, cytoskeleton,

ECM, and calcium binding (Table S2 and Dataset S2). Thus,
Smg1 directly and likely indirectly affects total mRNA levels
of genes that contribute to embryogenesis. The drastic develop-
mental defects seen in the Smg1-deficient mouse may therefore
be a result of widespread changes in the transcriptome.

Discussion
NMD is a critical surveillance process that removes potentially
deleterious transcripts arising from mutations and errors during
gene expression. The importance of NMD has led to efforts to
develop therapeutic agents that modulate this process, especially
whereby suppression of a disease-related mutation that normally
triggers NMD permits translation read-through and partial re-
storation of critical protein products (24, 25). NMD also plays an
important role in the posttranscriptional regulation of numerous
RNA binding and processing factors (14, 15, 18, 26). In partic-
ular, AS-coupled NMD is known to function in the autoreg-
ulation of splicing factors (17, 19). In this study, we have focused
on defining the physiological role of the NMD factor Smg1, a
member of the PIKK family that activates the essential NMD
factor Upf1.
The gene trap ES cell line used in this study had a single in-

tegration in the Smg1 locus that suppressed Smg1 protein pro-
duction andNMD. TransformedMEFs derived fromGT embryos
were deficient in Smg1 protein production and Upf1 phosphory-
lation. Whereas previous results have indicated that Smg1
knockdown results in increased sensitivity to TNF-α− or ionizing
irradiation-induced apoptosis (4, 7), similar treatments did not
result in a significant difference in the rate of apoptosis in GT
versusWT tMEFs. This could be a result of differences in cell type,
the mode of Smg1 depletion, and/or the transformation process
(primary MEFs could not be collected in sufficient quantity to
perform these experiments in the present study). Nevertheless,
Smg1gt/gt embryos failed to reach term, indicating that one ormore
Smg1-dependent activities is essential for development. The tim-
ing of the gestational lethality in Smg1gt/gt embryos indicated that
Smg1 is dispensable for implantation and gastrulation (E6.5) but is
critical thereafter. Although the yolk sacs of Smg1gt/gt embryos ap-
peared normal and hematopoiesis was evident, a developed heart
field was conspicuously absent in Smg1gt/gt embryos after E8.0.
Unsuccessful expansion and differentiation of endoderm into the
lining of the heart and rudimentary blood vessels is likely the un-
derlying cause of the developmental arrest of the Smg1gt/gt em-
bryos at or shortly before E8.5.
The role of NMD factors in development has been investigated

in other organisms, including C. elegans, Drosophila melanogaster
and Danio Rerio. Taken together with our results, a picture is
emerging in which NMD factors play distinct developmental roles
in different species. For example, in C. elegans, the Smg1 homo-
logue is important for NMD but dispensable for survival (27). In
D.melanogaster andD. rerio, the NMD factors Upf1 andUpf2, but
not Smg1, are necessary for development (28, 29). In mice, de-
ficiency for Upf1 or Upf2 abolishes NMD and results in early
embryonic lethality during the periimplantation period (30, 31).
Our observation of the lethality of Smg1 gene trap embryos is
therefore consistent with a requirement for NMD early during
mammalian embryogenesis. The slightly later developmental ar-
rest observed in our Smg1gt/gt mice compared with Upf protein–
deficient embryos could reflect either differential requirements
for these factors, or some activity of the hypomorphic Smg1 allele
in the gene trap line. Nevertheless, the extensive effects of Smg1
deficiency on the transcriptomes of fibroblasts from the mutant
embryos indicates that the developmental failure of Smg1gt/gt mice
is most likely a result of disruption of NMD-dependent regulation
of many essential genes.
Our comparison of the transcriptomes of WT and GT fibroblasts

demonstrated that splicing factor genes are major targets of regu-
lation via AS-coupled NMD in vivo. These results are consistent

Table 2. Genes regulated by Smg1-dependent AS coupled NMD

Function Gene

Splicing Sfrs10, Hnrnpa2b1, Srrm1, U2af1,
Hnrnph1, Sf3b1, Sf3b3, Rbm5,
Sf1, Sfrs11

Membrane dynamics/
signaling

Zyx, Flot1, Flot2, Snx13, Wdfy2, Cask,
Camk2g, Pigq

Cell Death/DNA repair Alkbh3, Nbr1, Trim24, Bat3
Regulation of transcription Gtf2f2, Ccar1
Metabolism Mgea5, Gls
Other Rnf149, Nktr, Slc38a2, Hnrpdl
Unknown Tmem183a, 1810055E12Rik,

