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One of the major goals of proteomics is the comprehensive and
accurate description of a proteome. Shotgun proteomics, the
method of choice for the analysis of complex protein mixtures, re-
quires that experimentally observed peptides are mapped back to
the proteins they were derived from. This process is also known as
protein inference. We present Markovian Inference of Proteins and
Gene Models (MIPGEM), a statistical model based on clearly stated
assumptions to address the problem of protein and gene model
inference for shotgun proteomics data. In particular, we are dealing
with dependencies among peptides and proteins using a Marko-
vian assumption on k-partite graphs. We are also addressing the
problems of shared peptides and ambiguous proteins by scoring
the encoding gene models. Empirical results on two control data-
sets with synthetic mixtures of proteins and on complex protein
samples of Saccharomyces cerevisiae, Drosophila melanogaster,
and Arabidopsis thaliana suggest that the results with MIPGEM
are competitive with existing tools for protein inference.

Proteomics, the comprehensive and quantitative analysis of
proteins that are expressed in a given organ, tissue, or cell line,

provides unique insights into biological systems that cannot be
provided by genomics or transcriptomics approaches (1).

With the advent of shotgun proteomics [gel-free liquid chro-
matography tandem mass spectrometry (LC-MS/MS)] (2), the
number of distinct proteins that could be identified from complex
samples has significantly increased compared to more traditional
gel-based approaches. Shotgun proteomics has become the meth-
od of choice for the analysis of complex protein mixtures (1).
Briefly, proteins are extracted from their biological source and
enzymatically digested into peptides (usually using trypsin). The
peptides are then separated by liquid chromatography and
analyzed by tandem mass spectrometry. Peptides are thus the
elementary unit of measure in LC-MS/MS (from now on, we as-
sume that protein implies protein sequence and peptide implies
peptide sequence).

In this paper, we focus on a probabilistic model to address the
problem of protein inference. The peptide identifications, i.e., the
(posterior) probabilities that a given peptide is present in a
sample of interest (or a corresponding discriminant score) are
the input for our statistical model and algorithm for inferring pos-
terior probabilities that individual proteins are present in the
sample. As one important difference to previous solutions, the
Markovian Inference of Proteins and Gene Models (MIPGEM)
also allows to infer the presence or absence of gene models
instead of being restricted to proteins. This is a useful extension
for the integration of proteomics and transcriptomics data.

Earlier proposals for protein inference models include refs.
3–14. A brief description of some of these methods can be found
in ref. 11.

The main elements characterizing our approach include the
following: (i) We take uncertainties related to the peptide-spec-
trum matching process into account by modeling the peptide
scores as random quantities. As a consequence, unknown model
parameters are introduced for the protein inference (when using
peptide probabilities or scores as input). Instead of using global
parameters, we estimate them for each dataset by using the max-

imum likelihood principle. (ii) Propagation of uncertainties in
our framework is fully transparent. We use proper probability cal-
culation in a Markovian-type model for k-partite graphs without
any ad hoc adjustments. The underlying mathematical assump-
tions can be written in a concise and precise form. Our modeling
framework enables reproducible results (including a qualitative
understanding why they arise), due to its coherency andmathema-
tical consistency. Importantly, it allows us to provide a fine-grained
ranking of the identified proteins. (iii) We address the problem of
ambiguous proteins by inferring probabilities of their encoding
gene models being present. This allows for a clear interpretation
at the gene model level.

Because the protein inference step is a likely source of signifi-
cant errors in the proteomics literature (15), we believe that a
coherent and proper modeling framework alone is an important
contribution to the area of protein inference. Furthermore, none
of the existing approaches infer probabilities for gene models and
our first empirical results suggest that our protein inference is
competitive with, for example, ProteinProphet (5).

Main Sources of Error in Protein Inference
Generally, there are two major sources of errors in protein infer-
ence, namely, the low quality of peptide scores or probabilities
(16) and the erroneous probability propagation from identified
peptides to protein probabilities.

