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Abstract
An operational forecast system for harmful algal blooms (HABs) in southwest Florida is analyzed
for forecasting skill. The HABs, caused by the toxic dinoflagellate, Karenia brevis, lead to
shellfish toxicity and to respiratory irritation. In addition to predicting new blooms and their
extent, HAB forecasts are made twice weekly during a bloom event, using a combination of
satellite derived image products, wind predictions, and a rule-based model derived from previous
observations and research. These forecasts include: identification, intensification, transport, extent,
and impact; the latter being the most significant to the public. Identification involves identifying
new blooms as HABs and is validated against an operational monitoring program involving water
sampling. Intensification forecasts, which are much less frequently made, can only be evaluated
with satellite data on mono-specific blooms. Extent and transport forecasts of HABs are also
evaluated against the water samples. Due to the resolution of the forecasts and available validation
data, skill cannot be resolved at scales finer than 30 km. Initially, respiratory irritation forecasts
were analyzed using anecdotal information, the only available data, which had a bias toward major
respiratory events leading to a forecast accuracy exceeding 90%. When a systematic program of
twice-daily observations from lifeguards was implemented, the forecast could be meaningfully
assessed. The results show that the forecasts identify the occurrence of respiratory events at all
lifeguard beaches 70% of the time. However, a high rate (80%) of false positive forecasts occurred
at any given beach. As the forecasts were made at half to whole county level, the resolution of the
validation data was reduced to county level, reducing false positives to 22% (accuracy of 78%).
The study indicates the importance of systematic sampling, even when using qualitative
descriptors, the use of validation resolution to evaluate forecast capabilities, and the need to match
forecast and validation resolutions.
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1. Introduction
Harmful algal blooms (HABs), sometimes called “red tides”, pose significant hazards due to
their production of toxins and/or negative ecological impacts (e.g., high biomass associated
anoxia). In the case of the dinoflagellate Karenia brevis, which produces brevetoxin, the
impacts include Neurotoxic Shellfish Poisoning (NSP), fish kills, marine mammal deaths,
and health and economic losses resulting from respiratory irritation. Surface blooms of K.
brevis produce an aerosolized toxin as a result of cell lysis due to wind and wave action.
Onshore winds are then responsible for transporting the aerosol onto local beaches, which
can induce respiratory irritation (coughing, nasal congestion, and throat irritation) in
beachgoers and coastal residents. Asthmatics exposed to K. brevis aerosols during a one-
hour walk have measurable changes in both symptoms and spirometry (a measure of lung
function) (Fleming et al., 2005, 2007). In this same asthmatic cohort, symptoms persisted for
5 days after the one-hour exposure (Kirkpatrick et al., in press). The public health and
associated economic impacts have been a major concern for the state of Florida, as it has
annual blooms of K. brevis off its gulfside beaches, lasting months to over a year in
duration.

Due to the recurrent problems associated with K. brevis blooms off Florida, a forecast
system was developed through collaboration between the National Oceanic and
Atmospheric Administration (NOAA) and the state of Florida (Fig. 1), with the forecast
subsequently expanded to other Gulf states. Current bloom locations, future bloom
locations, and areas of impacts are critical components of these forecasts. The concepts
behind the forecast system for K. brevis have been presented in several papers, which
include a combination of satellite imagery (Stumpf et al., 2003;Tomlinson et al.,
2004;Wynne et al., 2005) and heuristic and numerical models (Tester et al., 1991;Lanerolle
et al., 2006;Stumpf et al., 2008).

