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Abstract
The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality
of reconstructed positron emission tomography (PET) images. For efficient computation in
reconstruction, the system model in PET can be factored into a product of a geometric projection
matrix and sinogram blurring matrix, where the former is often computed based on analytical
calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of
sinogram blurring matrix is difficult in practice because of the requirement of a collimated source.
In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source
measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can
take into account the physical effects in the photon detection process that are difficult or impossible
to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model.
Another advantage of the proposed method over MC simulation is that it can be easily applied to
data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning).

Point source measurements were acquired with high count statistics in a relatively fine grid inside
the microPET II scanner using a high-precision 2-D motion stage. A monotonically convergent
iterative algorithm has been derived to estimate the detector blurring matrix from the point source
measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and
explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated
into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been
validated using a 3-by-3 line phantom, an ultra-micro resolution phantom, and a 22Na point source
superimposed on a warm background.

The results of the proposed method show improvements in both resolution and contrast ratio when
compared with the MAP reconstruction with a MC-based sinogram blurring matrix, and one without
a detector response model. The reconstruction time is unaffected by the new method since the blurring
component takes a relatively small part of the overall reconstruction time. The proposed method can
be applied to other PET scanners for human and animal imaging.
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INTRODUCTION
Iterative image reconstruction methods have gained increasing popularity in emission
tomography because they are amenable to an arbitrary, complicated, and realistic system model
that defines the mapping from sources to measurements. It is been shown in both positron
emission tomography (PET) and single photon emission computed tomography (SPECT) that
accurately modeling the system response leads to improved image quality, e.g. obtaining high-
resolution images (Veklerov et al., 1988; Qi et al., 1998), reducing bias in kinetic parameter
estimation (Kadrmas et al., 1999), improving quantitation in cardiac scans (King et al., 1996;
Tsui et al., 1994b), and signal-to-noise ratio of cold lesions (Beekman et al., 1997; Hutton et
al., 1996; Hutton, 1997). Clinical studies also show improved sensitivity and specificity in the
diagnosis and evaluation of coronary artery disease (Ficaro et al., 1996; Ficaro and Corbett,
2004). Tremendous effort has been devoted to developing accurate system models for image
reconstruction, e.g., (Qi et al., 1998; Bai et al., 2002; Gilland et al., 1994; King et al., 1995;
Laurette et al., 2000; Tsui et al., 1994a; Welch and Gullberg, 1998; Alessio et al., 2006;
Selivanov et al., 2000; Panin et al., 2006).

The system model of PET is usually stored in a set of factored matrices to reduce storage and
computational costs (Qi et al., 1998; Alessio et al., 2006; Frese et al., 2003; Selivanov et al.,
2000; Panin et al., 2006; Mumcuoglu et al., 1996). The major element is the geometric
projection matrix which can be calculated based on the solid angle effect. The second
component is the detector response function, or sinogram blurring matrix, which models the
physical effects such as crystal penetration, inter-crystal scatter, photon non-colinearity, etc
(Qi et al., 1998; Alessio et al., 2006). The sinogram blurring matrix is difficult to calculate
analytically. Direct measurement is also challenging because it requires placing a collimated
point source at different radial positions inside the PET scanner to avoid crosstalk between
measurements taken at different angles. As a results, Monte Carlo (MC) simulations are often
used to calculate the detector blurring matrix (Qi et al., 1998; Mumcuoglu et al., 1996) or the
complete system matrix without any decomposition between the geometric and blurring
components (Rafecas et al., 2004).

Here we propose a maximum likelihood (ML) approach to estimating 2D sinogram blurring
kernels from experimental measurements of non-collimated point sources. The resulting
sinogram blurring matrix has the advantage of being derived from actual measurements and
hence can take into account the physical effects in the photon detection process that are difficult
to model in a MC simulation. Similar approaches have been presented recently by Alessio et
al. (Alessio et al., 2006) and Panin et al. (Panin et al., 2006). However, their approaches have
two major limitations that are overcome here: (i) they ignored the block structure of the detector
by assuming the detector blurring matrix remained the same for all azimuthal angle, whereas
our method models the block effect explicitly; (ii) they ignored the sinogram blurring effect
along the angular direction and limited the blurring to only the radial and axial directions,
whereas our method models the sinogram blurring effect using a 2D blurring kernel in both
radial and angular directions. Beekman et al. (Beekman et al., 1999) also used a ML method
to estimate the detector response in SPECT from measurements of an extended source, but
their method is not applicable to PET because of the differences in scanner geometry and
detector response model.