In contrast to the widely used ProteinProphet (5), we model
peptide probabilities or scores as random quantities in order to
deal with the potentially low quality of peptide scores. This allows
us to account for uncertainty and noise in these scores. It is mark-
edly different from assuming that peptide scores are correct and
then inferring protein probabilities from peptide scores using
probability calculus only (4, 5, 7, 8, 11). Note that readjusting
the peptide scores by some weighting procedure is not the same
as treating them as random quantities. Other methods that model
the input for protein inference, namely, the peptide scores, as
random variables include refs. 10 and 14. Differences between
our model and these two approaches are discussed in more detail
in SI Comparison with Other Protein Inference Models.

Regarding the erroneous probability propagation, due to the
complexity of the problem, current approaches either involve
oversimplifying stochastic independence assumptions or alterna-
tively employ ad hoc corrections. We, on the other hand, make
some Markovian-type assumptions on a k-partite graph model
that we think are much more consistent with the reality than what
has been previously considered.
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Bipartite Graph Model for Peptides and Proteins
The goal of our model is to compute the probability of a protein
being present given the probabilities or scores of the observed
peptides. We do not address here the problem of peptide-spec-
trum matching. Instead, we simply consider the assigned peptides
and their scores as given. In the examples, we work with scores
from PeptideProphet (17) [based on a SEQUEST (18) search],
although the model is more generally applicable.

We denote by Zj ¼ 1 or 0 whether a protein j is present or
absent in the sample of interest, respectively, and denote by pi
the peptide probability or score for the presence of peptide i.
Furthermore, let I be the index set of all peptides. Using this
notation, we want to infer P½Zj ¼ 1jfpi; i ∈ Ig�.

MIPGEM builds on probabilities or scores of identified pep-
tides fpi; i ∈ Ig as part of the input. These scores are modeled as
random quantities. Furthermore, the list of candidate proteins
denoted by fj; j ∈ Jg is generated from the identified peptides
and the respective protein sequence database. A protein is in this
list if (i) at least one of the experimentally identified peptides
matches to the protein and (ii) the matching peptides of the
protein cannot be explained (matched) by other proteins having
larger sets of peptides (see SI Assembling the Bipartite Graph).
This approach is based on the idea of providing a minimal graph
explaining all peptides (exception: proteins matching to the exact
same set of peptides are all represented in the graph). The effect
of the pruning procedure is discussed in SI Assembling the
Bipartite Graph. The data are then represented by a bipartite
graph (as illustrated in Fig. 1). Each protein node represents a
unique protein sequence. There is an edge between two nodes
if and only if the peptide sequence is part of the protein sequence
(inclusion).

Tripartite Graph Model to Include Gene Models. A gene model may
encode for more than one protein. The sequences of these alter-
native splice variants might be very similar. Thus, based on the
experimental peptide evidence, it is often not possible to distin-
guish which of them are in the sample and which are not (i.e.,
ambiguous protein identifications). In this case, it is useful to
compute the probability of the encoding gene model (GM),
i.e., the probability that at least one protein encoded for by
the gene model is present in the sample.

In contrast to methods such as ProteinProphet (5) and
MSBayesPro (12), MIPGEM includes, in addition to the relation-
ship between peptides and proteins, the connection between gene
models and proteins (13). It can thus be seen as a special form of
a tripartite graph (see Fig. 2 for some examples) and allows us to
compute gene model probabilities. This extension is useful for a
subsequent integration of transcriptomics data, the majority
of which are currently still reported at the gene model level.
MIPGEM provides gene model scores automatically by using
standard probability calculus as follows.

A gene model is present if at least one of its proteins is in the
sample

P½GMpresentjfpi; i ∈ Ig�
¼ P½at least one protein of GMpresentjfpi; i ∈ Ig�
¼ 1 − P½no protein of GMpresentjfpi; i ∈ Ig�:

The latter quantity can be expressed in terms of the conditional
distribution of peptides given the proteins and of the protein
priors. Further details are given in SI Gene Model Probabilities.

Independence Between the Connected Components. The next few
sections will explain our model for protein inference, and we will
thus concentrate on the bipartite graph as introduced in Fig. 1.
Because the peptide probabilities or scores are considered to
be realizations of random variables, we need to model their prob-
ability distribution. To do so, it is assumed that different connected
components of the bipartite graph are independent. This assump-
tion is reasonable, because we believe that peptides from the same
proteins are dependent (and even more generally, peptides from
the same connected component are potentially dependent),
but peptides from completely different proteins which occur in
different connected components are independent. The probability
distribution of the peptide scores can then be modeled as

Fig. 1. Example of two connected components. The first one has two
peptides (i ∈ I1 ¼ f1; 2g) and one protein (j ∈ J1 ¼ f1g). The second one
holds two peptides (i ∈ I2 ¼ f3; 4g) and two proteins (j ∈ J2 ¼ f2; 3g).