Most operational oceanographic forecasts are physical and involve water level and current
predictions, while operational biological forecasts in the ocean are uncommon. Ecological
forecasts, in general, are difficult because uncertainty and inherent stochasticity in the data,
system, and models, lead to low information content from the forecasts (Clark et al., 2001).
Biological forecasts outside the research realm are more limited. Some common examples
involve predicting hypoxia, such as the annual forecasts of the Gulf of Mexico hypoxia zone
(Scavia et al., 2003). Such models are effective because they are dependent on only a few
inputs, such as nutrient loads and mixing. Other examples of ecological models include
annual fishery yields (Scheuerell and Williams, 2005). Examples of the few real-time event
based predictive models include: the occurrence of sea nettles in the Chesapeake Bay
(Decker et al., 2007) which is based on the organisms’ preference for specific combinations
of temperature and salinity as predicted through an existing hydrodynamic model; and coral
bleaching which depends on anomalously high sea surface temperatures (SST) which can be
found from satellite (Goreau and Hayes, 2005). A probabilistic approach developed for
several HABs in Europe is the Harmful Algal Blooms Expert System (HABES). HABES
has developed HAB predictions through the use of fuzzy logic (Blauw et al., 2006).
Predictive capabilities are being developed for several areas which may lead to forecasts of
the annual start or temporal occurrence of HAB impacts (McGillicuddy et al., 2005). Annual
forecasts are comparatively simple to validate, however, the field logistics for event
forecasts may be daunting due to problems associated with reducing the observational errors
in order to achieve a robust estimate of the actual conditions.

For physical factors, validation can be made through the comparison of model results with
time-series data provided by tide stations, current meters, or other moored instruments (Hess
et al., 2003). For biological models, such continuous time-series are often unavailable for
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validation and therefore standard time-series or statistical techniques are more difficult to
apply. Water quality sampling schemes typically involve water samples collected at a few
fixed locations at weekly or longer intervals, with additional stations sampled
opportunistically. For algal blooms, validation data are often provided by discrete sampling
efforts with low spatial and temporal resolution. The spatial distributions of HABs, in
addition, are irregular and highly patchy, often with no spatial coherence beyond the limits
of the bloom—often only a few tens of kilometers. As a result, one mooring or sampling site
may not capture any information representative of the forecasted event.

Another difficulty in HAB forecasting is the enigmatic nature of bloom initiation. In the case
of K. brevis, early warning is limited to locating the presence of a bloom offshore and
predicting landfall. Locating a surface bloom of K. brevis can be accomplished via ocean
color remote sensing. Satellite imagery, however, is limited by clouds and spatial resolution,
as well as uncertainties in algorithms, which are not species-specific. Cell counts are
required for species validation. While identification of K. brevis blooms from satellite
imagery can reach 80% over certain time periods (Tomlinson et al., 2004), validation of the
extent of blooms delineated from satellite imagery has not been conducted because the
necessary in situ observations have rarely been collected. In addition, K. brevis blooms
initiate as subsurface planktonic blooms, and hence new blooms are not readily located.
Unfortunately, cell count measurements offshore are limited in availability. An exception
exists for encysting cells, like Alexandrium fundyense in the Gulf of Maine. The location of
the cyst bed prior to the bloom season provides a good estimate of the location for bloom
initiation (McGillicuddy et al., 2005).

Validation and skill assessment are vital to forecasting, not only to determine model
behavior, but also to identify needed improvements. This paper will examine a skill
assessment of the forecasts made by an operational system (the HAB Forecast System in the
eastern Gulf of Mexico) with available data. The results will examine the influence of
characteristics of the validation data on the skill assessment, as well as issues in examining
nominal and ordinal (i.e., non-quantitative) forecasts. In addition, the analysis will examine
how variations in resolution and quality of both the forecast and validation data can
influence skill assessment. Through this analysis, strengths and limitations of the current
forecast system were determined and will be discussed in terms of validation methods.

2. Methods
Before discussing the model assessment methods applied to the HAB forecast system, a
brief description of the forecasts and models used to produce them is necessary. The
forecasts include a nowcast prediction of a new K. brevis bloom, followed by forecasts of
intensification, transport, aerial extent and impact of an existing bloom at the coast. Of
these, the most complex is the nowcast prediction, and the most significant, from a user
perspective, is the (respiratory) impact at the coast.

