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Abstract
Motivation—There is extensive interest in automating the collection, organization, and analysis of
biological data. Data in the form of images in online literature present special challenges for such
efforts. The first steps in understanding the contents of a figure are decomposing it into panels and
determining the type of each panel. In biological literature, panel types include many kinds of images
collected by different techniques, such as photographs of gels or images from microscopes. We have
previously described the SLIF system (http://slif.cbi.cmu.edu) that identifies panels containing
fluorescence microscope images among figures in online journal articles as a prelude to further
analysis of the subcellular patterns in such images. This system contains a pretrained classifier that
uses image features to assign a type (class) to each separate panel. However, the types of panels in
a figure are often correlated, so that we can consider the class of a panel to be dependent not only on
its own features but also on the types of the other panels in a figure.

Results—In this paper, we introduce the use of a type of probabilistic graphical model, a factor
graph, to represent the structured information about the images in a figure, and permit more robust
and accurate inference about their types. We obtain significant improvement over results for
considering panels separately.

Availability—The code and data used for the experiments described here are available from
http://murphylab.web.cmu.edu/software. Contact: murphy@cmu.edu

1 INTRODUCTION
The dramatic increase in biological data in recent years, especially with respect to the sequences
and structures of genes and proteins, has led to the creation of a number of biological databases.
The information in these databases is largely incorporated by computer-generated links to
relevant entries in other structured databases or entered manually by scientists in the relevant
fields. Such structured databases are well-suited to collect, store, and deliver clearly specified
information, but they usually do not typically allow uncertainty, alternative views or conflicting
evidence. To capture these nuances, results of traditional biological research are most
commonly communicated via journal articles in which raw data, methods, processed results
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and conclusions are mixed. In order to take full advantage of both paradigms, it is necessary
to have approaches that can bridge between the systematic, structured information in biological
databases and the idiosyncratic, unstructured information in journal articles.

The SLIF (Subcellular Location Image Finder) system was developed to illustrate the
feasibility of addressing this need for information that is contained in both text and images in
journal articles (Murphy et al. 2001,2004). Figures in journal articles may consist of multiple
panels of many different types. The SLIF system focuses on initially identifying the type of
each panel, and then doing extensive analysis on one type of images, fluorescence microscope
images (FMI). FMI can capture information about the distribution of proteins and other
biological macromolecules inside cells, and previous results have illustrated the value of the
SLIF system for the specific task of identifying images depicting particular subcellular location
patterns. More recently, other systems for figures in biomedical journal articles have been
described. Rafkind et al. (2006) automatically classified general biological images in journals
into five categories (gel images, graphs, images of things, mixtures, and models) using text
and image features. Yu and Minsuk (2006) sought to make a connection between abstract
sentences and biological images in the same article, so that the biological images can be
accessed from abstract sentences. These two systems considered each figure in journal as a
single object. However, a figure very often contains multiple panels which may consist of more
than one type of image. Thus processing figures at the level of each panel, as is done in SLIF,
can yield a more accurate reflection of figure content. In a similar vein, Shatkay et al. (2006)
classified the panels in journal figures into hierarchical categories, and then used the categories
as a feature vector to represent the article for document retrieval purposes.

In this paper, we focus on improving the recognition of FMI. High accuracy for this task is
important for SLIF, since only panels considered to be FMI should be further processed to
analyze subcellular patterns. Our starting point is to use edge and intensity histogram features
with support vector machines to assign a type to each panel. Since the types of panels in a
figure are often correlated, we conjectured that the performance on individual panels could be
improved by considering information from more than one panel at a time. To this end, some
simple voting methods can be used, such as the plurality voting method and the Borda count
method, in which the type of each object is determined using information on the types of other
objects. As these methods only need to calculate a function of the class probabilities of all or
some objects, their computational cost is very low. However, these voting functions cannot
capture the spatial relationships among the objects. Probabilistic graphical models provide a
convenient and powerful way to represent uncertain information about objects and to facilitate
reasoning. Therefore, in this paper, a type of probabilistic graphical model, the factor graph,
is applied to capture information from all panels and collectively classify all interrelated images
in a figure.

Below we will briefly introduce SLIF, explain how to construct a factor graph according to
intuitions about the interaction among panels in a figure, describe the assignment of class
probabilities to panels using probabilistic inference, present experimental results, and give
conclusions and directions for further work.