The approach presented here is also different from direct measuring the system matrix without
any decomposition between the geometric and blurring components by scanning a point source
at every voxel position (Panin et al., 2004; Furenlid et al., 2004). In theory, the latter approach
leads to the most accurate description of the whole system matrix, including the detector
response components. However, the resulting system matrix is less sparse and hence results in
much higher computation cost in reconstruction comparing to a factored system model. It also
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suffers from having to acquire a large number of scans (equal to the number of the voxels).
Furthermore, the voxel size in reconstruction is pre-determined by the sampling distance of
the grid and cannot be changed once the point source data are acquired. In comparison, with a
factored system matrix approach, we can easily change the voxel size in reconstruction by
using a different geometric projection matrix without the necessity of re-estimating the
sinogram blurring matrix.

This paper is an extension of our earlier work presented in (Qi, 2006;Tohme and Qi, 2007).
We have modified the rotational symmetry assumed in (Qi, 2006) to account for the detector
block effect in modern PET scanners. We also present experimental results using the microPET
II scanner (Tai et al., 2003).

MATERIALS AND METHODS
Maximum Likelihood Estimation of the Sinogram Blurring Matrix

We propose to estimate the detector blurring matrix from a set of point source measurements.
The point source data are modeled as a collection of independent Poisson random variables
with the likelihood function

(1)

where B is the sinogram blurring matrix with the (i,j)th element bij being the blurring
contribution from detector pair j to detector pair i. yi,m and gi,m are the measured projection
and calculated geometric projection of the mth point source by detector pair i, respectively,
and ni is the sensitivity factor for detector pair i. M is the number of the point source positions
and N is the number of sinogram elements. In this work, gi,m are calculated by forward
projecting a computer simulated point source using a geometrical projection matrix. B models
the crystal penetration, inter-crystal scatter, and other blurring effects in the photon detection
process. The focus here is to estimate B from point source measurements. The log likelihood
function of the measured data is written as

(2)

We obtain an ML estimate of the sinogram blurring matrix by

(3)

Equation (3) does not have a closed-form solution, but can be solved iteratively. Following the
approach described in (Qi, 2006), we obtain the following closed form update equation
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(4)

Equation (4) is essentially the same as the famous ML-EM (expectation maximization)
algorithm for emission image reconstruction with bij as the unknowns and gi,m as the
transformation matrix. Similarly, the above algorithm defined in Equation (4) monotonically
converges to the ML estimate of the sinogram blurring matrix and guarantees the nonnegativity
constraint when starting from a nonnegative initial estimate.

Rotational Symmetry and Detector Block Effect
Most PET scanners have a cylindrical geometry. To model the rotational symmetry in PET
scanners, we index the (i,j)th element, bij, as b(ir,iϕ, jr, jϕ), where ir and jr (=1,…N,r) are the
radial indices, while iϕ and jφ (=1,… N,φ) are the angular indices. For a perfect ring scanner
geometry as shown in Figure 1A, the detector blurring matrix is rotationally symmetric, i.e.

(5)

The rotational symmetry reduces the number of unknowns in the detector blurring matrix B
by Nϕ. However, most modern PET scanners use block detectors and have a polygonal shape
(Figure 1B). Thus, the rotational symmetry is only true on the block level. The effect of the
block structure is particularly significant for small animal PET scanners, which have a small
ring diameter.

To model the block effect, we use a blurring matrix that is rotationally symmetric at every
specific number of angles equal to the number of crystal elements inside each detector block,
instead of one that is rotationally symmetric at all angles. In the case of the microPET II scanner
(Figure 1B), each detector block consists of 14 individual crystals. Therefore, the blurring
matrix would be rotationally symmetric at every 14 angles. For example, angle 0 has the same
blurring coefficient as angle 14 (0 + 14) (two representative LORs are shown in red in Figure
1B), and angle 7 is equivalent to angle 21 (two representative LORs are shown in blue).
Equation (5) is then modified to

(6)

where k is calculated by

(7)

and K is the number of crystal elements inside one detector block. With equation (6), the number
of unknowns in the detector blurring matrix B is reduced by Nφ/K.