A C

B D

Fig. 2. Selected examples of connected components of the tripartite
graph with shared peptides from the A. thaliana dataset illustrate the
usefulness of computing gene model probabilities. The labels of the peptides
are their transformed PeptideProphet scores. (A) All protein sequences
(AT4G26910.1, AT4G26910.2, and AT4G26910.3) get a score equal to their
“prior” value (estimated to be 0.85 for this dataset). Nevertheless, the score
of the gene model (AT4G26910) is large, and we can, at least, affirm that the
gene model is probably represented in the sample by at least one protein
sequence. (B) The protein on the bottom (AT4G37930.1) is clearly identified.
The other two proteins (AT5G26780.1 and AT5G26780.2) are ambiguous.
However, the two gene models (AT4G37930 and AT5G26780) are identified
equally well. (C) ProteinProphet cannot distinguish between these three pro-
teins (from bottom to top: AT2G42500.1, AT2G42500.2, and AT3G58500.1)
and yields a group probability of one that at least one of these sequences
is in the sample. With our computed gene model probabilities, we can say
that it is more probable that a protein encoded for by gene model
AT2G42500 is in the sample than one encoded for by gene model
AT3G58500. (D) ProteinProphet identifies both proteins (AT3G05420.2 and
AT3G05420.1) in separate groups. In contrast, MIPGEM will readily compute
a score for the gene model encoding both these protein splice isoforms. This
example is discussed in more detail in SI Additional Figures and Tables.
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pðfpi; i ∈ IgÞ ¼ pðfpi; i ∈ I1g ∩ ⋯ ∩ fpi; i ∈ IRgÞ

¼
YR
r¼1

pðfpi; i ∈ IrgÞ; [1]

whereIr is the set of peptides of the rth connected component of
the bipartite graph.

Furthermore, the factors in the product in Eq. 1 can be rewrit-
ten as

pðfpi; i ∈ IrgÞ ¼ ∑
zj∈f0;1g
j∈RðIr Þ

½pðfpi; i ∈ Irgjfzj; j ∈ RðIrÞgÞ

· pðfzj; j ∈ RðIrÞgÞ�; [2]

whereRðIrÞ ¼ fj; j ∈ J and there exists an edge between i and j
for at least one i ∈ Irg is the range of Ir . In other words, all the
proteins j ∈ J having an edge to at least one of the peptides
i ∈ Ir belong to RðIrÞ.

The sum in the Eq. 2 goes over a multiindex: all the possible
values for zj (0 for absent or 1 for present in the sample) for all the
proteins j ∈ RðIrÞ.

Markovian-Type Assumption. The factors in Eq. 2 can be simplified
by further assumptions. Assume that the peptides belonging to
the same connected component Ir (with r ¼ 1;2;…;R) are inde-
pendent given their matching proteins in the range RðIrÞ. This
assumption implies that dependencies among peptides are exclu-
sively due to their common proteins. Furthermore, we make a
Markovian assumption (for graphical models) which states that
only the neighboring proteins matter in the conditional distribu-
tion for the peptides. The first factor in the sum of Eq. 2 can then
be written as

pðfpi; i ∈ Irgjfzj; j ∈ RðIrÞgÞ ¼
Y
i∈Ir

pðpijfzj; j ∈ NeðiÞgÞ; [3]

where NeðiÞ are the neighbors of the peptide i, that is, the set of
all the proteins j having an edge to the peptide i.

The second factor in the Eq. 2 can be simplified by assuming
that the prior occurrence of a protein is independent of the
presence of other proteins:

pðfzj; j ∈ RðIrÞgÞ ¼
Y

j∈RðIrÞ
pðzjÞ: [4]

In principle, a priori knowledge about dependencies among
proteins could be implemented. Formulating such prior informa-
tion is nontrivial, but it would conceptually fit into our modeling
framework as well.