2 SLIF
SLIF contains several modules for image and text processing, and the structured SLIF database
is built by combining their results.

2.1 Figure processing
Figure processing in SLIF consists of extracting figures from articles, splitting each into panels
(meaningful subfigures), identifying fluorescence microscope panels, detecting panel
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annotations, and classifying and analyzing subcellular patterns. The methods used for each of
these steps, and evaluations of their accuracy, have been described in detail previously (Murphy
et al. 2004).

Extracting figures from online journal articles—The original SLIF system used a web
robot to retrieve PDF versions of online journal articles that might have relevant images. The
current version processes articles in XML format, extracting matching figures and captions.

Splitting figures into panels—For figures composed of multiple panels, the individual
panels must be isolated in order to interpret them appropriately. Fluorescence microscope
panels usually have a dark background with light areas showing where fluorescence was
detected. Based on this fact, a recursive algorithm was proposed for finding the light boundaries
between micrographs even when the panels are not arranged in a symmetric pattern (Murphy
et al. 2001). Journal figures contain other types of panels that are not surrounded by a boundary,
and the performance of the recursive algorithm may degenerate for these types. However, it
works well for separating micrographs from the remainder of the figure, so this is not a major
problem for SLIF.

Identifying FMI—After the panels have been isolated, the next task is to identify what type
of image they contain, the focus of this paper. The initial approach in SLIF consisted of a k-
nearest neighbor classifier built on a collection of hand-labeled panels. For each panel, a
histogram of pixel intensities was constructed with 64 equally-spaced bins ranging from the
minimum to the maximum pixel intensity in that panel; the frequencies of the bins were used
as features. These achieved a precision of 100% and recall of 90% on panels extracted from
PDF files (Murphy et al, 2001). As journal articles became increasingly available in XML
format with associated figure files, SLIF was modified to be able to process articles in this
format. The initial FMI classifier did not perform as well for the more variable images thus
obtained. Therefore, we developed an improved classifier for FMI panels (Hua et al, 2007).
This uses edge features in addition to intensity histogram features. Using a support vector
machine, the new classifier achieved a precision, recall, and F-measure of 85% on a randomly-
chosen set of panels from a large collection of articles from the Proceedings of the National
Academy of Sciences, U.S.A. (Hua et al, 2007).

Detecting panel annotations—Fluorescence micrograph panels typically may have three
types of annotations contained within them. The first is a panel serial label that follows the
arrangement order of panels in a figure and connects panels to information in the caption. The
second is a scale bar whose length is usually defined in the caption. The third is text or symbols
that are used for attracting the reader’s attentions to specific locations in the figure. All of these
annotations need to be detected, analyzed, and then removed from the image before further
processing (Kou et al. 2003). The current version of SLIF can automatically detect and
recognize internal labels (labels that are embedded in the panels, the most common situation),
with a precision of 79.1% and recall of 70.7% (Kou et al. 2003). In the FMI recognition method
discussed in this paper, panel serial labels will be an important alternative source for
representing the structured information among the panels in a figure.

Analyzing subcellular patterns—The steps above complete the task of finding FMI in
journal articles. While SLIF then uses a number of methods for extracting appropriate
subcellular location information from these FMI, those methods will not be discussed here
since the focus of this paper is on FMI recognition.
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2.2 Text processing
Text processing in SLIF focuses on information extraction from the captions of figures, and
the resulting information is combined with image information to form an integrated SLIF
database. Caption processing has three goals: identifying the “image pointers” (e.g., “(A)”) in
the caption that refer to panel serial labels in the figure, dividing the caption into fragments (or
“scopes”) that refer to an individual panel or the entire figure, and recognizing protein and cell
names. The first of these is the only one that is required for the work described in this paper,
since caption processing can aid identification of the type of panel . The list of “image pointers”
obtained by interpreting the caption associated with a figure can correct possible missing or
incorrect panel serial labels obtained by detecting panel annotations. Using string matching
approaches to align “image pointers” and panel serial labels, the precision and recall for
recognizing panel serial labels was improved to 83.2% and 74.0% respectively (Kou et a.
2003). It should be noted that in this paper we use the term “panel class label” to represent the
type of a panel and “panel serial label” to represent its arrangement order in a figure.

