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Abstract: Poor reproducibility of microarray measurements is a major obstacle to their application as an instrument for clinical 
diagnostics. In this paper, several aspects of poor reproducibility are analyzed. All of them belong to the category of interpretive 
weaknesses of DNA microarray technology. First, the attention is drawn to the fact that absence of the information regarding post-
transcriptional mRNA stability makes it impossible to evaluate the level of gene activity from the relative mRNA abundances, the 
quantities available from microarray measurements. Second, irreducible intracellular variability with persistent patterns of stochasticity 
and burstiness put natural limits to reproducibility. Third, strong interactions within intracellular biomolecular networks make it highly 
problematic to build a bridge between transcription rates of individual genes and structural fidelity of their genetic codes. For these 
reasons, the microarray measurements of relative mRNA abundances are more appropriate in laboratory settings as a tool for scientific 
research, hypotheses generating and producing the leads for subsequent validation through more sophisticated technologies. As to 
clinical settings, where firm conclusive diagnoses, not the leads for further experimentation, are required, microarrays still have a long 
way to go until they become a reliable instrument in patient-related decision making.
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Introduction
Clinical promise of DNA microarray 
measurements
A key premise of DNA microarray ideology is that 
the mRNA abundances harvested from the cells are 
indicative of the levels of activity of the genes from 
which they are transcribed. In somewhat simplified 
terms, it seems natural to think that the more active is 
a gene the more mRNA molecules it transcribes in a 
given time interval, and therefore the higher concen-
tration of those can be detected in the mRNA assay. 
This premise further propagates into the microarray 
differential expression probing in which higher mRNA 
fluorescent intensity is believed to indicate a higher 
mRNA concentration, thus reflecting higher activity 
of the corresponding gene. This notion is solidified in 
terminology: the microarray spots are frequently called 
genes. However, such terminology obscures the fact 
that actual biological material the microarrays work 
with are mRNAs, not the genes themselves.

Unfortunately, the simple scheme outlined 
above is confounded by many factors and intrica-
cies of gene expression machinery. Some of these 
factors have been discussed in previous works by 
this author.1–3 In this paper, special attention is given 
to one important confounder, namely to the post-
transcriptional stability of mRNA molecules. It is 
quite obvious that if a certain mRNA molecule is 
chemically unstable then it gets quickly dissolved 
in aggressive cytoplasmic environment. As a result, 
the gene this mRNA has been transcribed from loses 
its proxy in the transcriptome, whether this gene is 
active or not. In the straightforward schema out-
lined above, the low mRNA abundance would be 
interpreted as reflecting low gene activity, whereas 
in reality it is only reflecting a low mRNA post-
transcriptional stability. This simple idea can hardly 
be called new; it has been touched upon in many 
previous publications. However, an unpleasant truth 
is that its importance for the interpretation of DNA 
microarray measurements has not yet been properly 
explored and has not yet made its way into routine 
measurements. This means that an omnipresent and 
powerful player behind the scene of transcriptom-
ics remains unknown and unchecked in microarray 
measurements, thus leading to contradictions, ambi-
guities and misinterpretations.

A common concern in microarray data analysis 
is poor reproducibility. In the editorial4 preceding 
the report summarizing the large-scale Microarray 
Quality Control Project,5 this aspect of microarray 
measurements has been characterized as follows: 
“Doubts linger about the reproducibility of microar-
ray experiments at different sites, the comparability 
of results on different platforms and even the vari-
ability of microarray results in the same laboratory. 
After 15 years of research and development, broad 
consensus is still lacking concerning best practice not 
only for experimental design and sample preparation, 
but also for data acquisition, statistical analysis and 
interpretation...Clearly, microarrays have a long way 
to go before they can be used to support regulatory 
decision-making or accurate and consistent predic-
tion of patient outcomes in the clinic.”

Microarrays are considered as a great hope in the 
bench-to-bedside translational research. In its annual, 
2004, report “Critical Path”, FDA identifies microar-
rays technology as crucial in advancing medical 
product development and personalized medicine. The 
regulation of DNA microarray-based medical diag-
nostic devices and the review of toxicogenomic data 
submitted as part of an Investigational New Drug, 
New Drug Applications or Biologics License Appli-
cation are expected to become an essential regula-
tory responsibility of the FDA in the advancement of 
personalized medicine.6 As a sign that this program 
hit the road of implementation, the U.S. Food and 
Drug Administration cleared for marketing a test that 
determines the likelihood of breast cancer returning 
within 5 to 10 years after a woman’s initial cancer. It 
is the first cleared molecular test that profiles genetic 
activity. This test relies on microarray analysis. 
(www.fda.gov/NewsEvents, 2007).

These high stakes and hopes attached to microar-
rays are in stark contrast to a chorus of skeptical 
opinions regarding microarray diagnostic capabili-
ties and technical performance. Thus J. Ioannidis, 
in his paper with a telling title “Microarrays and 
molecular research: noise discovery?”,7 writes: 
“The promise of microarrays has been of apoca-
lyptic dimensions... All diseases are to be redefined, 
all human suffering reduced to gene-expression 
profiles. Cancer has been the most common early 
target of this revolution and publications in the 
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most prestigious journals have heralded the dis-
covery of molecular signatures conferring differ-
ent outcomes and requiring different treatments. 
Yet, on close scrutiny, in five of the seven largest 
studies on cancer prognosis, this technology per-
forms no better than flipping a coin. The other 
two studies barely beat horoscopes.” This austere 
opinion is echoed in:8 “The potential advantages 
of improving tumour classification by expression 
profiling has been central for several large-scale 
breast cancer studies that have reported identifica-
tion of signature gene lists with potential for pre-
diction of clinical outcome over the past few years. 
The microarrays used in different studies generally 
have several thousand genes in common and the 
underlying principles of the measurement technol-
ogies are the same. The most striking finding when 
comparing the signature lists is the virtually com-
plete lack of agreement in the included genes.”

