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Abstract
Core histones are susceptible to a variety of post-translational modifications (PTMs), among
which methylation and acetylation play critical roles in various chromatin-dependent processes.
The nature and biological functions of these PTMs have been extensively studied in plants,
animals and yeasts. In contrast, the histone modifications in Neurospora crassa, a convenient
model organism for multicellular eukaryotes, remained largely undefined. In the present study, we
used several mass spectrometric techniques, coupled with HPLC separation and multiple protease
digestion, to identify the methylation and acetylation sites in core histones isolated from
Neurospora. Electron transfer dissociation (ETD) was employed to fragment the heavily modified
long N-terminal peptides. In addition, accurate mass measurement of fragment ions allowed for
unambiguous differentiation of modification by acetylation or tri-methylation. Many modification
sites conserved in other organisms were identified in Neurospora. In addition, some unique
modification sites in histone H2B, including N-terminal α methylation, methylation at K3 and
acetylation at K19, K28 and K29, were observed. Our analysis provides a potentially
comprehensive picture of methylation and acetylation of core histones in Neurospora, which
should serve as a foundation for future studies on the function of histone PTMs in this model
organism.

The eukaryotic nucleosome, the fundamental unit of chromatin, plays an important role in
packaging and organizing the genetic material (1). Each nucleosome consists of 146 bp of
DNA wrapped around an octameric core histone complex consisting of two H2A-H2B
dimers flanking a (H3-H4)2 tetramer (1,2). All core histones have a basic N-terminal
domain, a globular domain organized by the histone fold and a C-terminal tail (1,2). The
histone N-terminal tails, which extend out from the core particle, are involved in the
establishment of chromatin structural states, whereas their histone fold domains mediate
histone-histone and histone-DNA interactions (2).

Core histones are susceptible to a variety of post-translational modifications (PTMs), which
include methylation, acetylation, phosphorylation, ubiquitination, SUMOylation and ADP-
ribosylation. These modifications, which occur mainly on the N-terminal tails (3,4), can
affect interactions of nucleosomes with trans-acting factors, and are thought to play a role in
the assembly and disassembly of chromatin states, and can control the accessibility of DNA
for important cellular processes including transcription, replication, gene silencing and DNA
repair (5-9). Distinct modifications of the histone tails can recruit specific chromatin-binding
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proteins, and modifications on the same or different histone tails may be interdependent and
generatevarious combinations on any individual nucleosome (10-12).

Mass spectrometry has been widely used for assessing histone PTMs. It provides direct
information about the sites and types of modifications, differentiates isobaric modifications
(e.g., acetylation vs. tri-methylation) (13), and allows for quantitative analysis (14). PTM
information obtained by mass spectrometric analysis facilitates genome-wide functional
studies and provides the foundation for studies of modifications in specific regions of
genomes using chromatin immunoprecipitation (ChIP) with antibodies recognizing
specifically modified histones (15-17).

Neurospora crassa is a convenient model eukaryote, showing genomic features lacking in
some other simple eukaryotes (e.g. yeast), including DNA methylation and certain histone
modifications (e.g. H3K27 methylation). Studies using this organism have contributed
significantly to the fundamental understanding of circadian rhythms, DNA methylation,
genome defense systems, mitochondrial protein import, post-transcriptional gene silencing,
DNA repair and other processes (18). Being a multicellular filamentous fungus, Neurospora
also provides a system to study cellular differentiation and development (19). However, no
comprehensive investigation of the PTMs of Neurospora core histones has been reported.

In the present study, we extracted core histones from N. crassa and systematically mapped
histone methylation and acetylation, using a combination of digestion with various proteases
and analyses with multiple types of mass spectrometers. Our results allowed for the
identification of acetylation and methylation sites of lysine residues that were found
previously in Arabidopsis thaliana, Saccharomyces cerevisiae and humans. More
importantly, we identified several unique acetylation and methylation sites in core histones
of Neurospora. Our analysis on core histone PTMs provides a foundation for examining the
regulation of histone modifications and for genome-wide functional studies in this model
organism.