ProbabilityMixture Distribution for the Peptide Scores.Next, a model
for the probability distribution of the peptide scores given the
neighboring proteins is introduced. Constructing a good model
for this task is rather subjective and more data dependent than
the previous modeling steps (e.g., depending whether peptide
scores are probabilities or some other discriminating measure).
We believe that further extensions are possible at this modeling
stage to improve our protein identification approach.

We worked on peptide probabilities (or normalized scores),
e.g., from PeptideProphet (17), taking values in the interval ð0;1�.
A mapping is used to obtain scores defined on the whole real line.
The logit function is used for this task:

logitðsÞ ¼ log
�

s
1 − s

�
; s ∈ ð0;1Þ:

Some of the peptide probabilities from the used experimental
data are equal to one. This is a problem in our implementation
since logitð1Þ is infinity. To avoid this problem, all the peptide
scores are rescaled by a factor of 0.99 before the logit transform
is applied. When writing pi in the remainder of the paper, we
always refer to the rescaled and logit-transformed score.

Our model assumes two different probability distributions
depending on the presence of proteins (the latter is treated as
an unobserved hidden variable and hence we are considering a
mixture model). If none of the neighboring proteins of a peptide
i are present (zj ¼ 0 for all j ∈ NeðiÞ), a uniform distribution with
the density function f 0ð·Þ is assumed. A piecewise linear density
f 1ð·Þ is assumed if at least one of the neighboring proteins is
present.

Hence, the mixture model is

pðpijfzj; j ∈ NeðiÞgÞ ∼

8>>><
>>>:

1
u−l if ∑

j∈NeðiÞ
zj ¼ 0

f 1ðpiÞ if ∑
j∈NeðiÞ

zj > 0
[5]

with

f 1ðxÞ ¼
�
b1ðx − lÞ l ≤ x ≤ m
ðb1 þ b2Þðx −mÞ þ b1ðm − lÞ m < x ≤ u

; [6]

where b1 > 0, b2 ≥ 0 are unknown parameters and l ¼ miniðpiÞ,
m ¼ medianiðpiÞ, and u ¼ maxiðpiÞ. The density function f 1ðxÞ
must fulfill

Z
u

l
f 1ðxÞdx ¼ 1. [7]

One of the parameters b1 or b2 has to be estimated. The second
one can then be computed with the constraint on the integral.

The form of the densities f 0ð·Þ and f 1ð·Þ were chosen empiri-
cally based on the logit-transformed PeptideProphet scores. For
other scores, these functions may have to be adapted.

At this point, the model for the probability distribution of the
peptide scores can be summarized by the following equation:

pðfpi; i ∈ IrgÞ ¼ ∑
zj∈f0;1g
j∈RðIr Þ

Y
i∈Ir

pðpijfzj; j ∈ NeðiÞgÞ ·
Y

j∈RðIrÞ
pðzjÞ;

[8]

where pðpijfzj; j ∈ NeðiÞgÞ is defined in Eq. 5.

Shared Peptides. A shared peptide matches to two or more
proteins. Shared peptides occur most of the time because of
homologous proteins, splice variants, or redundant entries in
the protein sequence database (16). As a consequence of our
modeling assumptions, shared peptides contribute to increase
or decrease (relative to single peptides) the probability for pre-
sence of a protein, depending on whether the peptide scores are
above or below the median of all peptide scores. A conceptual
example is given in SI Shared Peptides.

Summary of the Assumptions. The main assumptions in our model
are as follows:

1. The peptide probabilities or scores are modeled as random
quantities. This allows one to account for statistical uncer-
tainty and variability.

2. The connected components of the bipartite graph for proteins
and peptides induce independence between peptide scores
from different connected components. However, peptides
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within the same connected component can be strongly de-
pendent.

3. Peptide scores are independent given their neighboring pro-
teins. This is a Markovian assumption (on graphical models)
which encompasses a broad class of interesting dependence
structures [see, for example, Lauritzen (19)].

4. The prior probability that a protein is present or not in the
sample is independent of the presence of the other proteins.
This simplifies the specification of a prior distribution: Exten-
sions to more general prior distributions are conceptually
straightforward but the computation for fitting the model
becomes more expensive.
However, this does not mean that proteins are independent.
In the model, the dependence among proteins within the same
connected component is still present. We only assume inde-
pendent priors as starting values to make the computations
easier.

