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Abstract
At many synapses in the central nervous system, spikes within high-frequency trains have a better
chance of driving the postsynaptic neuron than spikes occurring in isolation. We asked what
mechanism accounts for this selectivity at the retinogeniculate synapse. The amplitude of synaptic
potentials was remarkably constant, ruling out a major role for presynaptic mechanisms such as
synaptic facilitation. Instead, geniculate spike trains could be predicted from retinal spike trains on
the basis of postsynaptic summation. This simple form of integration explains the response
differences between a geniculate neuron and its main retinal driver, and thereby determines the flow
of visual information to cortex.

Introduction
Most neurons communicate through rapid sequences of action potentials, but the transmission
of spike trains is rarely faithful because neurons actively transform their inputs into novel
outputs. When spikes reach a synapse at high frequency, the likelihood is increased that they
will generate spikes in the postsynaptic neuron, whereas at low frequency they are less
effective. This type of synaptic summation acts as a temporal filter, and appears to be a general
mechanism because it is found at synapses in a variety of brain structures (Chadderton, Margrie,
& Hausser, 2004; Henze, Wittner, & Buzsaki, 2002; Swadlow & Gusev, 2001).

Among such synapses, a prime example is the one made by ganglion cell axons onto relay cells
of the lateral geniculate nucleus (LGN), the thalamic nucleus that gates most visual signals
sent from retina to cortex. It is well known that the LGN transmits only about half of all retinal
spikes to the cortex (Alitto & Usrey, 2005; Cleland, Dubin, & Levick, 1971; Kaplan, Purpura,
& Shapley, 1987; Lee, Virsu, & Creutzfeldt, 1983; Sincich, Adams, Economides, & Horton,
2007; Usrey, Reppas, & Reid, 1998; Weyand, 2007), yet the precise rules of this selectivity
are not understood.

In particular, it is not known whether control of retinal spike transmission depends on
presynaptic mechanisms such as short-term activity-dependent plasticity or postsynaptic
mechanisms such as summation of synaptic potentials. Plasticity is nearly ubiquitous at
synapses in the central nervous system (Zucker & Regehr, 2002), and has been demonstrated
at the retinogeniculate synapse in vitro (Alexander & Godwin, 2005; Blitz & Regehr, 2003;
Chen, Blitz, & Regehr, 2002) . However, the impact of plasticity appears to be quite minimal
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in intracellular recordings obtained in vivo (Eysel, 1976). Thus the role of synaptic plasticity
versus summation in the editing of retinal spike trains is not clear.

To examine the mechanism underlying selectivity at the retinogeniculate synapse, we recorded
simultaneously the spike trains of monosynaptically connected pairs of retinal ganglion cells
and LGN neurons. Although several retinal ganglion cells are likely to converge onto each
LGN neuron, potentially complicating an analysis of the input-output properties, it is generally
agreed that a single ganglion cell provides the dominant input to the receptive field center
(Bishop, Burke, & Davis, 1958; Cleland et al., 1971; Kaplan et al., 1987; Kaplan & Shapley,
1984; Lee et al., 1983; Mastronarde, 1987a; 1987b; Sincich et al., 2007; Usrey et al., 1998;
Usrey, Reppas, & Reid, 1999; Wang, Cleland, & Burke, 1985). We therefore stimulated the
receptive field center with a spot of light while keeping the surround in darkness. This stimulus
minimizes, but does not eliminate, the impact of corticogeniculate feedback, as the visual cortex
responds best to oriented stimuli. Such recordings allowed us to derive a model of spike
transmission at a single synapse in vivo that captures the transformation operated by a neuron
onto the spike train of its main driver.

Methods
Experiments were conducted in 6 adult macaques using procedures approved by the UCSF
Institutional Animal Care and Use Committee, and in accordance with NIH guidelines.
Animals were anesthetized and prepared for physiological recordings as described in a recent
study of the same data set (Sincich et al., 2007). The cells were selected from that study based
on the duration of the records, to allow statistically meaningful analyses. Extracellular
potentials recorded by single tungsten electrodes (Frederick Haer & Co., Bowdoin ME) were
amplified 1000×, bandpass filtered between 300 Hz and 3kHz, and digitized at 25 kHz (Power
1401, Cambridge Electronic Design, Cambridge). Only LGN neurons with EPSPs that
exhibited an absolute refractory period were included in the data set. Visual stimuli were
restricted to the receptive field center, as established by manually mapping the field boundaries.
The light intensity of an LED illuminating only the field center varied continuously, with a
naturalistic temporal frequency power spectrum between 0.2 and 80 Hz (van Hateren, 1997).
In these naturalistic stimuli, the power decreases approximately with the inverse of frequency.
To assess responses to repeated trials, each 10 s stimulus included first a 5 s segment that was
common across trials, and then a 5 s segment that was unique to the trial. We typically recorded
more than 100 trials for each cell.