3 FACTOR GRAPHS FOR IDENTIFYING FMI
The classification methods previously implemented in SLIF for identifying FMI classify the
panels individually based on their own properties. In fact, identifying FMI from multiple panels
in a figure, however, is a special classification problem that involves sets of related objects
whose class labels tend to be consistent with each other. In other words, all of the panels in a
figure, or sets of neighboring panels in a figure, are often of the same image class. We will
consider how to “revise” the class probabilities of the panels (obtained by classifying them
independently) by using potential interactions between them. Probabilistic graphical models
provide a theoretical foundation and a practical tool for this task. In this paper, a factor graph
is introduced to represent and process this interaction mechanism. Factor graphs (Kschischang
et al. 2001) are more general than other graphical models (such as Bayesian networks and
Markov random fields) in terms of their ability to express information. The advantages of factor
graphs for our problem are that the interaction between panels need not be modeled as a causal
entity, and cycles can be supported.

3.1 Preprocessing
Before creating the factor graph, we need to prepare the data that will be used as the inputs at
each node. These steps are included in the overall SLIF pipeline described above, but are
identified here as particularly needed for inference about panel types. First, the initial
classification results for each panel are obtained by classifying panels independently using
their image features. Various classification approaches can be used in this step, but the outputs
should be the class probabilities of each panel, i.e., each panel i has a probability p(xi = FMI)
of being classified as FMI and a probability p(xi = nonFMI) = 1 − p(xi = FMI) of being classified
as any of the other type. Second, panel serial labels are detected and recognized. This is a
challenging problem because the serial label is usually a single character embedded in a
complex background; we have described various strategies for improving performance (Kou
et al. 2003). However, for some figures, we still do not obtain their panel serial labels for
various reasons (including the possibility that the panel serial labels are outside the panels
rather than within them), so that the information about the panel arrangement in a figure cannot
be derived from panel serial labels. Therefore, the third type of information we compute about
each panel is its position within the figure. The recursive panel splitting method used in SLIF
always returns rectangular panels, so the positions of the two diagonal corners of the rectangle,
or the position of the center and the side lengths of the rectangle, determine the position of a
panel. In the work described here, we have explored using panel serial labels, panel positions,
or both to provide information about the arrangement of panels in a figure.
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3.2 Constructing the factor graph
A factor graph explicitly indicates how a joint function of many variables can be factored into
a product of local functions (also called potential functions) of smaller sets of variables. The
joint function is usually the joint probability distribution. A factor graph is defined as a bipartite
graph with two vertex (node) types: variable vertices Vx and factor vertices Vf of size n and
m respectively such that the ith node in Vf is connected to the jth node in Vx if and only if xj is
an argument of function fi . Let X = {x1, x2,…, xn} be a set of variables. Consider a function f
(X ) with factors as follows

(1)

where Ci is the set of variables (a clique of vertex fi ), which are the arguments of the local
function fi . Fig. 1b and 1c show the graph representations of

and

The variable vertices are marked as circles and the factor vertices as squares.

Many problems in recognition and learning are formulated as minimizing or maximizing a
global function marginalized for a subset of its arguments. For the problem of identifying FMI
from a figure, one of main contributions of this paper is a computational framework in the form
of a factor graph that can factor a complex joint distribution of the class probabilities of panels
in a figure into a product of their local interaction functions.

The key task of constructing a factor graph is to define the local functions that describe the
interaction among the panels in a figure. These functions can be learned from examples, or
directly specified from domain intuition/knowledge. In our problem, we postulate that the local
functions should favor the same class label for all panels in the same clique. In this case, a
common approach is to use a Potts model (Potts 1952), which penalizes assignments that do
not have the same label in the clique. Since every clique of a Potts model has only two variable
vertices, the local functions are simple and inference becomes efficient and fast. However, the
Potts model does not perfectly capture the notion that influence on the class label of a vertex
should reflect the class labels of all its neighbors. We have previously described an alternative
potential function, the voting potential, which sums the contributions of each neighbor of an
object into a vote which then influences that object’s classification (Chen et al, 2006a). When
this model is applied to identify FMI, each variable vertex xi represents a panel in a figure (with
value equal to the class of the panel, in our case either FMI or non-FMI), and it has a
corresponding factor node fi that captures the intuition that the class probability of panel i is
influenced by the class probabilities of the other panels in the same clique (these panels are
also called the neighbors of panel i) i.e., the panel i tends to have a same class label as the other
panels. The function fi can be defined as
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(2)

where the assignment of xi is FMI or non-FMI. Ν(xi) is the neighbors of panel i except itself,
and si is the number of vertices in Ν(xi). λ is a control parameter (the smaller λ is, the more
strongly the class probability of panel i is influenced by its neighboring panels). δ is an indicator
function which is 1 when the value of xi is equal to that of xj and 0 otherwise.