Experimental Procedures
Extraction of core histones from Neurospora crassa

Neurospora crassa was cultured as described previously (20-22) and stored at -80°C. The
core histones were obtained by using procedures reported for nuclei isolation by Emmett et
al. (23) and histone extraction by Goff (24) with some modifications. Briefly, frozen
Neurospora tissue (5 g) was ground to fine powder with a pestle in a cold mortar under
liquid nitrogen. To the powder was subsequently added 20 mL nuclei isolation buffer
containing 0.3 M sucrose, 40 mM HaHSO3, 25 mM Tris-HCl (pH 7.4), 10 mM MgSO4, 0.5
mM EDTA, 0.5% NP40, and the suspension was stirred vigorously. Cells were disrupted by
intermittent exposure of the homogenate to sonication. The resulting mixture was filtered
through two layers of silk in a Büchner funnel to remove whole cells and cell debris.

The above filtrate was centrifuged at 7,500g for 10 min and the supernatant was removed.
To the precipitate was subsequently added 50 mL nuclei isolation buffer, and the resulting
mixture was gently shaked for 30 min and centrifuged again. The precipitate, which
contained the nuclei, was resuspended in 1-mL ice-cold NaHSO3 solution (25 mM, pH 7.2),
followed by brief sonication (5 s). Hydrochloric acid was added immediately into the
suspension to a final concentration of 0.3 M, and the resulting mixture was incubated at 4°C
for 1 hr with continuous vortexing on an automatic vortexing machine. The histones in the
supernatant were precipitated with cold acetone, centrifuged, dried and redissolved in water.
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HPLC separation and protease digestion
Core histones were isolated by HPLC on an Agilent 1100 system (Agilent Technologies,
Santa Clara, CA) as described previously (25). A 4.6×250 mm C4 column (Grace Vydac,
Hesperia, CA) was used. The wavelength for the UV detector was 220 nm. The flow rate
was 0.8 mL/min, and a 60-min linear gradient of 30-60% acetonitrile in 0.1% trifluoroacetic
acid (TFA) was employed.

In order to obtain high sequence coverage of the proteins, purified histones were digested
separately with several proteases, including trypsin, Arg-C, Glu-C, Asp-N, and
chymotrypsin. A protein/enzyme ratio of 50:1 (w/w) was employed for trypsin and 20:1 for
other proteases. The different buffers used for the digestions were 100 mM NH4HCO3 (pH
8.0) for trypsin, Arg-C or Glu-C; 50 mM sodium phosphate (pH 8.0) for Asp-N; and 100
mM Tris-HCl (pH 7.8) along with 10 mM CaCl2 for chymotrypsin. The digestion was
carried out overnight at room temperature for chymotrypsin and at 37°C for other proteases.
The peptide mixtures were subjected directly to LC-MS/MS analysis, or to a further peptide
fractionation by HPLC and then analyzed by MALDI-MS/MS on a Q-STAR instrument or
ESI-MS/MS on an LTQ-Orbitrap (See below).

Peptide fractionation was performed on the same HPLC system with a Zorbax SB-C18
capillary column (0.5×150 mm, 5 μm in particle size, Agilent Technologies), and a 60-min
gradient of 2-60% acetonitrile in 0.6% acetic acid was used. The flow rate was 10 μL/min.

Mass spectrometry
MALDI-MS/MS measurements were performed on a QSTAR XL quadrupole/time-of-flight
instrument equipped with an o-MALDI ion source (Applied Biosystems, Foster City, CA).
The laboratory collision energy applied for MS/MS varied from 50 to 75 eV depending on
peptide sequences and modification levels. The collision gas was nitrogen.

LC-MS/MS experiments were performed on three different instruments, including a 6510
QTOF LC/MS system with HPLC-Chip Cube MS interface (Agilent Technologies), an LTQ
linear ion trap mass spectrometer and an LTQ-Orbitrap XL mass spectrometer with electron
transfer dissociation (ETD) capability (Thermo Electron Co., San Jose, CA). The same 60-
min linear gradient of 2-60% acetonitrile in 0.1% formic acid was applied for peptide
separation.