Tatdn1, Acbd5

Manual functional annotation of genes with AS events observed to have
the largest degree of NMD regulation (>20%In change favoring accumula-
tion of PTC transcripts in GT primary MEF). For complete list, see Dataset S1.
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with, and extend, previous microarray profiling and computational
studies investigating PTC-containing splice variants targeted by
Upf proteins (13–15, 22). Among the splicing factor genes displaying
the greatest degree of Smg1-dependent AS-coupled NMD regu-
lation in our data are Tra2b/Sfrs10, hnRNPA2/Hnrpa2b1, SRm160/
Srrm1, U2AF35/U2af1, Sap155/Sf3b1, Sap130/Sf3b3, Luca15/
Rbm5, Sf1, and Srsf11/Sfrs11. Five of these genes have been pre-
viously reported as AS-coupled NMD targets: Tra2b/Sfrs10 and
SRm160/Srrm1 inmouse N2A cells (15) and Sap155/Sf3b1, Sf1, and
Srsf11/Sfrs11 in HeLa cells (14). Some AS-coupled NMD events
detected previously in HeLa or N2A cells upon knockdown of Upf
proteins were not detected in the Smg1-deficient MEFs, despite the
availability of sufficient RNA-Seq read coverage to detect these
events. This could have resulted from one or more differences be-
tween the previous and present experiments including analysis plat-
form, cell type, species, context (i.e., developmental stage), and/or
factor dependencies. Strikingly, in our study, we found that genes
with a variety of nonsplicing functions were also regulated by AS-
coupled NMD, including many associated with intracellular signal-
ing,membrane dynamics, cell death,DNA repair, transcriptional re-
gulation, and metabolism. These results demonstrate that, in vivo,
AS-coupledNMD controls genes from diverse functional categories
in addition to those involved in RNA processing.
Our work has also revealed a role for Smg1 in regulating total

mRNA levels of genes whose loss of function would be expected
to result in the phenotypic defects of the mutant embryos. For
example, genes expressed at more than 15-fold lower levels in GT
versus WT cells included several that are crucial for embryonic
viability: Myl1, Ptprb, Actc1, and Smyd1. Although the demise of
Smg1-deficient embryos cannot be attributed to the alteration of
any one particular transcript or set of transcripts, we hypothesize
that disruption of the AS-coupled NMD of a specific subset of
genes involved in the regulation of splicing and transcription in
turn causes widespread changes in mRNA expression levels in
Smg1gt/gt embryos. In particular, if loss of Smg1 alters AS-cou-
pled NMD regulation of one (or more) transcription factors, the
transcriptional regulation of many other genes with important
roles in embryogenesis could be disrupted. We propose that the
changes in gene regulation at the splicing and transcriptional
levels induced by Smg1 deficiency likely culminated in the ob-
served delayed development and death of the mutant embryos
in utero.
Our study indicates that approximately 9% of genes with pre-

dicted PTC-introducing AS events were subject to pronounced
regulation by NMD, in line with previous reports that most pre-
dicted PTC-containing transcripts are not regulated by NMD (see
Results). Although this small percentage could in part reflect the
sensitivity of our RNA-Seq analysis, it nevertheless supports the
view that the majority of predicted PTC-containing AS transcripts
are not bona fide NMD substrates. Future studies are warranted
to examine how AS and NMD are coordinated in vivo to control
transcript abundance, and to determine how this regulation
influences normal development and pathophysiology.

Materials and Methods
Generation of Smg1gt/gt Mice and Cells. Heterozygous gene trap ES cells
(RRT449; Bay Genomics) of the 129Ola background were injected into blas-
tocysts from C57BL/6J mice (Jackson Laboratories). Blastocysts were im-
planted into pseudopregnant females and resulting chimeric agouti pups
with successful germline transmission of the gene trap allele were back-
crossed to C57BL/6J for 10 generations. Mouse embryonic fibroblasts were
derived from E8.5 embryos as described (21) and cultured in DMEM sup-
plemented with 10% FCS.

PCR Genotyping. Genotypes were determined using the following primers
(Fig. 1A): WT Smg1 allele (forward, TTGCCAGACTTGTGGTACCGATTAT; re-
verse, CCACCTCTCAGAGCCCTAGCATTTA); Smg1 gene trap allele had the
same forwardprimer plus GT-reverseGGTGTTTTAAGTGTACCCACGGTCA. PCR
conditions were 40 cycles at 94 °C for 45 s, 61 °C for 30 s, and 72 °C for 1 min.