However, the above function considers that the panels in Ν(xi) have the same impact on panel
i, which is not always right in most cases. Here we extend it by proposing a weighted voting
potential, in which every neighbor of one panel has its individual strength of impact on it so
that they can contribute different influences. Compared with the original voting potential, the
weighted voting potential may represent interactions more precisely. Therefore, a new local
function can be defined as

(3)

where wij is the strength of impact of panel j on panel i,

Now the remaining task is to decide the neighbors of each panel, and their corresponding
strengths of impact on that one, which can be computed with their positions and serial labels
in a figure. From a large number of figures in journal biological articles, we found that if two
panels have the same or consecutive panel serial labels, or their positions are close to each
other, they have a large interaction. Thus wij is defined as

(4)

where li is the index of panel serial label of panel i, dist _ panel(i, j) is the Euclidean distance
between centers of panel i and j, and size _ figure is the diagonal length of the figure. The first
term in the right side of equation (4 ) represents the information derived from panel serial
labels, the second term represents the information derived from panel positions, and α controls
the balance between them (e.g., if the panel serial labels can not be accurately extracted, α
should be 0, and the first term will be ignored). The position information is calculated as
Euclidean distance between two panels normalized by the diagonal size of the figure containing
them.

The neighbors of panel i are given by

(5)

This also serves to limit the size of clique to improve the computational efficiency of the factor
graph.
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3.3 Probabilistic inference on a factor graph
After a factor graph is constructed, the next task is to infer the class probabilities of panels by
Bayesian reasoning method. The belief propagation (BP) scheme is commonly used, in which
the Sum-Product algorithm can compute marginal probabilities and then compute the
assignment of each variable that maximizes its individual marginal (Pearl 1988). It is based on
message-passing according to a simple rule: “the message sent from a node v on an edge e is
the product of the local function at v (or the unit function if v is a variable node) with all
messages received at v on edges other than e, summarized for the variable associated with
e.” (Kschischang et al. 2001).

In the Sum-Product algorithm, the message from the variable node xi to the factor node f j is
defined as

(6)

where evidence(xi) is the initial class probability of panel i. Ν(xi)is a set of factor nodes that
are connected to variable node xi by edges. The message from the factor node fj to the variable
node xi is defined as

(7)

where Ν( fj )is a set of variable nodes that are connected to factor node fj by edges. After the
message-passing computation is completed, the marginal probability of panel i can be
calculated by

(8)

If the factor graph is a factor tree (cycle-free), the two messages for each edge (from variable
node to factor, and from factor node to variable node) only need to be computed once, and the
Sum-Product algorithms can produce exact inference results. Otherwise, if a factor graph has
cycles, more complicated and approximate inference mechanisms are needed. Among them,
the loopy belief propagation (LBP) is commonly used (Yedidia et al. 2000). Since the factor
graphs discussed in this paper always have cycles, we chose to use the LBP-based Sum-Product
algorithm. The iterative procedure of LBP is:

1. Compute all messages from variable nodes to factor nodes with equation (6 )

2. Compute all messages from factor nodes to variable nodes with equation (7 )

3. Repeat until convergence condition is satisfied.

According to equation (7 ), the computational cost of a message from a factor node to a variable
node is linearly scaled to the number of arguments of the corresponding potential function, that
is cm, where c is the number of classes (here we only two class labels FMI and non-FMI, so
c=2) and m is the size of the corresponding potential function. Therefore BP, and even LBP,
becomes computationally intractable when the size of the cliques and the number of classes
are too large. To speed up LBP, even further approximations are required. Some forms of
approximations have been proposed by discarding low-likelihood states (Coughlan and
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Ferreira 2002), pruning edges, quantizing the potential function, or redefining the messages
(Minka 2001). No matter which approximation method is used, we would like to know what
effect the approximations introduced will have on the overall inference performance. Some
theoretical results concerning the convergence of message approximation and its distance
bound to the LBP message have been achieved (Ihler et al. 2005). They assume that there are
“true” messages (as the “true” messages are usually not acquired, in practice they can be
replaced with the messages of the standard LBP). If the error between approximate messages
and “true” message satisfies some conditions, these approximations maybe guaranteed to
converge to some regions of fixed points, as well as have bounds on the resulting error over
“true” LBP. However, perhaps more important in practice, many experimental results have
shown that if the difference between the approximate messages and the “true” message is
relatively small, the overall solutions will not have obvious changes. This gives us freedom to
construct approximate algorithms of LBP on a factor graph.