In the 6510 QTOF LC/MS system, the sample enrichment, desalting, and HPLC separation
were carried out automatically on the Agilent HPLC-Chip with an integrated trapping
column (40 nL) and a separation column (Zorbax 300SB-C18, 75 μm×150 mm, 5 μm in
particle size). The Chip spray voltage (VCap) was set at 1950 V and varied depending on
chip conditions. MS/MS experiments were carried out in either the data-dependent scan
mode or the pre-selected ion mode. The width for precursor ion selection was 4 m/z units.
The temperature and flow rate for the drying gas were 325°C and 4 L/min, respectively.
Nitrogen was used as collision gas, and collision energy followed a linear equation with a
slope of 3 V per 100 m/z units and an offset of 2.5 V. The raw data obtained in the data-
dependent scan mode were converted to Mascot generic format files, and submitted to the
Mascot Database search engine (Matrix Science, Boston, MA) for protein and PTM
identification.

For LC-MS/MS analysis on the LTQ, peptides were separated with a Zorbax SB-C18
capillary column (0.5×150 mm, 5 μm in particle size, Agilent Technologies), and the mobile
phases were delivered by the Agilent 1100 capillary HPLC pump at a flow rate of 6 μL/min.
Helium was employed as the collision gas, and the normalized collision energy was 30%.
The spray voltage was 4.5 kV, and the temperature for the ion transport tube was 275°C.
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ETD spectra were acquired on an LTQ-Orbitrap (Thermo Electron Co., San Jose, CA). Both
online LC-MS/MS and offline direct infusion analyses were performed. In brief, during the
online LC-MS/MS analysis, samples were redissolved in 15 μL of 0.1% formic acid and
loaded to a Biobasic C18 Picofrit capillary column (75 μm×100 mm, 15 μm in particle size,
New Objective, Woburn, MA) at a flow rate 0.3 μL/min. The ETD reaction time was 100
ms. In the offline analysis, the pre-fractionated H2B and H4 N-terminal peptides were
redissolved in 20 μL 50:50 acetonitrile:H2O with 0.1% formic acid. Samples were directly
infused. Different ETD reaction time was used to optimize peptide fragmentation.

Results
Neurospora crassa is a convenient model for multicellular eukaryotes, and it has been
frequently used for studying the regulation of various cellular processes (19). To improve
the foundation of information on chromatin structure and function in Neurospora, we
initiated a systematic investigation of the PTMs of core histones in this organism. We first
extracted core histones from Neurospora tissues and fractionated individual core histones by
using reverse-phase HPLC. The core histones were eluted in the order of H2B, H4, H2A,
and H3 (Figure S1). We then digested the core histones individually with different proteases
and analyzed the peptide mixtures with LC-MS/MS on various instrument platforms to
obtain high sequence coverage and achieve unambiguous PTM assignment. The detected
PTM sites are summarized in Figure 1 and the sequence coverage is shown in Figure S2.

Identification of PTMs in histones H2B and H2A
Isolated histone H2B was digested with trypsin, Asp-N and Glu-C separately to obtain
peptides in appropriate lengths and good sequence coverage. The digestion mixtures were
subjected subsequently to LC-MS/MS analysis, and the acquired mass spectra were searched
with Mascot search engine and the results manually verified. A sequence coverage of 100%
was reached and multiple modification sites were identified.

Acetylation of histone H2B was reported for several organisms, including human, budding
yeast, and Arabidopsis (26-29). Here we identified many acetylation sites, including K7 and
K12, which appear acetylated among different organisms, and K19, K28 and K29, which
have not been reported.