5. The model for peptide scores is a mixture model. As such, it
belongs to a popular class of statistical models for inferring
presence or absence of an unobserved hidden variable (i.e.,
a protein in our context).

Maximum Likelihood Estimation and Computation. One of the para-
meters b1, b2 in Eq. 6 has to be estimated from the data of the
current sample of interest. We use maximum likelihood estima-
tion for this task. More details can be found in SI Log-Likelihood.

Ideally, the prior probabilities pðzjÞ (see formula 8) are related
to some biological information and there would be a specific
value pðzjÞ for each protein j. Because this biological knowledge
is often missing, we simplify to the point where it is assumed that
all the proteins have the same prior probability of being in the
sample, i.e., pðzjÞ≡ π for all j. Such a parameter π can then be
estimated from the data. Using such an approach, the parameter
π is not a prior probability from a Bayesian statistics framework
anymore. More details can be found in SI Log-Likelihood.

Computation of the Protein Probabilities
Formulas 1 and 8 describe how to calculate the distribution
pðfpi; i ∈ IgÞ of the peptide scores. The goal here is to compute
the probability that a protein j is present given the peptide scores:

P½Zj ¼ 1jfpi; i ∈ Ig� ¼ Að1Þ
Að0Þ þ Að1Þ [9]

with

AðzÞ ¼ ∑
zk∈f0;1g

k∈RðIdðjÞ Þ
k≠j

½pðfpi; i ∈ IdðjÞgjZj ¼ z;Zk ¼ zkÞ · pðZj ¼ zÞ

·
Y
k≠j

k∈RðIdðjÞÞ

pðZk ¼ zkÞ�; [10]

where dðjÞ is the index of the connected component holding
the protein j. A derivation of formula 10 and more details about
the computations for AðzÞ are given in SI Protein Probabilities.

The value of P½Zj ¼ 1jfpi; i ∈ Ig� in Eq. 9 involves the esti-
mated parameters b̂1, b̂2 and the protein priors.

The computational effort for large connected components
is considerable and needs a workaround. Details are given in
SI Sampling for Large Connected Components.

Validation of the Model
We compared our results to the protein scores computed by
ProteinProphet (5) and MSBayesPro (12) to evaluate MIPGEM.
To be able to compare our results to the output from other meth-
ods, there are two issues to be addressed. The first one concerns

the accounting of contaminants, whereas the second one is spe-
cific to ProteinProphet.

Maximize Data Quality Prior to Protein Inference. In particular for
large real-world datasets, it is important to assess how many false
positive identifications are observed.

Because the peptide-spectrum matching process will only
produce true positive assignments if the corresponding protein
is present in the database, contaminants that can get added to
the protein mixture during the experimental handling such as
human keratins and others, should ideally be added to the data-
base. Due to their abundance, they otherwise could lead to false
positive peptide and protein identifications (20).

This has an important consequence for the interpretation of
the results. Identified contaminants could be counted as true
positives. On the other hand, a missed contaminant should defi-
nitely not be counted as a false negative. Hence, there is a risk of
getting true positives for “free” while not counting the eventual
false negatives. To achieve a more objective accounting, we
decided not to consider the contaminants, neither in our model
nor in the reference methods.

The same sets of true proteins and contaminants were used to
interpret the results from all methods. For the two synthetic
mixtures, lists with the corresponding proteins are given in
SI Additional Information About the Datasets.

ProteinProphet. The output from ProteinProphet (5) is structured
in groups. Each group gets a probability that at least one of the
proteins in the group is present in the sample. Furthermore, a
probability for each distinguishable protein is computed. For
ambiguous proteins, the computed number corresponds to the
probability of seeing at least one of these ambiguous proteins.
If the sequences of all ambiguous protein accessions are identical,
we consider the sequence as unambiguously identified.

From ProteinProphet’s output we consider all unambiguously
identified proteins. We make sure to only keep sequences having
at least one contributing peptide (after the reallocation of
peptides performed by this method). When drawing the ROC
(receiver operating characteristic) curves about true and false
positive findings, we consider two scenarios: (i) take all these se-
quences and consider the protein probabilities (labeled with
“ProteinProphet—prot prob”) and (ii) discard proteins belonging
to a group and use group probabilities for groups identifying a
single protein sequence (labeled with “ProteinProphet—group
prob”). The differences in the plots between these two interpre-
tations are very small.