Meticulous analysis and sober evaluation of the 
state-of-the-art in microarray technology presented 
in6 is summarized as follows: “Profound problems 
in data quality have been observed from analyzing 
published data sets, and many laboratories have 
been struggling with technical troubleshooting rather 
than generating reliable data of scientific signifi-
cance... These fundamental issues must be adequately 
addressed before microarray technology can be trans-
formed from a research tool to clinical practices.”

In the above cited report,6 all the profound prob-
lems of microarrays are categorized in four big classes: 
technical (microarray manufacturing, sample collec-
tion, RNA extraction, cDNA and cRNA synthesis, 
fluorescent labeling and hybridization); instrumental 
(laser intensity, scanner calibration, image acquisition 
and spot quantification); computational (data prepro-
cessing, normalization, statistical analysis of differen-
tial expression); and interpretive (biologic reasoning, 
pathway analysis, bioinformatics tools). The authors 
point out that “A single hidden, uncontrolled factor 
may completely negate an experiment.” Obviously, 
in clinical settings the cost of such a single, uncon-
trolled factor may be much higher and lead to wrong 
diagnosis with potentially harmful consequences for 
patient-related decision making.

In this paper, several aspects of the DNA microar-
ray methodological weakness are analyzed. First, 

the attention is drawn to the fact that absence of the 
information regarding the post-transcriptional mRNA 
stability makes it highly problematic to evaluate 
the level of gene activity from the relative mRNA 
abundances. Second, irreducible intracellular vari-
ability with persistent patterns of stochasticity and 
burstiness put natural limits to reproducibility. Third, 
strong interactions within intracellular biomolecular 
networks make it difficult, if possible at all, to build a 
bridge from the transcription rates of individual genes 
to structural fidelity of their genetic codes. Among 
these three topics, the post-transcriptional mRNA 
stability is the central one. It is the author’s view that 
this problem is a sort of elephant in the room; it is 
utterly important in many contexts, it is well known 
to experimental and theoretical biologists, and yet it is 
largely unaddressed in the context of routine microar-
ray measurements and data interpretation.

Post-transcriptional mRNA stability belongs to 
the fourth category among the “profound problems” 
listed above,6 that is, to the category of biological 
interpretations. Notably, despite tremendous difficul-
ties of purely technical nature, the authors6 believe 
that this group of problems “is the most difficult task 
in microarray studies.” Let us imagine for a moment 
that in some, hopefully not so distant, future all the 
technical problems associated with microarrays are 
solved, and the measurements became perfectly intra-
laboratory repeatable, between-laboratories reproduc-
ible, cross-platform compatible and FDA-approved 
for using in clinical settings. At this point, a cluster of 
bigger questions will come into focus: What exactly 
will microarray measurements tell us about the state 
of the cell? Is it really true that mRNA assays pro-
vide us with valid and comprehensive information 
regarding the status of genome? Isn’t it misleading 
to equate transcription profiling with expression 
profiling? What are the actual relations between the 
genome and transcriptome that are elucidated by the 
DNA microarrays? Are they just weak spurious corre-
lations or something more tangible? What is the diag-
nostic value of the DNA microarray measurements?

In pre-technological era, medical doctors often 
relied on such biomarkers as odor of the body, wetness 
of hands, color of the skin, texture of the nails, etc. 
Undoubtedly, in the absence of more definitive mark-
ers, even these diagnostic tools could serve as a basis 
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for patient-related decision making. These tools 
continue to be of value in many domains of modern, 
especially holistic, medicine. However, it is also obvi-
ous that these holistic markers are wide open to a vari-
ety of interpretations and produce just vague hints on 
possible cause of disease. In modern terminology, one 
would call these tools hypotheses-generating, rather 
than diagnostic. Since DNA microarrays are expected 
to be a workhorse of future personalized medicine, a 
fundamental question arises: whether or not the DNA 
microarrays may in principle be anything more than 
a hypotheses-generating instrument appropriate only 
for scientific laboratory experimentation?

Basic Concepts: Transcription Levels 
and Transcription Rates
Prior to reviewing known facts pertaining to post-
transcriptional mRNA stability, we need to introduce 
some terminology. According to the Central Dogma 
in molecular biology,9 there is a unidirectional flow 
of biological information from genes to proteins, 
with mRNA being an intermediary. Per copying from 
genetic code by RNA Polymerase (transcription) and 
prior to protein synthesis by ribosomes (translation), 
the mRNA molecules undergo numerous transforma-
tions, some sequence-specific, some not. The key steps 
in these transformations are export of nascent mRNA 
to cytoplasm assisted by ribonucleoprotein complexes 
(mRNPs),10 removal of non-coding regions of mRNA 
(splicing), maturation, editing, and other processes 
preceding binding of mRNA molecules to the ribo-
somal sites.9 It is within this time span between tran-
scription and translation, the mRNA is being isolated 
for preparation of microarray assays. Obviously, there 
is not much that can be standardized here; rich gamut 
of biochemical processes and their natural variability 
will inevitably be imprinted in the mRNA assay.