2.1. The forecast system
2.1.1. Nowcast and identification—The nowcast prediction uses a heuristic model that
depends on cell counts and ocean color satellite imagery, primarily from the Sea-Viewing
Wide Field-of-view Sensor (SeaWiFS). SeaWiFS has a 1.1 km2 pixel at nadir and is mapped
at that resolution. Chlorophyll and chlorophyll anomaly products are generated according to
the methods described by Tomlinson et al. (2004) and (Stumpf et al. 2000, 2003). The
anomalies indicate new blooms (as well as the movement or change in extent of a bloom)
making it an appropriate primary indicator for a true bloom-forming organism, such as K.
brevis, that dominates the biomass during summer and fall (Vargo et al., 1987). Since the
anomaly only highlights areas where chlorophyll concentration has increased, and is not
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species-specific, the model uses a series of rules, summarized in Table 1, based on the
knowledge of the ecology of K. brevis and the oceanography of the west Florida shelf. By
this rule-based model, we determine whether an anomalous patch of increased chlorophyll is
likely to be a new K. brevis bloom and then proceed to delineate the bloom extent from the
anomaly and field measurements. An example of a delineated bloom is shown in Fig. 2, with
red indicating a likely or confirmed K. brevis bloom, and yellow indicating blooms of other
organisms. Once a bloom is established at the coast, a series of forecasts are produced
biweekly. These include forecasts on intensification, transport, aerial extent, and beach
impact.

2.1.2. Intensification—Intensification is defined as an increase in cell concentration to a
higher level and is determined by wind speed and direction (with upwelling favoring
intensification) and cell concentration at the coast (Table 2). Forecasted wind conditions
from the Marine Weather Forecasts are used according to Lanerolle et al. (2006) and Stumpf
et al. (2008).

2.1.3. Transport—Transport is determined from the predicted wind speed and direction.
The present model uses a transport of 7% of the (Ekman adjusted) alongcoast wind vector to
estimate the alongshore transport of these blooms, using a regional tuning based on the
results of Tester et al. (1991) and Stumpf et al. (2003). An alongshore forecast is assumed to
be along the coast, which is north/south for SW Florida and east/west for the northwest
Florida coast (area of Cape San Blas). The magnitude of transport is not addressed unless a
change in the bloom extent is predicted.

2.1.4. Extent and location—Extent is defined as the expansion of the bloom to new
areas along the coast. Currently, forecasts are only produced by analysts at county to half-
county level (nominally 30–60 km), therefore forecasts of extent describe whether the bloom
is expected to expand into a new county (or portion of a county) to the north or south along
Southwest Florida or to the east or west along the Florida Panhandle. The extent is closely
linked to the transport and is forecasted in the same manner.

2.1.5. Impacts—Beach impacts are forecasts based on several factors: the transport of the
bloom, the expected wind speed and direction, the concentration (cell counts) of the bloom
at the coast and the location (proximity to shore) (Table 2). The most critical factors are
presence of a bloom and wind direction. The current respiratory impact model was
developed from the work of Milian et al. (2007) and is summarized in Table 3.

2.2. Validation data
The program is operational and not designed as an experiment, so validation is dependent on
data collected by state monitoring programs, in which sampling varies in frequency and
spatial resolution. Several types of data are used for validation. These are cell counts,
satellite data on chlorophyll concentration, and respiratory irritation from both the lifeguard
network and anecdotal reports (e.g., news media or personal communication).

2.2.1. Cell counts—Cell counts for total number of K. brevis are made from microscopic
analysis of water samples overseen by the Florida Fish and Wildlife Research Institute
(FWRI, 2008). Water samples are collected during an event, most often in the area having a
potential bloom. Preemptive and monitoring sampling has also been made in areas adjacent
to reported blooms or during seasons when blooms are expected. Samples are collected
through state and volunteer monitoring programs, as well as research cruises. This
information is required near shellfisheries during HABs and taken as deemed appropriate by
state managers in other areas. The cell counts are grouped into categories set by the state of
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Florida, to reduce uncertainty in actual cell count accuracy. These data are used for
assessing transport and HAB presence.

