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Abstract
We present a direct method for producing images of kinetic parameters from list mode PET data.
The time-activity curve for each voxel is described by a one-tissue compartment, 2-parameter
model. Extending previous EM algorithms, a new spatiotemporal complete data space was
introduced to optimize the maximum likelihood function. This leads to a straightforward
parametric image update equation with moderate additional computation requirements compared
to the conventional algorithm. Qualitative and quantitative evaluations were performed using 2D
(x,t) and 4D (x,y,z,t) simulated list mode data for a brain receptor study. Comparisons with the
two-step approach (frame-based reconstruction followed by voxel-by-voxel parameter estimation)
show that the proposed method can lead to accurate estimation of the parametric image values
with reduced variance, especially for the volume of distribution (VT).

I. Introduction
Dynamic positron emission tomography (PET) permits quantification of tracer dynamics.
The current data processing path for parametric imaging is to reconstruct a time series of
images from measured projection data independently and then estimates each voxel’s kinetic
parameters from the time-activity curve (TAC), typically with a compartmental model. This
frame-based approach requires selection of the duration of each frame, involving a choice
between collecting longer scans with good counting statistics but poor temporal resolution,
or shorter scans that are noisy but preserve temporal resolution. Optimal use of the dynamic
data requires accurate noise estimates for data weighting; this estimation is challenging for
nonlinear iterative reconstruction methods because its noise is spatially variant and object
dependent.

Direct approaches for creation of parametric images have been in the literature for over 20
years. In 1983, Snyder [1] developed a list mode expectation-maximization (EM) maximum
likelihood (ML) algorithm for estimation of parametric images using inhomogeneous
spatial-temporal Poisson processes and a kinetic compartmental model. Carson and Lange
[2] also proposed an EM framework for direct parametric image reconstruction algorithm
with a one tissue model. Subsequently, many direct kinetic estimation methods [3-8] for
sinogram data have been produced. However, for a high-resolution scanner such as the
HRRT with 4.5×109 potential lines of response, list mode data is preferred; this can reduce
the data storage requirements while maintaining highest resolution by storing the measured
attributes of each event in the list. Other direct methods [9-14] were developed from linear
basis functions, whose the temporal model is linear with respect to the parameters. Although
such basis functions can represent the TACs, they have no direct physiological meaning and
kinetic parameters must still be calculated from the dynamic images, leading again to a two-
step process. The application of kinetic compartment models is more biologically based,
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becoming the primary goal of dynamic PET. Tsoumpas et al [5] and Wang et al [6] proposed
direct parametric image reconstruction methods, whose compartment model is linear (Patlak
plot) model, and is thus limited to irreversible tracers such as FDG. Here, we present a new
EM-based direct parametric image reconstruction algorithm for list mode data by combining
nonlinear one tissue compartment model (1T) into the physical model.

II. Theory
We extend the notation of Lange and Carson [15] from static to 4D. The physical model for
the projection measurement Yit on line of response (LOR) i at time t is:

(1)

where cij is the probability of an emission from voxel j (activity λjt at time t) detected on
LOR i, and Δt is the duration of time bin t (equal to the time resolution of the list mode
data). For simplicity, attenuation, normalization, randoms and scatter are not included here,
although this is a straightforward addition to the algorithm. The 1T model is:

(2)

where Pτ is the input function and the parameters are K1 and k2. The log likelihood function
is:

(3)

The complete data space recognizes that the activity at any time is the sum of activities
delivered to the system at earlier times, each with a different residence time. Thus, define
the spatiotemporal complete data space Xijtτ to be the counts collected along LOR i in time
bin t emitted from voxel j and where the input was delivered at time τ

(4)

From the complete data, the EM algorithm for the estimation of the parameters can be
derived.

E-step, at iteration n:

(5)

M-step: maximization of conditional data likelihood,
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(6)

Define the sensitivity image,

(7)

Taking partial derivatives with respect to K1j and k2j, and setting to zero, for K1j yields:

(8)

which leads to the K1j update equation

(9)

For k2j,

(10)

The K1j update (Eq. 9) is inserted into Eq.10, which leads to

(11)

The left hand side is a function of k2 and the input function (assumed known) and the right
hand side is a function of the data. Define the left hand side expression as a function of k2:

(12)

and obtain the k2j update equation

(13)
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where H(k2) can be pre-computed when the input function is known. To assess the proposed
algorithm, 2D tests and 4D tests were performed.

III. Methods
To update k2, the inverse of H(k2) is required. H(k2) is independent of measured data, so it
can be computed when a plasma input is given, as is shown in Fig.1A. H(k2) was computed
for a 30-min simulation (Fig. 1B). A fifth order polynomial log function can fit H(k2)’s
inverse very well (Fig.1 C). The fitting error is shown in Fig.1D; errors of less then 1×10-4

in k2 were found. This is determined by precomputing H(k2) and then fitting the inverse
functions with a polynomial log function.