Aside from acetylation, we also observed methylation of K3 and of the N-terminus of
Neurospora H2B. Example mass spectra for the H2B N-terminal
peptide 1PPKPADKKPASK12 are depicted in Figure 2 and Figure S3. The positive-ion ESI-
MS (Figure 2A) revealed the presence of one acetyl group and 2, 3, 4, or 5 methyl groups in
this peptide segment. The MS/MS of this group of peptides were all obtained with the
selected-ion monitoring (SIM) mode of analysis. The modification sites could be easily
determined from fragment ions, with the consideration of mass shifts introduced by PTMs,
e.g. 14.0157 Da for monomethylation and 42.0106 Da for acetylation. MS/MS results
revealed that the N-terminus was mono- or dimethylated, K3 was mono-, di- or tri-
methylated, and K7 was completely acetylated. In the MS/MS of the di-methylated and
mono-acetylated peptide (Figure 2B), the existence of the b6+2Me, b10+Ac+2Me and
y11+Ac+Me ions provides evidence of mono-methylation on the N-terminus and K3. We
also observed y4, y5, y6+Ac ions, providing evidence for acetylation of K7. Similar
methylation of an N-terminal proline has been observed in H2B from Drosophila
melanogaster (30) and from gonads of the starfish Asterias rubens (31). Along this line, N-
terminal alanine methylation was found for Tetrahymena histone H2B (32) and Arabidopsis
histone H2B variants HTB-9 and HTB-11 (33). Moreover, N-terminal α-methylation of
RCC1 protein is believed to promote stable association of RCC1 with chromatin through
DNA binding in an α-methylation-dependent manner (34). This is required for correct
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spindle assembly and chromosome segregation during mitosis. The methylation at the N-
terminus of H2B may have additional functions that are unknown.

Differentiation of tri-methylation from acetylation is essential in PTM studies of histones
(13). A typical method to distinguish these two modifications is based on the immonium ion
with m/z 126.1 from acetylated lysine and the neutral loss of a trimethylamine [N(CH3)3]
from trimethyl lysine-containing precursor and fragment ions (13). However, the method
does not work effectively with peptides containing more than one acetylation or tri-
methylation sites, such as the H2B N-terminal peptide, which includes multiple modified
lysines. In our study, we were able to differentiate these two modifications based on subtle
difference in mass increase of the lysine residue induced by the acetylation and tri-
methylation. For instance, the measured mass difference between the b6 and b7 ions
observed in Figure 2C for the peptide segment including residues 1-12 was
832.5055-662.3982 = 170.1073 Da. This mass difference is closer to that expected for K7
acetylation (170.1056 Da, with a relative deviation of 9.9 ppm) than that expected for tri-
methylation of K7 (170.1420 Da, with a relative deviation of 204 ppm). We therefore
concluded that K7 is acetylated. All the acetylation and tri-methylation sites of Neurospora
core histones were unambiguously established in this way, and more sample results are
displayed in Table S1.

The presence of an acetylated lysine can block trypsin cleavage of its C-terminal side amide
bond. With many lysine residues being acetylated, tryptic cleavage of H2B gives rise to a
very long N-terminal peptide. Traditional collisionally induced dissociation (CID) cannot
provide a complete series of fragment ions due to its poor ability to cleave the backbone of
large peptides, rendering it difficult to identify modification sites. For instance, the exact
numbers of methyl groups on the N-terminus and K3 cannot be delineated unambiguously
based on the CID-produced MS/MS on the tetra-methylated peptide with residues 1-12
(Figure 2C). To overcome this limitation, we applied ETD, which can afford efficient
cleavage along the backbone of long peptides or even intact proteins (35, 36), to analyze
those large N-terminal peptides. Figure 3 shows the ETD MS/MS of the [M+5H]5+ ion
of 1PPKPADKKPASKAPATASKAPEKK24 with the N-terminus and K3 being di-
methylated, as well as with K7, K12 and K19 being acetylated. Nearly complete series of c
and z ions were formed from ETD. The observation of c2+2Me and c4+4Me ions reveals the
dimethylation of the N terminus and K3. The presence of the c6+4Me, c7+4Me+Ac,
z17+2Ac, and z18+3Ac ions supported the K7 acetylation, while the existence of the
c11+4Me+Ac, c12+4Me+2Ac, z12+Ac, z13+2Ac ions demonstrated the K12 acetylation.
Along this line, the acetylation of K19 was identified based on the observation of the z5 and
z6+Ac ions. K28 and K29 were also found to be acetylated heterogeneously in Neurospora
H2B, as supported by the coexistence of y5, y5+Ac and b4, b4+Ac ions in the MS/MS of the
Asp-N-produced peptide 25DAGKKTAASG34 (Figure S4A).