The distribution of cell count samples from October 1, 2004 through February 28, 2007 was
investigated to determine the frequency by which samples were collected along the
segments of the coast (Fig. 1). Only samples taken in the Gulf of Mexico within three miles
of the coast were used (small circles in Fig. 1). These samples capture the areas that would
impact the beach. The coast of interest was defined by county boundaries including Pinellas
in the north and Collier in the south (Fig. 1). Many of the sampling programs are supported
by counties and this region is the normal area of bloom impact. Cell count samples were
grouped by county and by equidistant portions of the coastline. Of the 305 km section of
coast (length of the heavy black line along the coast in Fig. 1), five segments were chosen,
each being 61 km long (alternate solid-open circles in Fig. 1 distinguish the segments The
segments normalize effort to coastline, but the county aggregations identify variations that
may be driven by sampling effort.

2.2.2. Satellite chlorophyll—Chlorophyll fields from SeaWiFS are used to identify
transport and intensification. Within an anomaly that has been confirmed as a K. brevis
bloom (Fig. 2), the chlorophyll concentration provides an estimate of K. brevis concentration
(Tester et al., 1998). A change in chlorophyll concentration can then be used to estimate
intensification (Stumpf et al., 2003).

2.2.3. Respiratory irritation—During the analysis of the first bloom season, respiratory
irritation in most areas was identified from anecdotal verbal reports in county or state
bulletins and the media, the same method as conducted by Fisher et al. (2006). In general,
only the presence of respiratory irritation was reported, so a forecast of no irritation could
not be validated. Starting in August 2006, the professional lifeguard corps in Sarasota
County began twice-daily reports (approx. 10:00 and 15:00 local time) of the presence of
respiratory irritation at six sites. In January 2007, two additional lifeguard sites were added
in Manatee County (Fig. 1). Respiratory irritation is defined by the amount of coughing
observed in addition to the personal conditions experienced by the lifeguard. The presence
of people coughing is used as a proxy for respiratory irritation (cough, nasal congestion,
throat irritation, chest tightness, wheezing, and shortness of breath). Coughing has been
documented as a response to K. brevis aerosols in studies involving occupationally exposed
workers, recreationally exposed beachgoers, and asthmatics (Backer et al., 2003, 2005;
Fleming et al., 2005, 2007). Lifeguards are asked to ‘listen’ to the beachgoers for the
presence and/or frequency of coughing. The symptoms observed by the lifeguards are
reported at various levels of respiratory irritation as shown in Table 3. Besides the
respiratory impact, the lifeguards also collect data on the surf condition, water clarity,
presence of dead fish, and approximate wind direction. The lifeguards have four choices
when recording HAB respiratory impact: none, slight, moderate, or high. We grouped
moderate and high classes together, as these were the level at which impacts affect the
general public. This data set was additionally used to examine the roles of resolution in the
forecasts and the skill assessments.

2.2.4. Winds—As forecasted winds are obtained from other forecast systems and are
critical to the impact forecasts, we performed an assessment of the forecasted winds against
in situ standard meteorological wind records. This provided an understanding of the
importance of the external forecasts to the forecasts of this system. The HAB bulletins are
issued with a twice-daily wind forecast, which is adapted from the National Weather Service
(NWS) marine forecast, and reports wind direction by either semi-octants (N, NNE, NE etc)
or onshore/offshore. The National Data Buoy Center (NDBC) Coastal-Marine Automated
Network (C-MAN) station at Venice Pier (station VENF1) records standard hourly
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meteorological wind measurements with wind directions between 0 and 360°. To directly
compare the datasets, the buoy winds were ranked into sixteen semi-octants with each
direction occupying 22.5° on a wind rose, with the north semi-octant centered at 0° (348.75°
to 11.25°). For the west coast of Florida, onshore winds were defined as winds blowing from
168.75° to 326.25° (S clock-wise to NW, Stumpf et al., 2003), which presumes the 330° to
150° orientation of the coast. We used the buoy data collected at 6:00 and 18:00 local time
(Eastern Time Zone), to validate the twice-daily marine forecasts. When, on a given day,
only one daily wind direction forecast was entered into the bulletin the same forecast was
applied to both the morning and evening in situ data.