For quantitative description of transcription, two 
concepts should be introduced, that is, transcription 
level (TL) and transcription rate (TR). TL is a number 
of the mRNA copies of a certain type present in the cell 
at a certain moment of time, t. TR is a number of tran-
scripts produced within the cell per unit of time. TR and 
TL are two independent characterizations of transcrip-
tion having different dimensions (a detailed discussion 
of these concepts may be found in the author’s.)11 Obvi-
ously, it is the TR that is a direct characterization of the 
gene’s activity. The higher TR, the more transcripts are 

produced per unit of time, the more active is the gene. 
In the opposite case, one may say that the gene is shut 
down if its TR is zero. Mathematically, the roles of TR 
and TL are expressed by the equation
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which means that with time increasing, t → ∞, TL 
changes from its initial value, TL(0), to its asymptotic 
limit, τTR. Even from this grossly simplified example 
one may see that the stable transcription level

	 TL(∞) = τTR,� (4)

depends not only on the transcription rate, TR, but 
also on the characteristic time of degradation, τ. For 
a stable transcript, that is for one with large τ, the cell 
may be abundantly populated by the corresponding 
mRNAs, regardless of the transcription rate of gene. 
For two genes with the same transcription rates, their 
respective mRNA abundances are proportional to the 
times of degradation. If in a certain experiment, the 
quantity being measured is TL, then, generally speak-
ing, this measurement tells nothing about the TR 
without an a priori knowledge of the time of degra-
dation, τ.

This issue of meaning and interrelation between 
the TR and TL has been elucidated in a number of 
previous works by this author (e.g.).11 This differ-
ence is similar to that between someone’s income 
(transcription rate) and his/her account balance 
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(transcription level). Even complete knowledge of 
someone’s account balance generates no informa-
tion regarding his/her income. Likewise, complete 
knowledge of the transcription levels creates no 
information regarding transcription rates. In other 
words, one may say that measurements of mRNA 
abundances are not fully representative of gene 
activity. In particular, abnormal mRNA abundance 
cannot serve as an evidence of the gene’s abnormal-
ity. Mathematically, TR and TL are the quantities of 
different dimensions; they are neither comparable 
not directly linked to each other.11

The simplified way of reasoning described by equa-
tions (1)–(4) is only applicable to linear systems. The 
things change drastically if the system is nonlinear. In 
biochemistry, it is often the case that production and/or 
degradation of certain constituents is supported by, 
or even happens only because of, interactions with 
other constituents. Let us imagine a coupled pair of 
chemical reactions in which the production terms are 
independent while degradation happens only because 
of their interaction with each other. Instead of (1), we 
will have now a system of two coupled nonlinear dif-
ferential equations

	

d
dt

TL t TR t rTL t TL t

d
dt

TL t TR t r TL t T

1 1 1 1 2

2 2 2 1

( ) = ( ) − ( ) ( )
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where r1 and r2 are kinetic rates. Detailed analysis of 
this system goes beyond the scope of this paper; gen-
eral theory may be found in.12 Here, we only mention 
several fundamental differences with the linear case. 
Firstly, it is no longer possible to unconditionally ascribe 
to a constituent a certain degradation rate; generally 
speaking, this degradation rate becomes dependent on 
the level of other constituent. Secondly, asymptotic, 
t → ∞, solution to the system (5) may not exist. This 
means that it may happen that a simple asymptotic 
relation similar to (4) may be unavailable. Thirdly, in 
contrast to the linear case, the degradation rate may be 
dependent on initial conditions; e.g. it may happen that 
high initial concentrations disappear quickly, whereas 
the low ones may stay unchanged for a long time. This 
would mean that the degradation rate would no longer 
be a descriptor of a certain type of molecules; it would 
also be a function of their concentrations.

In biochemistry of gene expression, there is a vast 
universe of events that may happen only if a large 
number of constituents simultaneously enter the 
chemical interaction. In mathematical terms, this 
means that chemical constituents form a highly non-
linear biochemical network. For such systems, sim-
ple concepts borrowed from the linear theory, strictly 
speaking, are not applicable. If they are nevertheless 
used for quantitative analysis of experimental data, 
with heavy reliance on intuition and common sense, 
then inevitably they will be prone to contradictions 
and ambiguities. Hence, they should be used with 
extreme caution. Interpretive difficulties of this kind 
are well known even with respect to much simpler 
systems, such as systems of enzymatic reactions 
described by the Michaelis-Menten kinetics.13,14 In 
the dynamics of large systems, only a carefully for-
mulated mathematical model may provide a solid 
basis for self-consistent interpretation.