Combining equation (6) with equation (4), we get the new update equation
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(8)

where dϕ= jϕ− iϕ. The measured data yir,iϕ,m are sampled at every K angles starting from angle
k to estimate the blurring matrix at angle k. Since the detector blurring is a local operator, most
elements in b(ir, k, jr,dϕ) are zero. To reduce computational cost, we limit our calculations to
just those radial bins that are close to ir and angles close to iϕ, i.e., |iϕ− jϕ|≤Wϕ and |ir − jr|
≤Wr, where Wr and Wϕ are pre-selected window sizes in the radial and angular directions,
respectively. In this study, we used Wr =10 and Wϕ =4. Note that for a given ir and k, the
estimation of b(ir,k,•,•) is independent of other blurring kernels. Thus, equation (8) can be run
in parallel on multiple processors to reduce the kernel estimation time.

Data Acquisition
An 18.5 MBq (0.5 mCi) 22Na point source was scanned at 0.5-mm intervals for 3064 different
locations (Figure 2A) inside the microPET II scanner using a 2-D high-precision computer-
controlled motion stage shown in Figure 2B. The motion stage was placed outside the scanner
with the point source protruding into the field of view to minimize attenuation effect. The stage
was positioned in such a manner as to restrict the 2-D motion of the point source to the central
axial plane. The scan duration at each location was 60 seconds. The whole acquisition was
automated by acquiring data in list mode. A sequence of pulses was sent to the microPET II
scanner as a gating signal each time before the point source was moved to the next position.
The gating signal was embedded in the list-mode data stream and was subsequently used to
histogram the list-mode data for each point source position into a separate sinogram with 140
radial bins and 210 azimuthal angles (span=3). While the proposed method can be used to
estimate a different set of blurring kernels for each oblique sinogram, here we estimated the
blurring kernels using the central direct sinogram plane only and applied the results to all
oblique sinogram planes, which is consistent with the MAP reconstruction software on
microPET scanners. The blurring effect along the axial direction is ignored in this study. A 12-
hour normalization scan was performed prior to the data acquisition to obtain the detector
normalization factor ni.

The geometric projection gi,m used in the estimation were obtained by forward projecting
simulated point source images using a purely geometrical system matrix with a 0.5-mm voxel
size to match the separation between the point source positions. However, the estimated
blurring matrix can be used with any other geometric projection matrix in image reconstruction
as shown in the phantom experiments. To match the point source location in the simulated
image to the physical position of the point source inside the scanner, care has been taken to
place the first point source inside the scanner right at the very center of the field of view and
to align the axes of the motion stage to be parallel to the x- and y-axes. Once this is done, the
alignments of other points are determined by the computer-controlled 2D motion stage. To
verify the accuracy of the positioning, point source data were also reconstructed using the
existing MAP software installed on the scanner.

The 22Na point source was chosen in this experiment for practical considerations. The
availability of high activity concentration in a small sub-millimeter volume makes the 22Na
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point source an ideal choice to achieving good count statistics in the measurement data in a
short scan time. The long half-life of 22Na allows scanning all point source locations in a single
session without replacing the source. Another consideration is that we are estimating a system
matrix that will be primarily used to reconstruct PET studies with 18F tracers. A study done in
(Alessio et al., 2005) shows that the positron range of 18F in water (which is very close to soft
tissue in density) and that of 22Na in Lucite (the plastic shell encapsulating the point source)
are very similar, which also suggests 22Na point source is a good candidate for measuring
system response. A minor drawback of 22Na source is that it emits a high-energy gamma ray
(1.275MeV), which can contribute to scattered events through down-scattering. Fortunately,
the scattered events have minor effect on the resolution measurement in our experiment.