Because of ProteinProphet’s nature to group proteins that can-
not be distinguished based on the experimental peptide evidence,
we can only take into consideration unambiguously identified
proteins when comparing our results to the output of the two re-
ference methods. However, note that in MIPGEM each protein
sequence gets its own score. Each protein sequence appears only
once in our graph, even if it corresponds to several accession
numbers. We do no further grouping of ambiguous sequences,
but compute a probability for each of them. Ambiguous proteins
then get the same score. This score automatically decreases with
the number of ambiguous proteins (for the same set of peptides).
This is a major difference to ProteinProphet where ambiguous
proteins are simply “put” together, and the user only gets a prob-
ability of at least one of these proteins being in the sample. We
think that it is much better to report the probabilities for each
separate protein instead of such a group probability, which
may lead to misinterpretations of the results.

MSBayesPro. The rules for a protein to be considered as identified
in MSBayesPro (12) are discussed in SI Comparison with Other
Protein Inference Models.
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General Remarks.We consider, in general, distinct peptides, even if
identified by several mass spectra similarly to ref. 7. If the peptide
sequences are the same, but the charge states differ, we consider a
separate instance of the peptide for each of the detected charge
states. Only peptides with a PeptideProphet score larger than 0.9
are used for the protein inference. The sensitivity of MIPGEM’s
output with respect to the chosen cutoff for the peptide scores is
discussed in SI Additional Figures and Tables.

The two synthetic samples, the mixture of 18 proteins (21) and
Sigma49 (9, 22), are “toy” datasets of low protein complexity. It is
commonly agreed that showing a good performance on these
samples is nice, but does not say much about the method’s ability
to handle real datasets. We therefore chose three further complex
protein datasets that have recently been described in the litera-
ture for testing (13, 23, 24).

Mixture of 18 Purified Proteins. The results are shown in Fig. 3A.
Details about the dataset are given in SI Mixture of 18 Purified
Proteins.

The number of true positives (TPs) and false positives (FPs)
was computed as described before. The differences between
the results of the three methods are small: MIPGEM performs
slightly worse.

Sigma49 Dataset. The results are shown in Fig. 3B. Details about
the dataset are given in SI Sigma49.

There is an important difference between our model and the
two reference methods. ProteinProphet’s ROC curve goes up
rapidly. It finds 22 proteins (20 TP and 2 FP) having a probability
of one. MSBayesPro goes up a little less steeply by assigning a
top score to 15 TPs and 2 FPs. It is not possible to run these

two methods in a more conservative way. On the other hand,
MIPGEM goes up straight to 13 TPs against 0 FPs, and it then
flattens out. Unlike ProteinProphet and MSBayesPro, MIPGEM
can be used (in principle) to achieve zero false positives.

Among our top-scoring proteins, there are also single hits
(proteins identified by a single spectrum). Single hits are pena-
lized in ProteinProphet, but not in MIPGEM. A figure showing
the results of the different methods when discarding the identi-
fied single hits can be found in SI Additional Figures and Tables.

Saccharomyces cerevisiae Dataset.The results are shown in Fig. 3C.
Details about the dataset are given in SI Saccharomyces cerevisiae
Dataset.

We find a similar behavior as for theSigma49dataset.MIPGEM
exhibits zero false positives among the 320 top-scoring proteins,
whereas ProteinProphet and MSBayesPro cannot produce zero
false positives.

Drosophila melanogaster Dataset. MIPGEM was also applied to
complex protein samples of unknown composition. Details about
the dataset are given in ref. 23 and SI Drosophila melanogaster
Dataset.

Because we don’t know which proteins are present in the
sample, we can only make a statement about how well the three
methods agree on the identified sets of protein sequences.

ProteinProphet (5) finds 217 proteins with a probability score
of one. MSBayesPro (12) detects 222 proteins with a score of
one. In view of our findings for the Sigma49 dataset, we assume
that these proteins also include false positives.