The model is defined as follows. The membrane potential is the sum of stereotyped events:

where Vsyn is the postsynaptic potential (Figure 3a), Vspike is the waveform that includes a
spike and the subsequent after-hyperpolarization (Figure 3b), the {tj} are the measured times
of arrival of the retinal inputs, the {tk} are the times of spikes generated by the model LGN
neuron, and n(t) is Gaussian-distributed white noise, initially set to zero. The model neuron
spikes whenever the potential exceeds the spike threshold, V(t) > Vthresh.

The postsynaptic potential is described by a α-function:
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where VEPSP is the maximal amplitude of the EPSP, and τEPSP is the time to peak of the EPSP
(which also governs its decay time). In all of our fits, we obtained VEPSP < 1, indicating that
a single isolated EPSP was never able to elicit a spike. We describe a synaptic event as pure
EPSP for simplicity, but in the reality their waveforms are likely to arise from a stereotyped
sequence of EPSP-IPSP, with the IPSP being provided by feedforward inhibition.

The spike waveform is described by:

where δ(t) is Dirac’s delta function, Vreset is the magnitude of the after-hyperpolarization, and
τreset is the time constant of recovery from this hyperpolarization. Events are causal, so
Vsyn(t) = 0 and Vreset(t) = 0 for t<0. In summary, the model operates on the train of afferent
inputs {tj}, and is described by 4 parameters: VEPSP, τEPSP, Vreset, τreset.

The optimal values for the free parameters were computed as follows: (1) The spike train in
each trial was Gaussian low-pass filtered (σ = 5 ms) to obtain a measure of instantaneous firing
rate. (2) We obtained the best set of 4 parameters for each trial, by minimizing the sum of
squared differences between model prediction and instantaneous firing rate. The parameter
estimates did not change appreciably from trial to trial (Figure S3 in Supplementary Materials).
(3) We fixed τreset to the median value obtained in step 2, and recomputed the best values for
the 3 remaining parameters for each trial. (4) We next fixed VEPSP to the median value obtained
in step 3, and recomputed the best values for the 2 remaining parameters for each trial. (5) We
then fixed τEPSP to the median value obtained in step 4, and recomputed the best values for
Vreset for each trial, from which we computed the median value for Vreset. This procedure
yielded a set of 4 parameters for each cell (Table 1). We verified that changing each parameter
from its designated value yielded inferior fits (Figure S3 in Supplementary Materials).

The optimal noise level for each cell was obtained by simulating the model responses at a
number of amplitudes for the noise term n(t), and finding the noise level that yielded the best
fits (least mean square error) to the diagrams plotting efficacy vs. inter-EPSP input (Figure
1a). The values thus obtained are reported in Table 1.

The model predicts responses that would be observed with intracellular recordings. To relate
these responses to extracellular recordings such as ours (Figure 1a) we high-pass filtered the
model traces with a low-cut frequency of 300 Hz, which is the one used in the recordings. The
resulting traces (Figure 3a–c) resemble qualitatively those seen in the actual recordings (Figure
1a).

To compute the temporal frequency responses of the recorded and modeled cells (Figure 6)
we used simple deconvolution. We first took Fourier Transforms of the stimulus and of the
response, to obtain functions S(ω) and R(ω) that depend on frequency w. We then estimated
the optimal linear filter (Theunissen et al., 2001), which is given by F(ω) = S−1(ω)R(ω) / S−1

(ω)S(ω). We computed F(ω) independently for each trial, and then averaged across trials. For
each cell, we repeated this procedure twice, once for actual responses, and then for the model
responses.