Evaluation Phantoms and Figures of Merit
To validate the estimated detector blurring matrix from the point source measurements, we
incorporate it into the maximum a posteriori (MAP) reconstruction algorithm that was
developed in (Qi et al., 1998; Bai et al., 2004) and is installed on the microPET II scanner. We
acquired phantom scans and reconstructed the data using the MAP software without a detector
response model, and with either the existing MC-based blurring matrix or the new one
estimated from the point source data. All MAP reconstructions were performed with β=0
(equivalent to ML) and with various number of iterations. By default, the reconstruction
algorithm includes two iterations of 3D Ordered Subset EM (OSEM 3D) as initialization prior
to MAP iterations. The MC-based blurring matrix models the block structure of the detectors
and is similar to those currently being used on microPET scanners (Siemens Preclinical
Solutions, Inc., Knoxville, TN) for MAP reconstruction.

The first phantom is a 3-by-3 line phantom made by a plastic tube (shown in Figure 3A). The
phantom was filled with 3.7MBq (100 μCi) of 18F and scanned at the center of the field of
view (FOV) and at 2-cm radial offset from the center for 20 minutes at each location. The voxel
size used in reconstructions is 0.4×0.4×0.58 mm3. The second phantom is an ultra-micro hot
spot phantom™ shown in Figure 3B. The phantom was filled with 11.1 MBq (300 μCi)
of 18F and scanned at 1.5-cm radial offset from the center for 30 minutes. The voxel size used
in the reconstruction for the ultra-micro hot spot phantom was 0.5×0.5×0.58 mm3.
Furthermore, a 22Na point source and a cylinder phantom filled with 18F solution were scanned
separately and the sinograms were superimposed to mimic a phantom scan of a point source
embedded in a warm background. The total number of detected events was 1.2 million for the
point source and 820 million for the warm background. The data was reconstructed using a
voxel size of 0.4×0.4×0.58 mm3.

Line profiles were drawn along the radial and tangential directions through hot spots to compare
the reconstruction results. We calculated a contrast coefficient defined as

(9)

where pk and vk represent the values of the k peak and valley in the line profile, respectively.,
and K is the number of valleys. By definition, the number of peaks is K+1. For the point source
phantom, there is only one peak and the value of the valley is the mean of the warm background.
For the line phantom images, a sum of Gaussian functions is fitted to the profiles and the
corresponding full width at half maximum (FWHM) was extracted to compare the resolution
across different reconstruction methods. We did not attempt to deconvolve the source size from
the FWHM results because it would not affect the relative performance of the reconstruction
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methods. In addition, for the hot spot phantom and point source phantom images, we selected
a set of voxels in the uniform background and calculated the standard deviation of the values
of the voxels as a measure of noise level. The selected voxels are more than 2-mm away from
each other to reduce the effect of noise correlation. A contrast-to-noise curve is then generated
for the hot spot phantom and the point source phantom to compare different reconstruction
methods.

RESULTS
Blurring Kernel Estimation

We estimate the sinogram blurring matrix using the proposed method by running the update
equation in (8) for 200 iterations. Figure 4 shows the estimated blurring kernels for ir = 71, 43
and 15, and k = 8. The value of the blurring kernel at each position reflects the probability of
mispositioning an event with the corresponding angular and radial offset. In a perfect system
with no detector blurring effect, the blurring kernel would be a delta function at (0, 0). Note
that ir =71 corresponds to the line of response passing through the center of the field of view.
Thus, it has the minimum blurring effect. As the line of response moves away from the center,
the blurring effect increases as shown by the increased size and reduced peak value of the
blurring kernel. The plots also show that the detector blurring occurs in both radial and angular
directions.

Figure 5 shows the sinogram blurring kernels for ir =43 at three different angles (k = 1, 8, and
14). For a rotationally symmetric scanner (i.e., ignoring the block effect), the three blurring
kernels should be exactly the same. The fact that they are different proves that it is important
to consider the block structure in the system model. Note that for k = 1 and 14, the two detectors
forming the LORs are located at the edges of the two detector blocks, while for k = 8, the two
detectors are located at the center of the detector blocks. Clearly the blurring effects for edge
crystals are reduced and are elongated along diagonal directions comparing to that for the center
crystals. This is because a photon is more likely to escape from the gap between detector blocks
and not being detected when penetrating an edge crystal, whereas it is more likely to be stopped
by adjacent crystal when penetrating a center crystal.