Kinetics of mRNA Degradation
Traditionally, the speed of mRNA degradation (as 
well as of any other chemical constituent) is mea-
sured by the quantity called half-life, t½, that is, the 
time required for a concentration (or a copy num-
ber) to drop to the half of its initial level. In lin-
ear systems, when the characterization in terms of 
a single degradation time is valid, there is a sim-
ple relation between the half-lives and degradation 
times: t½ = τ ln 2. In more complex systems, when 
the concepts of linear theory are not applicable, such 
a simple relation may not exist, and other chemi-
cal constituents may influence the half-lives. In the 
context of microarray measurements, the crucial 
questions are whether or not degradation rates of 
different mRNAs are substantially different, and 
whether or not they are sequence-specific. If all the 
half-lives were approximately of the same order of 
magnitude for all mRNAs and thus could be consid-
ered as a non-specific constant for the entire tran-
scriptome, then, due to equation (4), a direct relation 
would exist which links the transcription level and 
transcription rate. It would be a favorable situation 
for microarray measurements; in this case it would 
be correct to claim that microarrays provide infor-
mation regarding gene activity. Available experi-
mental evidence, however, shows that it is very far 
from being the case.
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Thus, it has been shown in15 that in the mouse 
embryonic stem cells, the mRNA half-lives vary 
within the range from 2 to 24 hours and beyond. In 
yeast, according to,16 mRNA half lives range from 
3 min to 1.5 hours. The study of time-course kinet-
ics and half-lives of ∼1500 mRNAs in microbial cells 
has been undertaken in.17 The half-lives have been 
found to vary from less than 30 seconds to more than 
20  minutes. An important observation made in this 
work is that half-lives may cluster into comparatively 
tight groups. This means that what is traditionally 
interpreted as gene co-regulation may in fact be noth-
ing more than a reflection of this clustering of half-life 
times. It is not yet known what biochemical factors 
influence degradation rates. Preliminary consider-
ations, mixed with intuition, suggest that the mRNA 
decay rates are not sequence-specific; rather they are 
dependent on the mRNA’s length and some structural 
properties such as the number of exon junctions per 
open reading frame.15 Wide variations of mRNA half-
lives ranging from several minutes to several hours in 
human T lymphocytes have been also reported in.18

Another aspect of the mRNA degradation kinetics is 
that it is epigenetically regulated. For example, it was 
found in19 that there is no direct connection between 
gene activity and mRNA degradation rate. In more 
formal language, this means that τ is independent of 
TR. If such a dependence, τ = τ (TR), did exist then 
equation (4) would reduce to TL(∞) = τ (TR)TR, and 
therefore there would be some hope that, per solving 
this equation with respect to TR, it would be possible 
to directly link TR to TL(∞). Since τ is regulated epi-
genetically, such a hope is baseless. To the same end, 
mRNAs may have different stabilities at various cell 
stages, at various levels of its protein product, or at 
various developmental stages.20 As a drastic example, 
these authors indicate that immunoglobulin p mRNA 
is at least sixfold(!) more stable in the late versus early 
stage of B cells. We specifically emphasize that all 
these variations occur post-transcriptionally, that is, 
without direct connection to the parent gene’s activity. 
In the microarray context, this means that regardless 
the gene’s transcription rate, the mRNA’s half-lives 
have been modulated by factors other than gene activ-
ity. Broad study of factors influencing mRNA stability 
has been undertaken in.16 The authors report that there 
is no simple correlation between the mRNA half-lives 
and their abundances. They also conclude that the 

control of mRNA decay rates is a fundamental feature 
of gene expression machinery.

An attempt to tackle the problem of possible con-
nection (or lack thereof) between the TL and TR experi-
mentally has been undertaken in.21 In this time-course 
experiment, the TL (mRNA copy numbers) and TR (rate 
of elongation) have been measured simultaneously in 
budding yeast. It was found that from a total of 5,500 
TR and TL time-series pairs, about half turned out to be 
uncorrelated with each other. Partial explanation to this 
phenomenon has been given in22,23 by this author.

We conclude this brief review by the proposition 
that post-transcriptional life of the mRNA molecules 
is largely independent of the status of parent genes. 
The mRNA half-lives are modulated by a large num-
ber of epigenetic factors and may vary within order of 
magnitude. It is evident from here that gene activity 
measured by its transcription rate is just one of many 
factors determining the mRNA abundances. There are 
no, and cannot be, any one-to-one correspondences 
between the mRNA abundances and corresponding 
gene’s levels of activity.

Crowding, Burstiness,  
Stochasticity and Noise
The intracellular environment is a fairly chaotic place 
in which no molecular event ever happens in accor-
dance with strict, well defined rules. In,24,25 Goodsell 
represents a vivid picture of the interior of a living cell 
compiled from electron microscopy and X-ray crys-
tallography. He likens this picture to a crowded airport 
terminal where each person slowly moves to his des-
tination pushing and shoving other people, and where 
each individual trajectory is hundreds of times longer 
than it would be in the space free of other passengers. 
Technically speaking, about 70% of intracellular space 
is filled with water. On this basis, a macromolecule’s 
motion is often portrayed as if it is the motion of a col-
loidal particle in an aqueous solution disturbed only 
by the collisions with other particles.26,27 However, 
it should be taken into consideration that the water 
molecules in the cytoplasmic region are surrounded 
by much bigger molecules with typical molecular 
mass well above 40  KDa.24 Under these conditions, 
the tiny water molecules (18 Da) behave entirely dif-
ferently from those in bulk water. Their strong polar-
ity as well as numerous phenomena of protein-water 
interactions26,28 produce a much more intricate behavior 
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of the macromolecule’s motions than simple friction 
described by the Stokes’ law. Effects of crowding has 
been discussed in depth in.29 This author concludes 
that crowding exerts profound quantitative effects on 
macromolecular interactions in living systems.

The premise that the trajectories of macromolecules 
within the cytoplasm represent the patterns of a ran-
dom walk is well appreciated in the literature.30 How-
ever, many models utilizing this concept also adhere 
to the idea of collisions for characterizing molecu-
lar interactions. The concept of molecular collisions 
originates in the kinetic theory of gases and gener-
ally assumes that the molecular interactions are com-
paratively fast and localized events, that is, they take 
much less time than that between the collisions and 
unfold within a space much smaller than that between 
the molecules. None of these assumptions can be true 
with respect to intracellular interactions. As is known 
from the theory of chemical reactions, when two (or 
more) molecules approach each other, they first create 
a meta-stable transition state (a.k.a. activated com-
plex), which may be considered as an intermediate, 
usually short-lived, compound with its own chemi-
cal properties. Given the high density and big size of 
macromolecules within the cell, it can be easily imag-
ined that, in fact, the molecules spend a substantial 
amount of their lifetimes being clustered in a variety 
of temporary intermediate associations and exploring 
their very complex free energy landscapes. The com-
plexity of this picture is a far cry from a naive colli-
sion scheme adopted in many theoretical models.