Purified H2A was digested individually with trypsin, Arg-C or chymotrypsin under
optimized conditions, and analyzed by LC-MS/MS. We found that only K9 was acetylated
(MS/MS for the [M+2H]2+ ion of 6SGGKASGSKNAQSR19 is shown in Figure S4B, which
reveals the formation of the b4+Ac, y10 and y11+Ac ions).

Identification of PTMs in histone H3
The HPLC-purified histone H3 was digested with Arg-C and Glu-C, and the digestion
mixture was analyzed by LC-MS/MS directly, or further fractionated by HPLC and analyzed
by MALDI-MS/MS. All the conserved methylation and acetylation sites reported in other
organisms were identified in Neurospora, including methylation at K4, K9, K27, K36, K79
and acetylation at K9, K14, K18, K23, K27 and K56. K4 was found to be mono-, di- and tri-
methylated, whereas K79 was found to be mono- and di-methylated in Neurospora (Figure
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S5A&B). In the MS/MS of the [M + 2H]2+ ion (m/z 366.7) of the tri-methylated
peptide 3TKQTAR8 (Figure S5C), we observed the b3+3Me, b4+3Me, and y4 ions,
supporting the observed tri-methylation of K4. MS/MS of the dimethylated peptide
segment 73EIAQDFKSDLR83 displayed the presence of a complete series of y ions,
revealing di-methylation of K79 (Figure S5D). Figure S5E illustrates the fragmentation of
the precursor ion at m/z 646.9, which is consistent with the acetylation of K56 in
peptide 54YQKSTELLIR63. In the MS/MS of the triply charged
peptide 9KSTGGKAPRKQLASKAAR26, K9, K14, K18 and K23 were determined to be
acetylated (Figure S5F), with the observation of b2+Ac ion for supporting K9 acetylation,
the b5+Ac and b7+2Ac ions for K14 acetylation, as well as y1, y5+Ac, y11+2Ac ions for K18
and K23 acetylation.

It is worth noting that K9 and K27 were found to be either methylated or acetylated. The
methylated and acetylated peptides exhibited different retention time on the reverse-phase
column used for LC-MS/MS analysis; the retention times for the methylated and acetylated
peptides were approximately 4 and 8 min, respectively (Figure S6). Thus, methylated and
acetylated peptides could be well isolated, and unambiguous MS/MS spectra could be
obtained. Figure 4A shows the ESI-MS of the triply charged ions of the unmodified, mono-,
di-, and trimethylated peptides with residues 9KSTGGKAPR17, while Figure 4B shows the
MS for the acetylated peptide with same sequence. In the MS/MS of the [M+3H]3+ ions of
the tri-methylated and acetylated peptides, a series of tri-methylated and acetylated b ions
and unmodified y ions were observed, supporting the conclusion that K9 was tri-methylated
and acetylated, respectively (Figure 4C&D). The presence of the immonium ion at m/z 126,
the neutral loss of N(CH3)3 (59 Da) from the precursor ion, as well as the mass difference
between tri-methylation and acetylation helped differentiate these two types of isobaric
modifications.

K27 was also found to be mono-, di- or tri-methylated or acetylated in Neurospora (Figure
S7A, B). The MS/MS of the peptide 27KSAPSTGGVKKPHR42 with different modification
levels were obtained by the selected-ion monitoring. The MS/MS of the [M+4H]4+ ion at m/
z 384.2 eluted at 16 and 18 min revealed the tri-methylation on K36 as well as the
trimethylation or acetylation on K27. In this context, the presence of the y7+3me, y8+3me,
y9+3me, y10+3me and y11+3me, along with the observation of the y1, y2, and y4 ions,
demonstrates the tri-methylation on K36 (Figure S7C, D). On the other hand, the acetylation
and tri-methylation on K27 are manifested by the presence of b2 and b3 ions bearing an
acetyl group and three methyl groups, respectively (Figure S7C, D).

We also attempted to examine the phosphorylation of core histones by enriching
phosphorylated peptides using TiO2-coated magnetic beads [Phosphopeptide enrichment kit
(PerkinElmer, Waltham, MA)] (37). We were able to detect very low level of
phosphorylation of H3 S10 in a phosphatase-deficient (PP1-deficient) Neurospora strain
(Figure S8) (20); H3 S10 phosphorylation in wild-type Neurospora was, however, below the
detection limit of the instruments.