The 3-by-3 Line Phantom Reconstruction
Figure 6 shows the reconstructed images of the 3-by-3 line phantom placed at the center of the
field of view with 18 MAP iterations (default setting on the scanner) using no detector response
model, the existing MC-based blurring matrix, and the newly estimated blurring matrix,
respectively. The hot spots are more clearly resolved in the cases when a blurring model is
included in the reconstruction compared to the MAP reconstruction without any blurring
model, while there is little visible difference between the MAP results that use a blurring matrix.
We plot the vertical profiles through the center points of the reconstruction images (Figure 7).
The values of the contrast coefficient defined in equation (9) are plotted against iteration
number and are shown in Figure 8A. At all iterations, the new blurring matrix results higher
contrast than the other two methods. At iteration 73, the new blurring matrix results in a 350%
increase in the contrast coefficient when compared to the MC-based result. The improvement
over MAP with no detector response model is much more pronounced with an increase of
contrast coefficient by 1690%. The FWHM results obtained by the Gaussian fitting are plotted
in Figure 8B, and also show that MAP reconstructions with either sinogram blurring model
achieves significantly better resolution than MAP without any sinogram blurring model.
Comparing the two blurring models, the new blurring matrix produces better resolution than
the MC-based blurring matrix. The improvement may be attributed to a better estimation of
the inter-crystal scatter and non-colinearity by the proposed method. Furthermore, the positron
range, missing from the Monte Carlo kernel, is inherently modeled in the new blurring matrix.
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Figure 9 shows the reconstructed images of the 3-by-3 line phantom placed at 2-cm off-center
for iteration 18. The reconstructed image with the new blurring matrix shows clear
improvements in the separation of the 3-by-3 sources in both radial and tangential directions.
The improvement is even more evident in the radial and tangential profiles through the middle
point of the phantom as shown in Figure 10. The profiles in Figure 10 are average of three
adjacent lines because the points do not line up with the axes completely. The contrast
coefficients are plotted against iteration number in Figure 11A, and show, at iteration 73, a
720% and 2684% improvement for the new method over the MAP reconstruction with the
Monte Carlo based blurring matrix and without any blurring model, respectively. The FWHM
values are plotted versus iteration number in Figure 11B and show that the proposed method
results in better resolution than either of the other MAP reconstructions. Moving the phantom
2-cm away from the center of FOV, the mean FWHM in the radial direction at iteration 73
degrades by 61.5% and 43.1% for the MAP using the MC-based blurring matrix, and without
any blurring model, respectively, while the degradation was only 26.4% for MAP using the
new blurring matrix. On the other hand, the degradation in contrast observed when moving 2-
cm away from the center of FOV is 84.8%, 91.6%, and 90.2% for MAP reconstructions using
the new blurring matrix, the MC-based blurring matrix, and no blurring matrix, respectively.
Note that the absolute contrast value of the reconstruction without a blurring kernel for the off-
center phantom at iteration 73 is very low (=0.29) at which we were not able to distinguish
between peaks and valleys reliably, so the result is more sensitive to noise.

Ultra-micro hot spot phantom
The reconstructed images of the ultra-micro hot spot phantom are shown in Figure 12 for
iteration 33. Visually there is a slight improvement by the proposed method in the 1-mm line
sector (upper right section of the phantom) over the MC-based result. The difference here is
not as dramatic as in the 3-by-3 line phantom case. The MAP reconstruction with no blurring
matrix performs poorly when compared to either of the MAP reconstructions. The radial
profiles through the first four columns of the 1-mm resolution line sources are shown in Figure
13. In Figure 14, the contrast values across iterations are plotted against the noise, which was
measured by the standard deviation of multiple single-pixel ROI’s (regions of interest), located
far apart from each other as to avoid noise correlation, in a uniform background region (the
top axial plane of the phantom) and normalized by the mean values of the ROI’s. At iteration
43, the contrast is 24.7% higher for the new blurring matrix-based result (2.67) when compared
with the MC case (2.14). The MAP reconstruction without a blurring kernel was not included
in the comparison because it cannot resolve the 1-mm hot spots.