A key premise of molecular biology known as 
Central Dogma assumes that there is a unidirec-
tional flow of genetic information from the DNA 
to proteins with mRNAs being the intermediaries. 
Although it is generally accepted that the DNA 
contains instructions for assembling the proteins 
and not vice versa, there is a fundamental, though 
implicit, reciprocal role of proteins in producing 
mRNAs: they serve as transcription factors in the 
very process of decoding the genes. In order for this 
circulation of matter and information to be possible, 
the proteins produced by ribosomes in the cytoplas-
mic area should be able to reach their pre-specified 
places in the gene’s regulatory regions in a timely 
manner. Since typically from 30 to 100 regulatory 
proteins per gene are used as transcription factors,31 
a corresponding number of genes should go through 

their individual cycles of expression in a perfectly 
synchronized manner; otherwise, a mere shortage 
of a few transcription factors may lead to the gene’s 
drop-out from the regulatory process and a halting 
of big sections of transcription machinery. Obvi-
ously, a simultaneous random walk of thousands of 
molecular species through all kinds of impediments 
in a densely packed intracellular environment is not 
very conducive to an orderly assembly-line-like 
behavior. Spontaneous failures like traffic jams, 
bottlenecks, backlogs, delays, loss of synchroniza-
tion, etc., are inevitable circumstances of intracel-
lular biochemical dynamics.

A large number of molecular events require coop-
erative participation of a team of molecular species, 
with transcription itself being the best example of the 
kind. Since each of these team members makes its 
way towards the designated regulatory sites through a 
densely tangled intracellular environment, each such 
event can be only thought of as a sporadic coinci-
dence. In23 these events have been termed as instances 
of stochastic cooperativity. A number of observations 
support the view of transcription as a sequence of spo-
radic events (see more detailed discussions in).2,3,11,32 
Recent experiments33 demonstrated that even in an 
individual cell, the production of a protein and sup-
porting enzymes is a stochastic process following a 
complex pattern of bursting with random distribution 
of intensities and durations. Similarly, it was found 
in34 that quantitative relations between transcription 
factor concentrations and the rate of protein produc-
tion “fluctuate dramatically in individual living cells, 
thereby limiting the accuracy with which genetic tran-
scription circuits can transfer signals.” The phenome-
non of burstiness is wide spread in genetic regulation. 
Thus, the authors35 report that “transcription occurs in 
pulses in muscle fibers.” In Ref.,36 it was found that 
“transcription of individual genes in eukaryotic cells 
occurs randomly and infrequently.” Similar observa-
tions have been made in.37–40

Oftentimes, all these innumerable peculiarities 
and intricacies of intracellular machinery are covered 
by the blanket term stochasticity41–44 The researchers 
with engineering background, in their explorations 
of analogies between intracellular dynamics and 
electronic circuitry, go even further and prefer the 
word noise for the same purposes. Sometimes, even 
biologists express frustration that in the cell’s life 
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things are not so easily formalizable and standard-
izable as in electronic engineering.45 Although the 
motivation for using engineering terminology is quite 
obvious, yet it should be recognized that these analo-
gies should not be stretched too far: there are fun-
damental and irreconcilable differences between the 
man-made engineering devices and living organisms 
developed evolutionarily (see detailed discussion in 
the author’s).2

Natural stochasticity and noise are great enemies 
of reproducibility in any domain of science, including 
biology and DNA microarrays. It is quite uncertain 
what exactly is supposed to be reproducible if the sys-
tem is stochastic and noisy by its very nature. Later in 
this paper, this topic will be explored in more detail.

Nonlinear Dynamics Perspective
With the advent of high throughput measurements 
in biology (microarrays, protein mass spectrometry, 
etc.) it became increasingly clear that it is no longer 
possible (as it used to be in the past) to associate 
the origins of disease and prevention strategies with 
the individual genes, or proteins, or other molecular 
markers. It is now widely recognized that only a 
systemic view can provide an appropriate vehicle 
for understanding complex biology and navigating 
the oceans of available data. Lack of such a sys-
temic view is often seen as a major bottleneck for 
making progress in understanding cancer.46

From the systemic viewpoint, intracellular 
biochemical machinery is a high-dimensional 
highly nonlinear system in which interactions are 
governed by the laws of chemical kinetics and 
thermodynamics. A brief term for denoting such 
systems is biochemical networks. During the last 
decades, an impressive arsenal of mathematical, 
data-analytical and computational tools have been 
amassed for studying the dynamics of biochemical 
networks.47 Nonlinear dynamics of genetic regula-
tory systems is a central topic of a number of pub-
lications by the author of this manuscript.2,11,32,48 
Biochemical networks have much in common with 
other networks of natural, technological and soci-
etal origins. Among them are the internet, predator-
prey food chains, social networks, traffic systems, 
epidemics, rumor networks, electric power grids 
and many others. A fundamental feature of all the 
networks is that no event within them can occur 