2.3. Skill assessment
The assessed skill depends on the accuracy, a measure of the agreement between the model
prediction and truth, and precision, which is a measure of the variance of the prediction due
to observational errors (Lynch et al., 2009-this issue). Therefore, in the determination of
precision, we examined the change in misfit with change in resolution of both the forecast
data and the observational data. To assess the nature in which the characteristics of the
observational data drive the assessment of skill through model–data misfit, this study also
compares skill assessment results for the first bloom season of the HAB forecast system
with subsequent years following the availability of higher resolution lifeguard data (as
described above).

Most of the forecasts involve categories comprising ordinal or nominal values (“high;”,
“medium”, and “low”; “presence/absence”), and require non-parametric statistics.
Accordingly, skill was determined either by percent correct (total accuracy) or through
determination of user and producer accuracy (Story and Congalton, 1986). User accuracy is
the percent ratio of correct forecasts of a specified condition to the total number of forecasts
of that condition. Commission or user error (100%—user accuracy) indicates false positives,
i.e., the forecasted condition was not observed. It is termed user error because this is the
error the user sees—whether the forecast is right or wrong. Producer accuracy is the percent
ratio of correct forecasts of a specified condition to the total number of observations of that
condition. Omission or producer error (100%—producer accuracy) indicates the rate of false
negatives, i.e., the specified condition was observed but was not forecast. Commission and
omission errors are sometimes called Type 1 and Type 2 errors, respectively, drawing from
the terminology of hypothesis testing.

The first skill assessment of the operational forecast system was performed for the period
from 1 October, 2004 to 30 September, 2005 by Fisher et al. (2006). The Forecast program
made a subsequent assessment, with equivalent methods, for the entire first bloom season
through April 30, 2006, which included 193 bulletins with forecasts. That result is reported
here. The total analysis in this paper includes findings for the first bloom season with
subsequent analysis through February, 2007. The assessment measures the accuracy in
which the operational system identified new blooms and their location and extent. Each
forecast component (identification, transport, intensification, extent, and impact) was
compared to all available data and information and marked as “confirmed true” or
“confirmed false”. When deemed impossible to evaluate as a result of insufficient data, the
forecast component was declared “unconfirmed”. Several factors influence the forecast and
forecast skill: 1) uncertainty of the bloom location; 2) uncertainty and resolution of the
forecast models; and 3) uncertainty, resolution, and completeness of the assessment
validation data. These are discussed in Section 3.
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3. Results
3.1. Nowcasts/identification

Initial identification of a bloom as a HAB is the most objective to validate. During the first
operational year, six K. brevis HABs were identified and tracked, of which four were first
identified through the forecast system and validated by sampling efforts. The remaining two
were first identified through state sampling efforts and then tracked through the forecast
system. In addition, four non-harmful blooms were accurately identified through the system
and confirmed by state sampling. No false positive forecasts were identified. For HABs, the
user accuracy was 100%, and the producer accuracy was 67%, with a corresponding 33%
omission error owing to the two blooms found first in state sampling. The total accuracy was
80% (Table 4).

3.2. Forecasts
An analysis was performed for each forecast made within the bulletins. To reiterate,
forecasts were made on the intensification, spatial extent, transport and impact. A summary
of these results for the first bloom season is shown in Table 4. Overall, the transport and
intensification forecasts have higher rates of assessability owing to the use of satellite
imagery in combination with the field data.