Here, we developed two message approximation methods to simplify the standard LBP Sum-
Product algorithm, both based on the idea of prior updating (Chen and Murphy, 2006; Chen
et al, 2006a) that considers only important and dominant messages to be updated in iterations,
and furthermore uses approximations for even these remaining messages. The first approximate
method only selects the messages from each factor fi to its corresponding variable xi to be
updated, and the other messages from factor fi to Ν( fi ) \ xi are ignored (all given a unit function).
The reason is that the factor node fi captures the information of panel i being influenced by its
neighboring panels, so that it plays a dominant role in updating the probability of panel i.
Although this approximation can speed up LBP, we still need to scan all arguments of the
potential functions. Therefore, our second approximation method also approximates equation
(7 ) by

(9)

where k represents the kth class label. This equation need not scan all arguments of the potential
functions. These two simplified LBP algorithms are refereed to as PULBP1 and PULBP2
respectively. The next section will demonstrate that inference results with these simplified LBP
algorithms are almost the same as those with standard LBP, but that the computational cost
can be greatly reduced.

4 EXPERIMENTAL RESULTS
We used two datasets for testing panel recognition performance. Both were created by choosing
a random set of panels from the results of SLIF processing on a collection of articles in the
Proceedings of the National Academy, U.S.A. (volumes 94-99) and categorizing each panel
as FMI or non-FMI by visual inspection of the figure and caption (Hua et al., 2007).

• Dataset A: 86 figures with 570 panels, of which 287 panels are FMI. For these figures,
the labels were not embedded in the panels, so the current version of SLIF cannot
automatically assign them. They were therefore manually assigned.

• Dataset B: 89 figures with 525 panels, of which 371 panels are FMI. In this set, all
panel serial labels were automatically obtained. An improved SVM-based FMI
classifier (Hua et al, 2007) was used as the baseline for comparison to other methods,
and its output was used as the evidence in the factor graph (Platt 1999). For evaluation,
we measured accuracy [(TP+TN)/total], precision [TP/(TP+FP)], recall [TP/(TP
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+FN)], and F-measure, [2*prec*recall/(prec+recall)], where TP is True Positives, FP
False Positives, TN True Negatives, FN False Negatives and positive is FMI. We
chose F-measure as our primary figure of merit.

Before giving an overall evaluation of the performance of the graphical models, we will
examine three typical cases and how inference results compare to manually-assigned ground
truth. In these examples, the PULBP2 inference algorithm was used.

Figure 2 shows a typical figure for which graphical model inference maintained the correct
initial classification results. Table 1 shows the class probabilities for each panel as given by
the baseline classifier and the PULBP2 algorithm for various values of the inference
parameters. In this case, the individual panels were all correctly classified by the baseline
classifier. The interaction between panels in the factor graph modifies the initial class
probabilities for each panel, but does not alter the correct initial result.

Figure 3 and Table 2 show a typical case where the correct class labels of all panels are the
same (FMI), and most but not all of the panels are correctly classified by the initial classifier.
Using the graphical model, the panels that were not initially correct are assigned their correct
label. This is because the influence of the panels with the correct class label is stronger than
that of the ones with the wrong class label and the initial probabilities of the incorrectly
classified panels were not high (and were therefore easy to push above or below the recognition
threshold). This example illustrates the kind of improvement that we sought to obtain.

Figure 4 and Table 3 show a more complex case in which more than one type of image exists
and one of the FMI panels is incorrectly classified. The incorrect panel can be easily corrected
to FMI even in the presence of non-FMI panels.

The above examples illustrate the mechanism by which graphical models may be expected to
improve the recognition of FMI. Encouraged by these results, we carried out a more quantitative
evaluation of the performance of the graphical model methods. Figure 5 shows the F-measures
for the three inference algorithms for various values of the two parameters, α and λ, in our
model. λ controls the strength of the interaction between neighboring panels, so λ = 0, 2, and 5
represent strengths ranging from large to small. Compared with the baseline classifier, the F-
measures of the three factor graph inference algorithms for various values of the parameters
were improved from 1% to 4%. Table 4 shows the average performances on the two datasets
for the three algorithms, which are calculated by averaging their performance measures over
the parameter combination of α = 0, 0.5,1 and λ = 0, 2, 5.