The temporal tuning curves fitted to the data points are empirical functions: sums of Gaussians
that can have different widths to the left and to the right of the peak. The cutoff frequencies
are defined as the frequencies below and above which the responses drop below 1/e times the
peak. This corresponds to the 37% level. An analysis at the 50% level gives very similar results.
An analysis at the 10% level, instead, is not always possible for the low-cut frequencies,
because often the low-frequency responses did not drop below that level.
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Results
We recorded extracellularly from macaque LGN to compare the spike train from a neuron with
the train of synaptic inputs from the neuron’s dominant retinal afferent (Figure 1a). In
recordings with high signal-to-noise ratio, we could detect both LGN spikes and retinal inputs
in the form of extracellularly-recorded EPSPs, historically called “S-potentials” (Bishop et al.,
1958; Cleland et al., 1971; Hubel & Wiesel, 1961; Kaplan & Shapley, 1984; Wang et al.,
1985). Nearly all spikes were preceded by a retinal input, but only half (49±14%, s.d., n=12)
of retinal inputs succeeded in generating a spike. The consistent shape of LGN spikes permits
the use of waveform subtraction to identify the synaptic potentials that are partially merged
with a spike (Sincich et al., 2007), and therefore enables reconstruction of the complete retinal
spike train, which can then be compared to the LGN spike train (Figure 1b–d). This procedure
isolated a single retinal input in 9 of 12 cells, as shown by an absolute refractory period for the
EPSP (Figure S1 in Supplementary Materials).

The efficacy of retinal input depended critically on EPSP history. Failed inputs were preceded
by much longer intervals of silence (59 ± 8 ms, s.e., n = 9) than successful inputs (11 ± 1 ms).
For example, after a 20 ms silent period the efficacy of an EPSP was low, while the efficacy
of a subsequent EPSP that followed within 30 ms was much higher (Figure 2a). This
enhancement of efficacy by paired inputs was consistent across our sample (Figure S2 in
Supplementary Materials), and resembles results obtained in the cat (Usrey et al., 1998;
Weyand, 2007) .

These effects might be explained by facilitation at the retinogeniculate synapse: subsequent
spikes in a train could lead to progressively larger EPSPs, increasing the likelihood of reaching
threshold. To test this hypothesis, we examined whether the interval between EPSPs affects
the amplitude of the excitatory postsynaptic current (EPSC). We obtained robust estimates of
this amplitude from the rising slope of the extracellular potential (Henze et al., 2000; Johnston
& Wu, 1995). To minimize effects from polysynaptic input and membrane nonlinearities, we
measured the slope from the initial portion (between 10% and 50% height) of the synaptic
potential. The estimated synaptic current remained remarkably constant (Figure 2b–c),
regardless of the interval between the first EPSP and the second EPSP. In fact, synaptic current
showed a 1–5% decrease at short EPSP intervals, indicating a slight depression, rather than
facilitation. These results agree with intracellular observations made in the lateral geniculate
of cats, where subsequent EPSPs appear to be remarkably invariant (Eysel, 1976), and indicate
that synaptic plasticity—particularly facilitation—is unlikely to play a prominent role in
retinogeniculate integration during natural vision.

We therefore sought an explanation for the difference between spike trains in retina and LGN
that does not rely on synaptic plasticity. One possible mechanism is postsynaptic summation:
if retinal EPSPs are prolonged and summate, then the first EPSP will help the second EPSP to
reach threshold. To evaluate this idea, we constructed a model of LGN responses that
incorporates three basic components. The first is a synaptic potential of fixed shape and
amplitude (Figure 3a). The second is a spike mechanism; when membrane potential reaches
threshold, this mechanism spikes and injects an after-hyperpolarization which causes a
refractory period (Figure 3b). The third is noise accounting for the synaptic inputs that we did
not control and for a noisy spike threshold. The contributions of these components add linearly.
Like the neurons we recorded, the model neuron fires only when an EPSP is sufficiently close
to a previous EPSP (Figure 3c).

The model requires only 5 parameters: duration and amplitude of the EPSP, duration and
amplitude of the after-hyperpolarization, and amplitude of the noise term. We estimated these
parameters by optimizing a prediction of the firing rate of the LGN neuron given the timing
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of EPSPs. Parameters were well constrained and remained constant for over 800 s of
stimulation (Figure S3 in Supplementary Materials), yielding a single set of parameters for
each neuron.