3.2.1. Intensification—For the first operational bloom season, only 38% of the bulletins
contained forecasts of intensification. Of these forecasts, 63% were assessable with 73%
accuracy (Table 4). Intensification was based on satellite derived chlorophyll when blooms
were considered predominately K. brevis. Insufficient field data (discussed in Section 4.1
below) exists to regularly forecast intensification.

3.2.2. Transport—Forecasts of transport were made in 83% of the bulletins. A 90%
accuracy was calculated where 67% of the forecasts were assessable (Table 4). Most
transport forecasts pertain to direction, with magnitude addressed only on rare occasions
when a bloom will cross a county.

3.2.3. Extent—Spatial extent was forecasted the least, present in only 21% of the bulletins
(Table 4). 56% of these forecasts were assessable with 77% accuracy.

3.2.4. Impact forecasts—Initially, the impact forecast was made for a range of
conditions, and therefore broad in both extent and magnitude of impact. For example, a
forecast might be for low to high impact over several counties. Preliminary accuracy
assessment performed by Fisher et al. (2006) indicated difficulty in assessing these
forecasts, as most conditions would, and did, validate the forecast. A forecasted impact of
“very low to high” could be validated with any impact report other than “none”, which is
why it was discontinued. To correct this (an immediate result of the skill assessment of
Fisher et al., 2006), in 2006, the forecasts became more specific in order to highlight only
the maximum impact expected. While “patchiness” was frequently part of the condition, a
patchy “high” impact forecast must have at least one high value reported within the forecast
region to be validated.

Based on anecdotal information from the local and state constituents, only 49% of the
impact forecasts were assessable during the first bloom season (Table 4). During this time,
95% of the bulletins contained forecasts of coastal impacts, with 99% accuracy and 98%
accuracy in which impacts were predicted to be moderate or high.
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Unlike the anecdotal information, the lifeguard observations dataset provided a continuous,
twice-daily record in the two counties: Sarasota (September 2006–March 2007) and
Manatee (January 2007–March 2007). There were 80 lifeguard reports per week on average,
with between zero and 40 reports per week of moderate or high respiratory impact (Fig. 3)to
compare with the forecasts. This comparison also involves the more precise forecasts used
starting in 2006. The continuous data allowed determination of both the user and producer
accuracies. The accuracy changed distinctly from the first year analysis. In comparison with
each lifeguard location, only 21% of the 567 “moderate–high” impact predictions were
correct, the rest being “false positives” (Table 5). In contrast, 68% of “moderate–high”
impacts observed were correctly forecasted, indicating a tendency for 32% false negatives
(Table 5). This shows a strong tendency toward false positives, rather than false negatives.

3.3. Resolution of the validation data
The validity of extent and transport forecasts is influenced by the distribution of samples.
This was investigated to better understand the frequency and spatial distribution of sampling
efforts, as these datasets are essential for assessing forecasts of transport and extent.
Observations were binned by the five equal-length (61 km) segments along the coast (Figs. 1
and 4). There is considerable variability in sampling between segments. Sampling depends
on county and local departments and volunteers, which is not consistent. Sampling
frequency also varied between years depending on timing and impact of the HABs. Overall,
the median number of samples along this coast was 26 week−1, which equates to less than 1
sample every 75 km of coast for each day (75 km d−1) (Fig. 4, Table 6). Over the two years,
25% of the sampling frequency fell at zero for several segments, indicating that no samples
were taken in that segment or county at least 25% of the time. For 75% of the time, all
segments had 10 or less samples week−1. With the regions, the most intense sampling
occurred in Region 3, where the median resolution within a week in 2006 was 26 km d−1

and only 25% of the samples exceeded 18 week−1 or 31 km d−1 (Fig. 4). Substantial
differences in sampling occurred between 2005 and 2006 (Fig. 4). This was driven strongly
by differences in segments 2 and 3, which include Sarasota County. A median of 2 week−1

was observed for 2005 in segment 3, followed by 15 week−1 in 2006. Increased sampling in
Sarasota and Charlotte Counties drove the median for the entire coast from 13 week−1 in
2005 to 40 week−1 in 2006 (Table 6).