in isolation, independently of other events. Figu-
ratively speaking, each individual event creates a 
domino-effect of events propagating throughout 
the system. Genetic regulatory networks represent 
a perfect example. Each transcription event is sup-
ported by a large number of transcription factors 
with many of them being the proteins translated 
from other mRNAs; these, in turn, are transcribed 
from other genes. This means that indirectly each 
transcript is a product of the teamwork of many 
genes, not just the one from which the mRNA has 
been directly encoded. For example, if a certain 
transcription factor originated from gene-A failed 
to report to regulatory site of gene-B, then the 
latter will be halted, or shut down, thus mimick-
ing its low or zero activity. In fact, it is gene-A 
to blame for the failure of gene-B. In somewhat 
loose terms, it may be said that a network acts as 
a whole and reacts as a whole. This tight inter-
connectedness makes it difficult, both technically 
and conceptually, to analyze the observational 
and experimental data pertaining to complex sys-
tems. In particular, mRNA abundances, to a large 
extent, are the products of the system’s behavior, 
rather than of activity of individual parent genes.

Another important issue pertaining to large bio-
chemical networks is dynamic stability. A funda-
mental question posed by R. May in his seminal 
paper49: “Will a large complex system be stable?” 
gets a negative response for a vast majority of such 
systems. Only in highly specialized conditions, 
such as those stipulated by the famous Deficiency 
Zero Theorem (e.g.),50 a large biochemical network 
may be dynamically stable. Behavior of a dynami-
cally unstable system cannot be anything else but 
a stochastic process.11 It should be emphasized 
that this kind of stochasticity cannot be eliminated 
through precise measurements. Like waves in the 
ocean, or turbulence in the atmosphere, they are 
intrinsic properties of the system itself.

Reproducibility Conundrum: What 
Exactly Should Be Reproducible?
In natural sciences, the terms reproducibility and 
repeatability are referred to the capability of pro-
ducing identical results in a series of repeated mea-
surements. In experimental biology, it is sometimes 
drawn a distinction between these two terms. Usually, 
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the former refers to the agreement of measurements 
between different sites (say, laboratories) made with 
the same or identical assays, and the latter refers to 
the agreement between repeated measurements at the 
same site with the same assay. The concept of noise 
has an implicit connotation that a system by itself, i.e. 
without noise, generally possesses some properties 
of self-identity, and it is only a set of uncontrollable 
nuisance parameters that are to blame for destroy-
ing an idyllic picture of precise reproducibility. In 
intracellular biomolecular dynamics, various types 
of variability are often called intrinsic noise.51 Sche-
matically, intrinsic noise includes both stochasticity 
due to internal nonlinear instabilities and random 
variations caused by uncontrollable random forces. 
Another component of the overall variability is called 
extrinsic noise. This type of variability includes reac-
tion of the system to uncontrollable random forces 
external of the system. It may also include sample 
heterogeneity and spatial variability. There is a blan-
ket term natural variability covering all these types of 
variability. Accurate measurements can only produce 
a precise picture of this variability, but not eliminate 
it. By standardizing the protocols of sample prepa-
ration, applying temporal, spatial or across-sample 
averaging, it is possible to reduce some components 
of natural variability, but residual variability will be 
always present in experimental results. This means 
that, even with precise measurements, a series of 
identical experiments would never produce identi-
cal results due to the omnipresence of uncontrollable 
natural variability. In other words, the measurements 
cannot be completely reproducible even in principle 
if the object under exploration possesses the property 
of natural variability.

On top of natural variability, there is another 
source of errors, the one associated with inaccu-
racies of measurements. These are usually called 
instrumental noise. Detailed classification and 
analysis of instrumental errors in microarray experi-
ments is given in the above cited work.6 Microarray 
measurements involve a number of delicate physical 
and chemical processes, such as scanning of fluo-
rescent labels, laser calibration, spot quantification, 
etc. These processes are sometimes very difficult to 
standardize and maintain their precision and stability. 
It should be noted also, that although the errors of 
this type are called instrumental they can also include 

some irreducible natural variability associated with 
the physical processes within these instruments. For 
example, stability of laser illumination can be reduced 
only down to the level of thermal noise and quantum 
fluctuations. Accuracy of spot quantification always 
would be limited by granular structure of underlying 
substrate glasses, etc. This means that instrumental 
accuracy always will be limited by natural variability 
within the measurement device itself. Due to this rea-
son, measurements can never be entirely reproduc-
ible even if the subject of measurements is perfectly 
stable and invariable.

Schematically, the total error budget can be 
expressed as follows

	

σ σ σ θ θ2
0
2

1
2

0
2

1
2= + + +

sample instrument
     

�
(6)

where the first pair of terms depicts natural sample 
variability and the second pair represents instrumen-
tal noise, that is,

σ 2
0 is variance associated with natural stochasticity 

due to molecular interactions;
σ 2

1 is variance associated with sample heterogene-
ity and extrinsic noise;

θ2
0 is variance associated with natural variability 

underlying physical principles of measurements;
θ2

1 is variance associated with errors in calibration 
and environmental factors.

This schema is, of course, fairly crude and may 
be broken down into many subtler details. Some 
of the components in (6) may be reduced through 
perfection of protocols, standardization, careful 
experimental design, technological advances. Oth-
ers are irreducible and will have their footprint in 
the measurements under any circumstances. Thus, 
one may imagine that with time, technological 
progress may help to reduce the terms σ 2

1 and θ 22
1 

to negligibly small values. However, the terms σ 2
0 

and θ 2
0 reflect the very nature of the measurements 

and of the object under exploration. They can never 
be eliminated or even reduced (without killing the 
subject or turning off the instrument) whatever time, 
labor, money and intellectual efforts are poured into 
this improvement. After the technology attains the 
status when σ 2

1  σ 2
0 and θ 2

1  θ 22
0, further efforts 

directed towards improving reproducibility will 
become worthless. The irreducible part of combined 
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natural variability, σ 2 = σ 2
0 + θ 2

0, puts an ultimate 
limit to attainable reproducibility.