The model provided good fits to the data, accounting for 73% of the variance in the firing rate
(mean, n = 9) for repeated stimuli. LGN spike trains predicted by the model (Figure 3d)
resembled closely the recorded ones (Figure 1d). The model performed equally well for
parvocellular and magnocellular neurons (Table 1). Most importantly, the model captured the
increased efficacy of EPSPs that occur after a short inter-EPSP interval. Following a 20 ms
silent period, the modeled first EPSP has low efficacy, both for the example cell (Figure 4a),
and for the population (Figure 4b; see cell by cell breakdown in Table 1).

Further support for the model comes from a cell-by-cell analysis of predicted EPSC amplitudes
(Figure 5). For some cells, the model predicts EPSPs that are much larger than others. To
confirm these differences in EPSP size, we went back to the extracellular traces and asked
whether those cells had larger EPSCs. As in the analysis in Figure 2b,c, we estimated EPSC
size from the initial slope of the synaptic potential recorded extracellularly. The data show
there is a positive and significant correlation across cells between the measured EPSC and the
EPSP size predicted by the model. This correlation suggests that the electrode recordings could
detect genuine differences in EPSP size, and indicate that the parameters of the model are
physiological.

Because our model includes only the synapse from the main retinal afferent, its success suggests
that our stimulus configuration largely isolates this retinal afferent, allowing us to study the
basic mechanism of retinogeniculate integration. In other words, stimulation of the receptive
field alone successfully minimized the impact of the numerous additional synaptic inputs to
LGN relay neurons, which include retinal afferents from the receptive field surround, inhibitory
input from interneurons or the thalamic reticular nucleus, and feedback projections from cortex
(Sherman & Guillery, 2003). Our model fits suggest that in our reduced stimulus configuration
the role of these additional synaptic inputs is simply to reduce the efficacy of the dominant
retinal afferent. Indeed, these inputs are summarized in our model by the noise term, and the
noise required to fit our data was largest in the cases with low peak efficacy (Figure 4c).

A model that captures the transformation of spike trains from one neuron to the next in the
visual system should also explain the differences in the visual responses of these neurons.
Therefore the model should explain the changes in visual responses between retina and LGN,
at least for stimuli in the receptive field center. To test this idea, we computed temporal
frequency tuning curves for the retinal responses, for the LGN responses, and for the
corresponding model responses. As expected, the temporal frequency profiles of the afferent
ganglion cell and LGN neuron were fairly similar (Hamamoto, Cheng, Yoshida, Smith, &
Chino, 1994; Lee et al., 1983; So & Shapley, 1981), the main difference being one of overall
responsivity (Figure 6a). Across the population, the model correctly predicted that the main
difference between retinal and LGN responses was a large reduction in responsivity (Figure
6b), with little or no effect on preferred frequency (Figure 6c) or on other measures of response
tuning (Figure 6d–e) .

Discussion
To reveal the fundamental mechanism of retinogeniculate integration we concentrated on the
transmission of the dominant retinal input to an LGN neuron, the input that serves the receptive
field center. We drove this retinal input by using a spot stimulus that covered only the receptive
field center. More complex stimuli, such as a large-field grating, would have activated both
additional retinal afferents and corticogeniculate feedback (Alitto & Usrey, 2005; Marrocco,
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McClurkin, & Young, 1982; Sherman & Guillery, 2003; Sillito, Jones, Gerstein, & West,
1994; Wang, Jones, Andolina, Salt, & Sillito, 2006). With our spot stimulus, these inputs
operating at nearly spontaneous background levels, which could be captured by the noise term
in our model. In most cases this noise terms was small, and the model could explain a large
portion of the spike trains. Our stimulus, therefore, activated only minimally the more elaborate
synaptic, cellular, and circuit mechanisms that can influence LGN transmission. A complete
understanding of LGN processing, of course, would need to incorporate these mechanisms.
Future researchers may find it fruitful to describe these mechanisms in terms of their effects
on retinogeniculate integration, and specifically on the components of our simple model.