Mendelian ratios were evaluated using the χ2 test, and P values for intergroup
comparisons were determined using the Student t test.

Semiquantitative RT-PCR of NMD-Regulated AS. Primers were designed as
previously described (14) and are listed in Table S3. RT-PCR was performed by
using Qiagen OneStep RT-PCR kit plus RNA extracted from primary embry-
onic fibroblasts using the Qiagen RNeasy kit according to the manufacturer’s
instructions. RT-PCR conditions were 30 cycles at 94 °C for 40 s, 60 °C for 40 s,
and 72 °C for 1 min. Densitometry was performed by using the Bio-Rad Mo-
lecular Imager Gel Doc XR+ system.

Immunoprecipitation and Western Blotting. Cells were lysed with RIPA buffer
(Western blot; 150 mM NaCl, 1% Nonidet P-40, 0.5% deoxycholic acid, 0.1%
SDS, 50 mM Tris, pH 8.0, plus 10 μM sodium orthovanadate (Sigma) or
CHAPS buffer for immunoprecipitation (100 mM NaCl, 1mM MgCl2, 0.5%
CHAPS, 10 mM Tris, pH 7.5), along with phosSTOP and Protease Inhibitor
Mixture (Roche). Endogenous Upf1 immunoprecipitated using 8 μg of
rabbit anti-RENT1 antibody (A301-902A; Bethyl) or control rabbit IgG, cross-
linked to Protein G–Sepharose beads (GE Healthcare). Anti–phospho-(Ser/Thr)
no. 2851 (Cell Signaling), anti-RENT1 (as described), anti-Smg1 (A300-393A;
Bethyl), andanti–β-tubulin (cloneAA2;Upstate)wereused forWesternblotting
according to standard techniques. Proteins were visualized using fluorescently
labeled secondary antibodies and an Odyssey Infrared Imaging System (Li-
Cor Biosciences).

Histology. Embryos were fixed in 4% paraformaldehyde (24–48 h at 4 °C),
embedded in paraffin, serially sectioned (5–7 μm), and stained with H&E
according to standard methods. Whole-embryo photography was performed
on previously fixed samples. For cell proliferation assays, pregnant females
were injected intraperitoneally with 300 μL BrdU (10 mg/mL; cat. no. 10 280
879 001; Roche) 35 min before dissection to isolate embryos. Paraffin sections
of fixed embryos were processed to detect BrdU as described (32). For apo-
ptosis, TUNEL staining was performed using an in situ cell death detection kit
(cat. no. 11684 817 910; Roche) following the manufacturer’s instructions.
Images were captured on a Leica MZ16F (whole-mount embryos) or a Leica
DM2500 stereomicroscope (tissue sections).

mRNA Sequencing. Illumina mRNA-Seq reads (50 nt) were first aligned to
mouse genomic sequence [National Center for Biotechnology Information
(NCBI) Genome Assembly build 37] using Bowtie (33), and reads mapping to
multiple locations were removed. The remaining reads were mapped to
RefSeq transcripts and a database of mouse splicing junctions as previously
described (34), allowing as many as two mismatches/indels (insertions or
deletions). The database comprised 11,423 mouse AS events identified by
aligning mouse mRNA/EST sequences (NCBI UniGene build 169) to genomic
sequence (NCBI Genome Assembly build 37) as described (13, 35). Searches
for PTCs in AS events were performed as described (13).

GO Enrichment Profiling. GO profiling was used to identify statistically over-
represented GO terms in our datasets. Briefly, Mouse Genome Informatics
gene lists for NMD-AS events (>20%In) and mRNA expression (more than 5-
fold) were profiled using corresponding full list as background with the
GOstat program (36). False discovery rate (Benjamini) correction for multiple
testing was used. Level 4 and higher GO hierarchy reported and the highest
GOterm was used for redundant returns. P values were determined by Fisher
exact test.

Calculations and Statistics. Alternative exon inclusion levels (%In) were cal-
culated as previously described (34). A total of 2,859 AS events with sufficient
read coverage for confident prediction of alternative splicing levels (criteria
described in ref. 34) were used for further analysis. The significance of dif-
ferences in %In between WT and GT for PTC upon inclusion, PTC upon ex-
clusion, and no PTC was calculated using the Wilcoxon rank-sum test. The
significance of differences in PTC enrichment in AS events was determined
by the χ2 test.
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