Point source phantom with warm background
The reconstructed images of the point source phantom with a warm background are shown in
Figure 15 for iteration 18 and the corresponding profiles though the point source are shown in
Figure 16. The contrast of the point source reconstruction was plotted against the normalized
standard deviation of the background noise in Figure 17. Different points on the curves are
obtained with 18, 36, 54, and 72 MAP iterations, respectively. At all noise levels, the MAP
reconstruction with the new blurring kernel leads to higher contrast, when compared with the
other two MAP reconstructions. At iteration 72, the improvements in contrast are 11% and
69% compared to the MC-based blurring kernel and no blurring kernels results, respectively.

DISCUSSION
The results show that modeling sinogram blurring is important in image reconstruction for
PET. The new blurring matrix produces higher contrast and improved resolution compared to
the existing Monte Carlo based blurring matrix. While the improvement is not dramatic in
some cases, the proposed method provides an alternative approach to estimate the blurring
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matrix and can take into account physical factors that are difficult to model in MC simulations.
In addition, the proposed method can be directly applied to sinogram data that have undergone
transformations, such as Fourier rebinning (FORE) (Defrise et al., 1997), where MC simulation
is less straightforward because each element in the rebinned sinogram does not correspond to
a physical line of response measurement.

In this study, we measured the point source on a 2D grid with 0.5-mm spacing. The fine
sampling grid was chosen because it allows us to explore different sampling patterns. We are
studying different point source configurations to see if we can obtain similar results with less
number of point source positions. The blurring effects along the axial direction are not included
in this study. For PET scanners operated in 2D mode, the axial blurring component is often
considered as separable from the in-plane sinogram blurring (Panin et al., 2006), so it can be
estimated independently from the in-plane sinogram blurring and then be incorporated in the
reconstruction algorithm. For oblique sinograms in a fully 3D PET, the axial and in-plane
blurring effects may be correlated with each other, in which case they should be estimated
simultaneously.

We use the ML-EM algorithm to estimate the sinogram blurring matrix. No regularization was
applied because the point source measurements are of high counting statistics and the noise in
the point source measurements are far less than that in a normal scan. The algorithm was run
for 200 iterations to get a good fit of the data. The blurring kernel estimation was run in parallel
on a PC cluster because each blurring kernel can be estimated independently. The estimation
took about 140 seconds per blurring kernel on a single 2GHz CPU and one hour for all 994
blurring kernels on a 40-CPU cluster. Since this is a one-time computation, the computational
time is not an issue. The same sinogram blurring matrix can be used with different geometric
projection matrices for reconstructions using different image voxel size, which is one
advantage of the factored system matrix. Another advantage of the factored system matrix is
its computational efficiency, because the system matrix retains the sparsity of the geometric
projection matrix, for which forward and back projections can be efficiently calculated. The
computation cost of the sinogram blurring operation is insignificant compared to geometric
forward and back projections. Thus, the new blurring kernels, while having slightly larger
support than the Monte Carlo based blurring kernels, do not affect the total image
reconstruction time.