Identification of PTMs in histone H4
Purified H4 was digested by trypsin and Asp-N separately and subjected to LC- or MALDI-
MS/MS analysis. All the modifications were located on the N-terminal segment, similar to
observations for other organisms. Asp-N digestion produced a long N-terminal peptide with
residues 1TGRGKGGKGLGKGGAKRHRKILR23, containing all the modification sites in
H4, which include acetylation at the N-terminus and at K5, K8, K12 and K16, along with
methylation at K20 (Figure S9A). A LTQ-Orbitrap with ETD provided high-quality tandem
mass spectra of the [M+6H]6+ ions of the peptide with a nearly complete series of c and z
ions. Figure S9B shows an ETD MS/MS of the di-acetylated and tri-methylated peptide with
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residues 1-23. The formation of the mono-acetylated small c ions and z20+3Me+Ac ions
suggests N-terminal acetylation. Additionally, the presence of c15+Ac, c16+2Ac, z7+3Me,
z8+3Me+Ac ions, and c19+2Ac, c20+2Ac+3Me, z3, z4+3Me ions supports the conclusions of
K16 acetylation and K20 tri-methylation, respectively.

LC-MS/MS analysis, with the use of the QTOF mass spectrometer, of the tryptic digestion
mixture led to the identification of relatively low levels of acetylation on K5, K8 and K12,
which cannot be identified from the corresponding analyses of the Asp-N digestion mixture
of histone H4. In the MS/MS of the doubly charged peptide 4GKGGKGLGK12, K5 and K8
were determined to be acetylated, as exemplified by the observations of the b2+Ac, b5+2Ac,
y4, y5+Ac, and y7+Ac ions (Figure S10A). MS/MS of the doubly charged ion of the di-
acetylated peptide 9GLGKGGAKR17 revealed the formation of b3, b4+Ac, y5+Ac and
y6+2Ac ions supporting the K12 acetylation, and the presence of the y1 and y2+Ac ions
demonstrating the acetylation of K16 (Figure S10B).

Discussion
We used a combination of various mass spectrometric methods including MALDI-TOF, LC-
MS/MS with CID and ETD, coupled with different protease digestions and HPLC
purification, to produce a thorough map of lysine methylation and acetylation sites in the
core histones of the filamentous fungus Neurospora crassa. Our results show that the core
histones in this organism are extensively acetylated and/or methylated on the lysine residues
that have been found acetylated and/or methylated in mammals, budding yeast and plants. In
addition, some novel modifications were detected. The methylation and acetylation sites
found in Neurospora H2B include N-terminal and K3 methylation and K7, K12, K19, K28,
K29 acetylation. Some of these sites, along with additional sites in the globular and C-
terminal domain of the protein, were also found to be modified in the accompanying study,
where the histone proteins were fractionated with two-dimensional AUT × AU
polyacrylamide gels containing acetic acid/urea/Triton X-100 prior to mass spectrometric
study (38). H2A was shown to have acetylation on K9. H3 was found to bear methylation on
K4, K9, K27, K36 and K79, and to be subject to acetylation on K9, K14, K18, K23, K27
and K56. Finally, H4 was found to sport methylation of K20 and acetylation of the N-
terminus, K5, K8, K12, and K16 (summarized in Figure 1). In this context, it is worth noting
that some low levels of modification in Neurospora might not have been detected even with
the combination of multiple protease digestions and various mass spectrometric techniques.
A detailed comparison of known PTMs of core histones in different organisms is
summarized in Table 1 (14,26,39,40). The N-terminal and K3 methylation that we observed
in H2B appears to be novel. H2A was found to be only acetylated on K9 in Neurospora, as
in humans. As noted in Table 1, we found conserved acetylation of H2B at K7 and K12 (the
corresponding residues in other organisms are K6 and K11, respectively), and unique
acetylation of Neurospora H2B at K19, K28, and K29. It has been reported that acetylated
lysine residues in yeast H2B activate the transcription of genes involved in NAD
biosynthesis and vitamin metabolism (41). Thus, it will be interesting to assess the role of
Neurospora H2B acetylation in transcription activation. Indeed, a detailed comparison of
histone H2B from a histone deacetylase mutant and wild-type Neurospora revealed
differences that might be responsible for defects in DNA methylation observed in this
mutant (K. M. Smith, J. R. Dobosy, D. Do, J. E. Riefsnyder, D. C. Anderson, G. R. Green
and E. U. Selker, in preparation; and the accompanying paper (38)).