Differential Expression Testing and 
Elements of Statistical Mythology
With the advent of microarrays, a vast body of statis-
tical literature has emerged in which the problem of 
differential expression testing has been tackled with 
the most sophisticated statistical methodologies avail-
able. From a purely statistical point of view, analysis of 
microarray data is a new type of problem largely unfa-
miliar to traditional mathematical statistics. The core 
problem has been termed a curse of dimensionality. 
In statistics, this term denotes the situation when the 
number of samples available for the analysis is smaller, 
or even much smaller, than the number of parameters 
to be estimated.52 In the microarray context, the num-
ber of mRNA abundances to be analyzed may be as 
large as 40,000, whereas the number of microarrays 
available for the analysis is typically in the dozens, 
and only very rarely may approach hundred. In order 
to defeat the curse of dimensionality and increase 
statistical power, a common idea of borrowing 
strength from the totality of all the data available is 
being employed. Such a paradigm requires strong a 
priori assumptions regarding probabilistic properties 
of parameters; it also requires development of 
special significance scores for detection of differen-
tially expressed genes. This big problem has opened 
numerous opportunities for statistical creativity, and 
inspired development of a large variety of statistical 
methods. This multitude of methods, however, is not 
of much help in the routine work of an experimental 
biologist, unless a professional statistician is a 
member of his team. Not only does a biologist face 
the problem of deciding which statistical method is 
more appropriate for his/her experimental situation, 
but, regrettably, statisticians themselves still lack 
a consensus regarding comparative merits of vari-
ous approaches (e.g. see discussion in).53 It is a sort 
of irony that the very statistical methodof assigning 
a significance score to a differential expression turns 
out to be difficult to standardize. However, this part 
of overall standardization is crucial because generally 
different significance scores would produce different 
lists of differentially expressed genes.

A simple example of the kind is the selection 
between two alternative methods, both very popular, 

the one based on the fold change and the one based 
on the p-values of t-test. This question is discussed in 
much detail in the work54 by this author. Understand-
ably, biologists are more inclined to trust what they 
see and rely on fold change as a significance measure. 
Although it is well appreciated that big fold changes 
may be spurious and originate from pure noise, yet the 
fold-change-based estimates may serve as valuable 
leads for subsequent experimental verification using 
more accurate (and usually more expensive) methods 
such as Quantitative RT PCR or Northern Blot. An 
alternative to the fold-change approach is to compute 
the gene-specific t-tests and rank significance of dif-
ferential expression in the reverse order of p-values. 
This would be a preferable choice for a statistician. In 
contrast, a biologist would be leery about such a cri-
terion because there is always a suspicion that small 
p-values may originate not from the differences in 
transcription levels in the assay but from the ubiqui-
tous small uncontrollable biases. As discussed in the 
above mentioned report,6 there are numerous sources 
from which such biases may originate. An attempt to 
use both criteria simultaneously usually results in a 
very meager list of differentially expressed genes or 
none at all. (In order to reconcile these two extremes, 
in54 a combination score, the bio-weight test statis-
tic, has been proposed by this author.) Importantly, 
the p-value-based score and the fold-change-based 
score take into focus different, largely alternative, 
properties of the assay, and inevitably produce differ-
ent lists of differentially expressed genes.

It is not always clearly understood that assigning 
different significance score to differential expression 
would actually mean assigning different meanings 
to the very notion of differential expression. (As 
a crude analogy, it is the same as comparing two 
groups of subjects by their BMIs, or alternatively, 
by the sizes of their shoes.) Some authors even go so 
far as to propose validation of one statistical method 
by assessing its agreement with another. Thus, the 
authors55 claim that pessimistic view of microarrays 
as a diagnostic tool may originate from the fact that 
a single statistical practice is used without alterna-
tive validation. In the above discussed example, that 
would mean that the fold-change-based score should 
be validated by the p-values-based score. (Or, in the 
above crude analogy, the criterion based on shoe size 
should be validated by that of BMI) Obviously, as 
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long as the choice of statistical methodology is not 
restricted by some sort of consensus or tradition, it 
will always be possible to continue the search for such 
an approach that would allow declaring significant 
any group of genes a priori recognized as significant. 
Ironically, it may easily happen that the variability 
associated with the selection from the pool of avail-
able statistical methodologies will make its own con-
tribution towards poor reproducibility of microarray 
measurements. Essentially, this is a reflection of the 
well known in mathematical statistics effect of infla-
tion of variance due to model selection, only applied 
in a different context. In anticipation of using the 
microarrays in clinical practice, it is easy to imag-
ine a nightmarish situation when two statisticians, at 
the patient bedside, dispute whose statistical method 
is more reliable and whose list of genes should be 
selected as targets, with a physician in the corner of 
the room waiting for the verdict that he needs for 
administering a life-saving treatment.