Our results indicate that thalamic integration of spikes from the dominant retinal input depends
primarily on postsynaptic summation and on basic mechanisms of spike generation. We first
measured postsynaptic potentials arising from the dominant retinal input, and found no
evidence for synaptic facilitation. The synaptic depression that we observed was modest,
arguably smaller than seen in vitro (Alexander & Godwin, 2005; Blitz & Regehr, 2003; Chen
et al., 2002) but highly consistent with intracellular in vivo recordings made in the cat (Eysel,
1976). We therefore constructed an extremely simple model of synaptic integration, one in
which EPSPs have constant size irrespective of past history. This model suffices to explain the
spike train of the LGN neuron based on the spike train of the dominant retinal afferent. The
model explains how roughly half of the spikes in the optic nerve are “lost in transmission” and
how the other half is forwarded on to the cortex, and it captures the transformation in visual
responses that is operated by the LGN at least for our simplified stimulus conditions.

Our analysis succeeds in capturing the transformation between incoming spike trains and
outgoing spike trains for a neuron in the primate visual system. Prior investigators have devised
integrate-and-fire models to characterize the responses of retinal ganglion cells or LGN neurons
to visual stimulation (Keat, Reinagel, Reid, & Meister, 2001; Pillow, Paninski, Uzzell,
Simoncelli, & Chichilnisky, 2005). Our model extends this previous work in one key respect:
it operates on the spike train of the relay cell’s main afferent input, not on the visual stimulus.

The linearity of postsynaptic summation that our model implies may be surprising given the
highly nonlinear operation of voltage-dependent ion channels expressed in LGN neurons
(McCormick & Huguenard, 1992; Williams & Stuart, 2000). Comparisons of cellular activity
in vitro versus in vivo suggest that intact circuitry is more likely to hold neurons within a
relatively narrow range of membrane potentials (Steriade, 2001). In the absence of spiking, the
membrane potential in vivo rests near −60 mV, fluctuating by only a few millivolts due to
synaptic noise (Deschênes, Paradis, Roy, & Steriade, 1984; Lu, Guido, & Sherman, 1992).
Under these conditions, voltage-dependent ion channels may exhibit more linear behavior. A
relatively steady-state activation of these channels may then predominate, yielding a linear
response to EPSPs, as seen in our data and when synaptic noise is injected in vitro (Wolfart,
Debay, Le Masson, Destexhe, & Bal, 2005).

Furthermore, it might be surprising that our model performed well even though it is not
endowed with burst mechanisms that are known to be present in LGN neurons (Sherman,
2001). The reason for this success is that only few (about 3%) of the LGN spikes in our data
were part of bursts and, most importantly, even these spikes were individually driven from
retinal inputs (Sincich et al., 2007). In other words, to account for our data one does not need
an explicit cellular mechanism that produces bursts in LGN neurons.

Finally, an important consequence of our results is that synaptic depression appears to play a
much smaller role in vivo than in vitro. Perhaps the synapse does depress, but depression is
constantly engaged and therefore invisible under our stimulus conditions. Our stimulus
involved hundreds of consecutive presentations of 10-s segments that mimic the temporal
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statistic of viewing natural scenes (van Hateren, 1997). This stimulus causes more incoming
spikes than the typical stimulus protocol in vitro, where there are long periods of silence
(Alexander & Godwin, 2005; Blitz & Regehr, 2003; Chen et al., 2002). If the retina had been
more silent we might have seen effects of synaptic plasticity. To test for this possibility we
performed two additional analyses. First, we asked if our model could predict the efficacy of
incoming spikes that follow intervals up to 150 ms, during which synaptic depression would
be expected to recover (Alexander & Godwin, 2005; Blitz & Regehr, 2003; Chen et al.,
2002). Contrary to the synaptic depression hypothesis, efficacy did not increase after these
long silences. Furthermore, the model could predict the efficacy of these long-interval
incoming spikes with high accuracy. Second, we asked whether the model’s performance
would improve if we endowed it with synaptic depression and recovery (Varela et al., 1997).
The extended model has two more parameters, so it should provide better fits. Instead, it
performed just as well as the original model: the fitting procedure consistently chose parameter
values that correspond to no depression. Similar to results obtained at the geniculocortical
synapse (Boudreau & Ferster, 2005), therefore, we conclude that synaptic depression at the
retinogeniculate synapse is much diminished in vivo compared to measurements in vitro.