CONCLUSION
We have presented a method for estimating the sinogram blurring component of the system
matrix for iterative image reconstruction for PET. The method has been validated using the
small animal microPET II scanner. The proposed method models sinogram blurring effects
along the radial and angular directions, and explicitly taking into account the block structure
of the detectors. Phantom experiments show that the proposed method provides superior results
in terms of resolution and contrast coefficient with no noticeable additional cost in
reconstruction time when compared to MAP reconstruction using the existing Monte Carlo
based blurring matrix. The proposed method is applicable to other PET scanners for human
and animal imaging.
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Figure 1.
(A) A perfect ring scanner geometry and (B) the geometry of the microPET II scanner with 30
detector blocks. The red line of responses (LORs) in (B) go through the center of the detector
blocks and share the same blurring kernel, while the blue LORs go through the edge of the
detector blocks and share another set of blurring kernel.
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Figure 2.
(A): The point source locations inside the microPET II scanner. (B): The 2D motion stage
setup.
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Figure 3.
(A): A 3-by-3 line phantom. The inner diameter of the tube is about 0.6 mm and the center-to-
center spacing between the lines is about 2 mm. (B): The ultra-micro hot spot phantom with
hole diameters of 2.4, 2, 1.7, 1.35, 1, and 0.75mm. Spacing between line channels is twice of
the diameter.
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Figure 4.
The estimated sinogram blurring kernel for k=8 and ir = 15 (A), 43 (B), and 71 (C).
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Figure 5.
Estimated sinogram blurring kernels for ir = 43 and k = 1 (A), 8 (B), and 14 (C). Horizontal
axis is radial offset and vertical axis is angular offset.
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Figure 6.
The reconstructed image of the 3-by-3 phantom at center of FOV. (A): MAP reconstruction
with no detector response model. (B): MAP reconstruction using the Monte Carlo based
blurring matrix. (C): MAP reconstruction using the new blurring matrix.
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Figure 7.
The vertical profiles through the center of the images in Figure 6. Diamonds: MAP
reconstruction with no detector response model; circles: MAP reconstruction with Monte Carlo
based blurring matrix; crosses: MAP reconstruction with the new blurring matrix.
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Figure 8.
Figures of merit for the 3-by-3 phantom located at the center of FOV. (A): contrast versus
iteration. (B): resolution (FWHM) versus iteration. Diamonds: MAP reconstruction with no
detector response model; circles: MAP reconstruction with Monte Carlo based blurring matrix;
crosses: MAP reconstruction with the new blurring matrix.
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Figure 9.
The reconstructed images of the 3-by-3 phantom at 2-cm radial offset. (A): MAP reconstruction
with no detector response model. (B): MAP reconstruction using the Monte Carlo based
blurring matrix. (C): MAP reconstruction using the new blurring matrix. Top row: transaxial
views; bottom row: sagittal views through the center column.
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Figure 10.
The radial (A) and tangential (B) profiles through the middle point in the transaxial images
shown in Figure 9. Diamonds: MAP reconstruction with no detector response model; circles:
MAP reconstruction with Monte Carlo based blurring matrix; crosses: MAP reconstruction
with the new blurring matrix.
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Figure 11.
Figures of merit for the 3-by-3 phantom located 2 cm away from the center of FOV. (A):
contrast versus iteration. (B): resolution (FWHM) versus iteration. Diamonds: MAP
reconstruction with no detector response model; circles: MAP reconstruction with Monte Carlo
based blurring matrix; crosses: MAP reconstruction with the new blurring matrix.
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Figure 12.
The reconstructed images of the ultra-micro resolution phantom. (A): MAP with no detector
response model. (B): MAP reconstruction using the Monte Carlo based blurring matrix. (C):
MAP reconstruction using the new blurring matrix. Top row: transaxial views; bottom row:
sagittal views passing through the first column of the 1-mm line sector.
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Figure 13.
The vertical profiles through the first four columns (A–D) of the 1-mm resolution section in
Figure 12. Circles: MAP reconstruction with Monte Carlo based blurring matrix; crosses: MAP
reconstruction with the new blurring matrix.
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Figure 14.
Mean contrast of the 1-mm hot spots versus normalized standard deviation of the ultra-micro
hot-spot phantom. Circles: MAP reconstruction with Monte Carlo based blurring matrix;
crosses: MAP reconstruction with the new blurring matrix.
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Figure 15.
The reconstructed images of the point source phantom with warm background. (A): MAP
reconstruction with no detector response model. (B): MAP reconstruction using the Monte
Carlo based blurring matrix. (C): MAP reconstruction using the new blurring matrix.
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Figure 16.
The vertical profiles through the center of the images in Figure 15. Diamonds: MAP
reconstruction with no detector response model; circles: MAP reconstruction with Monte Carlo
based blurring matrix; crosses: MAP reconstruction with the new blurring matrix.
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Figure 17.
Contrast of the point source versus background noise. Diamonds: MAP reconstruction with no
detector response model; circles: MAP reconstruction with Monte Carlo based blurring matrix;
crosses: MAP reconstruction with the new blurring matrix.
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