There are several persistent patterns in statistical 
thinking that are usually taken for granted, but in fact 
are nothing else than elements of some sort of statis-
tical mythology. Thus, in cluster analysis of microar-
ray data, the genes belonging to the same cluster are 
thought to be co-regulated. It is not out of order to 
remind again, that in the DNA microarray technology, 
one is not dealing with the genes themselves but only 
with the fluorescent intensities presumably propor-
tional to the mRNA abundances. As discussed above 
in Sections 2 and 3, the latter may cluster due to many 
reasons, with the mRNA half-lives being a dominant 
factor. It is, therefore, an unwarranted logical leap over 
many intermediate steps from the clustering of fluores-
cent intensities to the co-regulation of parent genes.

The genes that are up- or down-regulated, as com-
pared to some standard or normal behavior, are often 
thought to be abnormal, faulty, perhaps mutated. As 
discussed in Section  5, each transcription event in 
genetic regulatory system is a result of the team work 
of a large number of transcription factors. Deficiency 
in any of these factors may slow or even shut down 
transcription of each particular gene. Figuratively 
speaking, in addition to the core reason that the 
parent gene may be faulty, there may be from 30 to 
100 other reasons for the abnormal behavior of this 
gene. Therefore, there is no and cannot be any unam-
biguous relations between anomalies in fluorescent 

intensities observed in microarray experiments and 
fidelities of the corresponding genetic codes. At best, 
such anomalies indicate a target for further explora-
tion by alternative, more advanced, techniques.

In statistics, there may be many different estima-
tors for the same quantity of interest. Their compara-
tive merits are measured by their asymptotic relative 
efficiency. In statistical analysis of microarray data, 
however, the consideration of asymptotic efficiency is 
not directly applicable. This is because the number of 
microarrays usually available is miserably small, so 
small that any extrapolation of asymptotic efficiency 
to the experiment with just several subjects at hand 
would be preposterous. What should be actually done 
for demonstrating superiority of certain estimates is to 
perform a simulation in which sample size is the one 
actually available. To the best of this author’s knowl-
edge, such an approach is very rare in the statistical lit-
erature on microarray data analysis. Such a stance has 
been adopted in the above cited work by this author.54 
It has been shown by simulation that for the sample 
size smaller than ten, the bio-weight test statistic has a 
higher power than that of the t-test. For a larger sample 
size, the advantages of the bio-weight test statistic dis-
appear. In formal terms, this means that the bio-weight 
test statistic and the t-test have the same asymptotic 
efficiency; however, the former is superior for the 
small sample size. All this means that considerations 
of asymptotic relative efficiency cannot be used as an 
argument in favor of one or another statistical method, 
as far as microarrays are concerned.

Some authors report high specificity in classifi-
cation of cancers using the DNA microarrays (see56 
as a recent example.) However, it often happens that 
efficiency is measured by the specificity in clustering 
the groups known a priori. It is not usually the case 
in clinical settings. Cancer is a highly heterogeneous 
disease; it cannot be always known a priori whether 
or not all the conceivable clinical outcomes have 
been adequately presented in training of the classifier. 
Therefore, in principle, successful classification of 
a priori known outcomes may demonstrate some 
clinical potential but does not represent a tool for 
clinical diagnostics by itself.

In summary, the lack of consensus in statisti-
cal methodologies leaves wide latitude for different 
interpretations of precisely the same DNA microarray 
data. This means that not only ambiguities in biological 
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interpretation but also the very statistical procedures 
that are supposed to articulate the outcome may con-
tribute to uncertainties of the DNA microarray mea-
surements thus posing difficulties in clinical setting.

Conclusion. Diagnostic Value  
of DNA Microarrays
All the above is not to say that the DNA microarrays 
are useless in clinical settings. It is only cautionary 
notes that DNA microarrays should be regarded for 
what they are, that is, the tool for studying the tran-
scriptome, not the genome. After all, it is the mRNA 
transcripts what are directly involved in the protein 
synthesis. Therefore, DNA microarrays may provide 
valuable predictions regarding the state of proteome, 
its imbalances and abnormalities. The upstream rela-
tions between transcriptome and genome are much 
more vague and ambiguous.

This situation may be improved. As shown above, a 
key element in the interplay between the genome and 
transcriptome is the post-transcriptional mRNA stabil-
ity. If the mRNA half-lives become available as rou-
tine measurements, then at least one important obstacle 
on the way towards evaluating transcription rates will 
be removed. It does not mean, however, that other 
obstacles automatically disappear as well. It would 
only mean that given the mRNA abundances and 
mRNA half-lives, the evaluation of transcription rate 
in equilibrium becomes possible. However, a number 
of important questions still will remain unresolved. Is 
asymptotic stable equilibrium achievable within the 
lifecycle of the cell? Does it exist at all? How to disen-
tangle the functionality of the gene of interest from the 
influences of other genes acting through the transcrip-
tion factors translated from them? How to infer reliable 
information regarding abnormality of genetic codes 
from observed abnormalities of transcription rates?

DNA microarray proved to be an indispensable tool 
in scientific and laboratory settings. Following the leads 
provided by DNA microarrays, innumerable discoveries 
have been made in experimental biology, despite all 
the complexities and unresolved issues. DNA microar-
rays provide important leads for follow-up studies 
using more advanced technologies such as PCR, ChIP, 
protein mass spectrometry, reporter plasmid analysis, 
and Northern blot. However, clinical practice requires 
firm cost-effective diagnoses, not just the leads for 
further experimentation. It is the author’s opinion that 

there is still long way to go until this becomes possible. 
Following,57,58 one may say that our knowledge is still 
too limited; available techniques are too expensive; and 
it is too soon to introduce microarray-based molecular 
profiling into clinical practice.
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