The intersection of proteins yielding a top score in ProteinPro-
phet and in MSBayesPro holds 167 proteins. Unfortunately, we
cannot even rank for presence of these top-scoring proteins be-
cause their probabilities, from ProteinProphet and MSBayesPro,
are all equal to the maximal value of one. With MIPGEM, we can
easily rank the proteins because their corresponding scores vary.
The distributions of the computed protein scores are shown in
SI Additional Figures and Tables. In Table 1, the n top-scoring pro-
teins of MIPGEM are compared to (i) the set of 167 proteins in
the intersection of the top-scoring proteins of both reference
methods; (ii) the set of 217 proteins with a maximal score from
ProteinProphet; and (iii) the set of 222 proteins with a maximal
score from MSBayesPro. Each row of Table 1 displays how many
proteins belong both to the reference set and to the n top-scoring
proteins from MIPGEM. For this example, the overlap be-
tween the results of the three methods is perfect only up to
the 25 top-scoring proteins from our model. At this stage, discre-
pancies appear between the results from MSBayesPro and the
two other methods. The overlap between ProteinProphet and
MIPGEM, however, is perfect up to the first 101 proteins. For
larger numbers of identified proteins, the percentage of overlap
becomes lower. The outcomes of the three approaches coincide
better if the identified single hits are discarded in all models (see
SI Additional Figures and Tables). Note that some of our top-
scoring proteins are neither identified by ProteinProphet nor
by MSBayesPro with top scores.

Arabidopsis thaliana Dataset. In contrast to the two reference
methods, our model is also designed to infer gene models. To
validate this feature, we usedA. thaliana pollen datawherewe con-
structed an approximate ground truth for the genemodels. Details

A

B

C

Fig. 3. Number of true positives (#TP) versus number of false positives (#FP)
for the mixture of 18 purified proteins (A), for the Sigma49 (B) and for the
S. cerevisiae (C) datasets.

Table 1. Overlap of protein identifications

n 25 50 78 101 170 200 222

Ref. set (i) 25 45 72 95 108 126 143
Ref. set (ii) 25 50 78 101 115 133 155
Ref. set (iii) 25 45 72 95 163 181 198
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about this dataset are given in ref. 13 and SI Arabidopsis thaliana
Dataset.

Fig. 4 shows the ROC curve for the identified gene models,
and Fig. 2 highlights the importance of using gene model scores.
ProteinProphet and MSBayesPro both lack this feature. There is
no straightforward way to compare our results with their output.

Discussion
MIPGEM is a rigorous statistical model for protein inference
from shotgun proteomics data. It is based on a few clearly stated
assumptions. In particular, we use Markovian assumptions on
graphs which allow to model dependencies among and between
peptides and proteins in a realistic way. In contrast to most pre-
vious solutions, we model the peptide scores as probabilistic input
for the protein inference and extend our approach to also infer
the probabilities at the gene model level. The latter will allow for
integration with transcriptomics data even if the exact protein
composition cannot be inferred. It can also be used to assess

the potential of proteomics to identify different protein splice iso-
forms that are encoded by the same gene model (see Fig. 2D).

The model was tested on two control datasets and one “semi-
control” dataset. We found that, in comparison to ProteinProphet
(5), a commonly applied software tool to summarize protein iden-
tifications based on experimental peptide evidence, MIPGEM
exhibits fewer false positives among the highest ranking proteins
while paying a price in terms of a larger number of false negatives.
This same trend was observed compared to MSBayesPro (12),
another protein inference method. Controlling the number of
false positives at a low level is in accordance with statistical
hypothesis testing.

Also, our approach allows for distinction on a fine level,
whereas ProteinProphet and MSBayesPro often assign the maxi-
mal score of one to many proteins. In addition, in case of ambig-
uous proteins, we think it is much better to report probabilities
for individual proteins instead of grouping these sequences as
ProteinProphet does. Such protein groups with a single probabil-
ity do not allow for a clear interpretation.

Our statistical modeling framework for protein and gene
model inference is generic and can be extended in order to in-
clude additional parameters such as peptide detectability (25)
(see, e.g., ref. 12), number of tryptic termini (10, 14), specific pro-
tein prior probabilities, or protein coverage to further improve its
performance.
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Fig. 4. Number of true positive (#TP) versus number of false positive (#FP)
genemodels for theA. thaliana pollen dataset. The dashed lined corresponds
to the expected output from random sampling. A comparison to ProteinPro-
phet and MSBayesPro is not possible, because these methods are not
designed to infer gene model probabilities.
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