Although the above experiments appear to show that recognition performance is improved
using factor graphs, we wished to determine if these effects were statistically significant. We
created 30 samples by randomly selecting a baseline classifier (RBF kernel SVM with
argument ranging from 5 to 20), and used random α (0 to 1) and λ (0 to 5) values to analyze
them with all three methods. We then tested the null hypothesis that a given performance
measure (precision, recall, F-measure) for a given method was equal to that of the SVM. This
was rejected at the 0.005 significance level for all three measures and all three methods).

The performance of the factor graph method can be also evaluated at the level of entire figures
rather than on individual panels. That is, a figure is considered to be correctly classified only
if all its panels are correctly classified. Table 5 shows the average accuracies of figure
recognition for LBP, PULBP1, and PULBP2. Compared with the baseline classifier, the
improvements ranged from 20% to 25%, which are much larger than the improvements of
accuracy at the panel level (2% to 4%, Table 4). This phenomenon reflects the characteristics
of graphical model methods. The figures that are wrongly recognized by the initial classifier
can be categorized into two types in terms of the proportion of the panels with the wrong class
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label in a figure. The first type has a small number of panels with the wrong class label, so the
influence of the panels with the correct class label is strong and the panels that were not initially
correct are easily assigned their correct class label using graphical model methods. The second
type of figure has a larger number of incorrect panels, so graphical model methods fail because
the panels with the correct class label may not have enough strength to influence the ones with
the wrong class label. Although the number of panels in the first type of figures that were
corrected by graphical model methods is not large relative to the total panels with the wrong
class label, the number of these figures is large relative to the total figures, which made
improvement measures different at the panel and figure levels.

Overall, the results indicate that recognition performance can be improved by the factor graph
method. All three inference algorithms perform significantly better than the baseline classifier,
and there are no significant differences between them in overall recognition performance.
However, their running times are very different, with PULBP2 being much faster (Table 6).
Both panel serial labels and positions well represent the structuring information of panels in a
figure, so we can use either or both of them to improve FMI recognition. λ affects the
recognition performance, but there is no general rule for determining an optimal value.
Performance can be expected to be improved by the factor graph model as long as λ values are
in a reasonable range.

For SLIF, we are often willing to sacrifice recall (number of FMI found) to obtain higher
precision (fraction of predicted FMIs correct). We therefore created precision-recall curves.
The panels were ranked from high to low according to value of their maximum marginal
probability, and precision and recall were calculated cumulatively as the minimum acceptable
marginal probability was decreased from 1 (Fig. 6). PULBP2 provides better performance than
the baseline classifier and very high precisions can be obtained.

The graphical model method we have presented is based on the interaction between the multiple
panels in a figure. It was therefore of interest to determine how the performance is affected by
the number of panels in a figure. The figures in dataset A and B were partitioned into groups
by the number of panels. Then the performance measures on these groups were averaged over
various values of parameters and for both datasets. Figure 7 shows PULBP2 usually produced
better recognition performance than the baseline classifier whenever more than one panel was
present.
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Fig. 1.
Illustration of construction of factor graphs. a) An example figure with six panels (from Hersh
et al. 2002). b) A factor graph for the figure in panel (a) in which the neighbors of a panel are
determined by its panel serial label. For example, the class probability of panel d is influenced
by the class probabilities of panel c and panel e. c) A factor graph in which the neighbors of a
panel are determined by their positions. The class probability of panel d is influenced by the
class probabilities of panel b, c and f.
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Fig. 2.
This figure (from Zheng et al. 2000) includes four panels. Panel (A-C) are FMI, and panel (D)
is not.
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Fig. 3.
This figure (from Hong et al. 2001) includes six panels, all of which are FMI.
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Fig. 4.
This figure (from Contreras et al. 2002) has four top FMI panels and two bottom non-FMI
panels.
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Fig. 5.
Performance of factor graph methods as a function of model parameters. The F-measures for
LBP (squares), PULBP1 (circles), and PULBP2 (triangles) are shown for dataset A (left) and
B (right) for various values of λ and for α 0.5 (a,d), α = 1 (b,e) and α = 1 (c,f). Note the roles
of the model parameters: increasing a corresponds to a shift from inference based solely on
panel position to inference based solely on panel serial label, and increasing l corresponds to
decreasing influence of neighboring nodes. The F-measure for the baseline classifier is also
shown ( ).
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Fig. 6.
Recall-precision curves for PULBP2 for various inference parameters. A threshold on the
estimated marginal probability of each panel classification was varied. Values shown are for
α = 0 (left) and α = 1 (right). ( , baseline classifier: ). Values for λ = 5
were similar to λ = 2 (not shown).
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Fig. 7.
The average recognition measures of PULBP2 for the parameter combination of α = 0, 0.5, 1
and λ = 0, 2, 5 on the figures in dataset A and B with different numbers of panels. The numbers
of figures with each number of panels from 2 to 12 are 13, 12, 49, 11, 25, 9, 25, 9, 5, 3, 8
respectively. (Baseline classifier: solid line, PULBP2: dashed line).
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Table 1