Because our model characterizes the primary transformation performed by an LGN neuron, it
can be built upon to understand the effect of stimuli that are more complex and behaviorally
relevant. Stimuli that invade the receptive field surround would involve antagonistic inputs
from additional retinal afferents, and likely a more significant role for signals from thalamus
and cortex (Wang et al., 2006). Indeed, numerous behavioral and physiological variables can
affect LGN integration and transmission of retinal inputs (Mukherjee & Kaplan, 1995),
including anesthesia (Li, Funke, Worgotter, & Eysel, 1999), wakefulness (Weyand,
Boudreaux, & Guido, 2001), alertness (Cano, Bezdudnaya, Swadlow, & Alonso, 2006),
attention (O'Connor, Fukui, Pinsk, & Kastner, 2002) and binocular rivalry (Haynes,
Deichmann, & Rees, 2005; Wunderlich, Schneider, & Kastner, 2005). We suggest that our
model provides a foundation upon which to describe and understand the effects of these
numerous factors, thus helping to clarify their underlying biophysical mechanisms and
computational roles.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Basic properties of retinal EPSPs and LGN spikes. a, Spikes and EPSPs recorded
simultaneously with an extracellular microelectrode. b, A 2 sec segment of the noise stimulus,
representing a naturalistic temporal frequency spectrum. c–d, Rasters of synaptic potentials
(c) and LGN spikes (d) recorded during 25 repeats of the stimulus in b. Curves indicate firing
rates averaged over 100 trials (right scale). Cell 121R15-5.
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Figure 2.
Synaptic summation and plasticity statistics for the cell population. a, Efficacy of EPSP pairs,
when the first EPSP occurred after > 20 ms silent period (average of 9 cells). The first EPSP
has low efficacy (open circle), the second one has high efficacy if it follows soon thereafter
(closed circle). Error bars are ± 2 s.e. b,c, Synaptic current (EPSC) estimated from the initial
slope of the extracellularly-recorded EPSP (normalized to EPSP at the 5 ms interval). Synaptic
currents showed no facilitation, regardless of whether the second EPSP failed (b) or succeeded
(c) in eliciting a spike.
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Figure 3.
Predicting retinogeniculate integration with a summation model. a, Model EPSP induced by
a retinal spike, and corresponding extracellular trace (top). b, Model spike and subsequent
after-hyperpolarization, and corresponding extracellular trace (top). c, Responses of the model
to three pairs of retinal inputs, with decreasing EPSP interval. The first EPSP in the pair never
reaches threshold; the second can reach threshold only if it combines with the first. d, Rasters
and firing rates predicted by the model (cf. Figure 1d).
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Figure 4.
Comparison of observed and predicted synaptic efficacy. a, Efficacy of synaptic inputs in a
pair, and predictions of the model (curves). Same cell as in Figure 1. b, Efficacy averaged over
9 cells (same data as Figure 1a) along with model predictions (curves). Error bars are ± 2 s.e.
(n = 9). c, The noise required to explain the data is negatively correlated with the synapse’s
peak efficacy (measured 5 ms after a prior EPSP); regression line, r = −0.89, p < 0.01. The
amplitude of the noise determines the standard deviation of a Gaussian distribution. Its units
are the same as those of Vsyn, which has a value of zero at rest, and of one at threshold.
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Figure 5.
Measured EPSC amplitude correlates with model predictions. The abscissa indicates the
amplitude of each cell’s EPSP as fitted by the model (Vepsp, from Table 1). The ordinate
indicates the EPSC size estimated from the initial slope of the synaptic potentials measured
extracellularly, which is an estimate of EPSC amplitude. To control for variations across cells
in electrode impedance and distance from the soma, we corrected these measures by dividing
by the amplitude of the extracellularly measured spike. Slope measurements were taken for
~4000 synaptic potentials. Error bars are ±1 s.d. The regression was performed through robust
fitting, which gave a small weight to the outlier. There is a positive and significant (p = 0.014)
correlation across cells between the measured EPSC and the EPSP size predicted by the model.
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Figure 6.
Observed and predicted response properties of LGN neurons. a, Temporal frequency tuning
curves for synaptic potentials (gray), LGN spikes (black), and modeled responses (curve). Cell
121R14-4. b: Responsivity of retinal inputs (abscissa) and LGN outputs (ordinate) for 9 LGN
neurons (closed circles) and corresponding model predictions (open circles). c–e, Same for the
preferred temporal frequency (c), for the low-frequency cutoff (d), and for the high-frequency
cutoff (e).
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