A. 2D tests
Tests were performed for the case of 100 voxels, where gray matter (GM), white matter
(WM) and basal ganglia (BG) were simulated. Fig.2 and Table I show the K1 and k2 values
of the 1D phantom, which are typical of receptor kinetics. Fifty 30-min list mode data
replicates were created by forward projection of Eq. 2 with a measured input function and
with sampling, resolution and sensitivity (Q) comparable to that of the HRRT. Poisson noise
was added to each replicate, corresponding to 6.3×105 events. Random and scatter events
were not included. Values were reconstructed with the new algorithm and with the 2-step
method (30×1 min frames). To fairly compare the two methods, for the 2-step method,
nonlinear weighted least square method was utilized to estimate parametric values after the
first step reconstruction, with weights are based on Noise Equivalent Counts (NEC).

B. 4D tests
A 10-cm diameter spherical 3D phantom (Fig.3) was created with 3 embedded regions,
corresponding to GM (K1=0.55, VT=6), WM(K1=0.15, VT=3) and BG(K1=0.55, VT=12),
with the same kinetics as the 2D test. One list mode file was simulated based on the HRRT
and the new 4D method was integrated into the MOLAR software [16]. Results were
compared to the frame-based 2-step method (6×30 sec, 3×60 sec, 2×120 sec, 4×300 sec)
using 30 subsets for both methods. Images were saved after each subset reconstruction
update (sub-iteration).

IV. Results and Discussion
A. 2D tests

Table I shows the mean percent bias and coefficients of variation (COV) for GM, WM and
BG across the 50 realizations for frame based method and the proposed method after 60
iterations. 4D percent bias was comparable to frame-based values, and slightly smaller for
VT, which is more the important parameter for brain receptor studies. 4D’s advantage was
clearly demonstrated by COV reduction of ~ 30%.

B. 4D tests
Fig.4 shows 4D and frame-based results after 30 and 60 sub-iterations. Visually, for the K1
30 sub-iterations image, there is little difference between the two methods. But for VT, 4D is
clearly better than frame-based method, especially for the high VT value region BG and low
VT value region WM. However, for the K1 60 sub-iterations image, frame-based method is
less noisy, but for the VT, 4D is still better. After 1 iteration (30 sub-iterations), the 4D
method produced parametric images close to true images, which indicates that it may have
faster convergence than frame-based method. Mean bias and COV across each region of
interest (ROI’s) voxels were calculated from the one realization. Fig.5 shows the plots of

Yan et al. Page 4

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2010 July 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



bias vs. variability for the three ROIs, plotted at intervals of 10 sub-iterations (30~90). As
sub-iteration number increases, the curves (and the noise) go up.

For K1, 4D has higher noise than frame-based method at the same iteration for all the three
regions, and 4D is more biased for the GM region, although these biases were small. K1 bias
was larger for the frame method in BG and WM. Like the 2D tests, 4D produce more
accurate VT images than frame-based. In addition, unlike the frame-based method, 4D’s bias
doesn’t change much with the increasing sub-iterations, which further suggests that it may
converge faster.

In terms of computational complexity, the 4D method is somewhat more intensive than the
frame method, because the computations in forward- and backprojection steps are more
intensive. H(k2) and its inverse add an insignificant amount of computation. In the 4D
method, handling of the whole list mode file (usually several billion events) is required,
which requires more memory or more disk swapping.

V. Conclusions
In this paper, we introduced a method for the direct reconstruction of kinetic parameters
from PET list mode data, which integrated the one tissue compartment model and the PET
physical model and facilitated kinetic parameters estimation with the help of new
spatiotemporal complete data space. Substantial more evaluation is required including
simulations with motion correction, random correction and scatter correction and human
data evaluations. Careful comparison of convergence between 4D and frame-based methods
will be essential for fair comparisons of resolution and noise. In addition, it is necessary to
optimize the software to decrease the computation time. We believe that this 4D EM method
is a promising approach for kinetic parameter estimation directly from measured data.
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Fig. 1.
A: Measured plasma input, B: H(k2), C: Inverse log function: k2~Log(H(k2)), D: k2 fitting
error with polynomial (note change of scale)
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Fig. 2.
1D phantom: A: VT, B: K1
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Fig. 3.
3D phantom: A: K1 (0~0.55 mL/min/mL) B: VT (0-12 mL/mL)
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Fig. 4.
The results of two methods after 30 (left side: A, B, C and D) and 60 sub-iterations (left
side: E, F, G and H). A. K1 image (0~2) for 4D B. K1 image (0~2) for frame-based method,
C. VT mean image (0~30) for 4D, D. VT mean image (0~30) for frame-based method, E. K1
image (0~2) for 4D F. K1 image (0~2) for frame-based method, G. VT mean image (0~30)
for 4D, H. VT mean image (0~30) for frame-based method.
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Fig. 5.
COV versus Bias curves for 4D (solid line) and frame-based method (circled line). As sub-
iterations goes up (30~90), the curves go up
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