Inference results for the case shown in Fig. 2. Shown are the initial label probabilities of the panels, obtained
using a single panel (baseline) classifier, and the final label probabilities of the panels, obtained using a factor
graph with the PULBP2 algorithm.

Actual
class

Initia l F M I
prob.

Final FMI probabilities
( α =0, λ = 2 )

Final FMI probabilities
( α =0.5, λ = 2 )

Final FMI probabilities
( α =1, λ = 2 )

FMI 0.740 0.838 0.882 0.883

FMI 0.704 0.809 0.835 0.863

FMI 0.695 0.800 0.762 0.742

Non 0.000 0.000 0.000 0.000
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Table 2

Inference results for the case shown in Fig. 3. Note that in this case the factor graph corrects the misclassification
of the last panel.

Actual
class

Initial FMI
prob.

Final FMI probabilities
( α = 0, λ = 2 )

Final FMI probabilities
( α = 5.0, λ = 2 )

Final FMI probabilities
( α = 1, α = 2 )

FMI 0.792 0.958 0.946 0.938

FMI 0.784 0.956 0.948 0.946

FMI 0.718 0.939 0.928 0.921

FMI 0.796 0.959 0.942 0.932

FMI 0.731 0.925 0.916 0.926

FMI 0.492 0.797 0.726 0.672
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Table 3

Inference results for the case shown in Fig. 4. Note that the factor graph corrects the incorrect panel even when
both types are present.

Actual
class

Initial label
prob

Final label probabilities
( α = 0, λ = 2 )

Final label probabilities
( α = 0.5, λ = 2 ) Final label probabilities( α = 1, α = 2 )

FMI 0.877 0.947 0.955 0.972

FMI 0.869 0.940 0.953 0.974

FMI 0.810 0.905 0.917 0.940

FMI 0.491 0.664 0.667 0.675

Non 0.038 0.045 0.025 0.006

Non 0.018 0.004 0.003 0.003

Bioinformatics. Author manuscript; available in PMC 2010 July 10.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Qian and Murphy Page 22

Table 4

Panel classification performance of different algorithms. Values shown are averages over the parameter
combination of α = 0, 0.5, 1 and λ = 0, 2, 5on dataset A (first value in each cell) or B (second value).

Accuracy Recall Precision F-measure

Baseline 79.1 / 72.4 79.8 / 69.3 77.4 / 89.2 78.6 / 78.0

 LBP 81.1 / 76.0 78.8 / 70.6 82.9 / 93.5 80.7 / 80.5

PULBP1 81.1 / 75.4 79.3 / 70.2 82.5 / 93.1 80.8 / 80.0

PULBP2 81.2 / 75.4 80.4 / 70.6 81.9 / 92.7 81.1 / 80.1
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Table 5

Accuracy at the figure level. A figure is considered to be correct if all of its panels are correctly classified. The
average accuracy measures of each method are obtained by averaging their accuracy over the parameter
combination of α = 0, 0.5, 1 and λ = 0, 2, 5.

Baseline LBP PULBP1 PULBP2

Dataset A 43.0 62.3 61.2 62.4

Dataset B 39.3 66.3 65.8 65.5
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Table 6

Elapsed CPU times for LBP, PULBP1, and PULBP2 using an Intel Pentium 1.73G processor with 512M memory.
Values shown are average CPU times (in seconds) over the inference parameter combinations of α = 0, 0.5, 1
and λ = 0, 2, 5.

LBP PULBP1 PULBP2

Dataset A 4846 1115 101

Dataset B 2765 812 145
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