In Neurospora H3, we found all the commonly conserved N-terminal modifications
including methylation of K4, K9, K27 and K36, as well as acetylation of K9, K14, K18,
K23 and K27. K4 was mostly unmodified, but approximately 10% of the K4 peptide was
mono-, di- or tri-methylated. K9 was predominantly tri-methylated. K27 and K36 were
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mono-, di- and trimethylated. The methylated and acetylated peptides housing the same
residues had different retention times during HPLC separation, allowing the modification
types to be easily determined. Moreover, we observed acetylation on K56. The predominant
form of H3 K9 methylation observed in our data, trimethylation, was previously shown to be
enriched in regions of DNA methylation in the Neurospora genome (42,43). The SET
domain methyltransferase DIM-5 catalyzes this modification and is required for DNA
methylation (44). Unlike plants and mammals, in Neurospora H3K36 mono-, di- and tri-
methylation is catalyzed by a single enzyme, SET-2 (21). H3K36 methylation is enriched in
coding regions of the genome and is required for normal vegetative and sexual development
(21).

H3K79 is mono-, di- or tri-methylated in many mammalian and non-mammalian cell lines
and in budding yeast. However, K79 was found only mono- and di-methylated in
Neurospora. It would be interesting to explore the functional implications of the lack of K79
trimethylation, since the H3 K79 methyltransferase, DOT1, is involved in telomeric
silencing in yeast (45). In addition, it is worth noting that K64 of H3 of mammalian cells
was recently found to be tri-methylated; this methylation is associated with heterochromatin,
and it is lost during developmental reprogramming (46). We monitored specifically the
fragmentation of the peptide containing this putative modification by MS/MS but did not
find this modification in Neurospora. It is possible that the level of this modification is
below the detection limits of the method; conceivably, it could also have been lost during
extraction process.

Histone H4 acetylation sites, including the N-terminus, and residues K5, K8, K12 and K16,
are conserved in almost all organisms, including Neurospora. They play important roles in
many processes including transcriptional activation, DNA double strand break repair and
cellular lifespan regulation (47,48). H4 K20 methylation, conserved in almost all multi-
cellular organisms, was also found in Neurospora, in the form of mono-, di- and mainly tri-
methylation. While its role in heterochromatin silencing and DNA damage response has
been extensively studied in humans, Drosophila melanogaster and Schizosaccharomyces
pombe (49-52), it is also important to study its function in Neurospora.

In summary, a systematic mapping of histone methylation and acetylation in Neurospora
crassa was obtained by mass spectrometric analyses. The rigorous identification of
modification sites provides a foundation for further studies on the regulation and functions
of histone modifications in this model organism.
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Figure 1.
Summaries of the detected PTMs of Neurospora core histones. The modified residues are
labeled, and “N” represents N terminus. Acetylation is designated with solid octagon, and
mono-, di-, and tri-methylation are represented by one-, two, and three square boxes,
respectively.
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Figure 2.
(A) ESI-MS of N-terminal tryptic peptide 1PPKPADKKPASK12 of histone H2B extracted
from Neurospora. (B-C) The MS/MS of the di-methylated, mono-acetylated (B) and tetra-
methylated, mono-acetylated (C) H2B peptide with residues 1-12 obtained by Q-TOF
analysis.
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Figure 3.
The ETD MS/MS of the Neurospora H2B N-terminal peptide with residues 1-24 with the N-
terminus and K3 being dimethylated, and with K7, K12 and K19 being acetylated.
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Figure 4.
Positive-ion ESI-MS of the Arg-C-produced Neurospora H3 peptide 9KSTGGKAPR17 with
K9 being methylated (A) or acetylated (B). Shown in (C) and (D) are the MS/MS, obtained
on the Q-TOF mass spectrometer, of the tri-methylated and acetylated peptides with residues
9-17.
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