3.4. Influence of wind forecasts
Because the HAB Forecasting System is heavily reliant on the marine wind forecast, an
assessment of the accuracy of the wind forecast is useful in determining skill and cause of
misfit in the impact forecasts. Over the entire time period assessed (2004–2007) there was
the potential for 1673 forecasts. Out of these, 1439 forecasts were made that did not describe
the winds as “variable” and had corresponding data collected from the VENF1 station. Out
of the 1439 forecasts, 495 predicted onshore winds, and 60% of these were confirmed as
correct by measured winds (at 0600 and 1800) at the VENF1 station. An assessment of the
wind forecasts during the period for which lifeguard data was available was also made. The
wind forecasts were compared with the observed winds at 0600 and 1800 local time on 173
days. Of these, 71% of the onshore wind forecasts were correct (Table 7). With 29% of
onshore wind forecasts incorrect (i.e. actual wind direction was offshore), it follows that a
forecast for HAB respiratory impact based on false wind predictions would result in a false
positive. From the wind forecast, there is the potential for 29% false positives.

To assess the accuracy on a site by site case, a subsequent analysis comparing actual winds
and lifeguard impact reports was performed. We examined the proportion of high–moderate
forecasts which we confirmed both with and without accounting for false onshore wind
forecasts. At this fine resolution we observed 21% and 22% correct forecasts in both sets of
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conditions, or ~78% false positives (Table 8). The forecasts are county-wide and are not
resolved to individual beaches. In order to assess the forecasts at the same resolution, the
lifeguard observations were grouped so that if any lifeguard reported an impact, the forecast
was classified as correct (Table 8, columns 3 and 4). This county-scale resolution increases
the correct forecasts to 78% with only correct winds and 73% with all winds.

In addition, seabreeze is anecdotally considered to influence the impact, and was therefore
investigated. We analyzed the frequency of moderate–high respiratory impact as a function
of time of day (i.e. morning or afternoon). Fig. 5 summarizes directional data collected at
0600 and 1800 local time from the VENF1 station from September 2006 to March 2007.
The strong tendency for afternoon onshore winds is clear. This trend taken with the evidence
that moderate–high impacts are twice as common in the afternoon (Table 9) suggests the
importance of incorporating the seabreeze into the forecasts.

4. Discussion
4.1. Extent and transport forecasts

The forecast of extent and transport is dependent on the resolution and uncertainty of the
input spatial field. With the data types available, this is problematic. The most intense
sampling occurred in segment 3 in 2006, although one of the worst events in 30 years
occurred in 2005. Segment 3 had but 1 week with more than 30 samples collected—the 40
samples equate to 1 sample per 10 km d−1. Resolutions of more than 20 samples were rarely
achieved, equating to one sample per 20 km d−1, the maximum precision resolvable (Fig. 4).
The result indicates a resolution of extent at the coast of only 30 km, corresponding to a
transport at the coast of 30 km d−1. How does the satellite imagery help this? The satellite
imagery generally cannot resolve features within ~2 km (2 pixels) of the coast or features
smaller than ~10 km2 (9 pixels). Also, the satellite has a positional uncertainty of one pixel
(km) as well as uncertainties on the exact boundary of the HAB and, with clouds, a sampling
frequency of 1–5 days. With consecutive days of high quality images, 5 km d−1 may be
achieved, but more typically the satellite does not offer better than 10–50 km d−1. With
these uncertainties in resolution of both data sets used in validation (the water sample and
imagery), only large HABs, covering > 10–30 km of coast, can be located and validated. In
contrast, the lifeguard data provides a consistent resolution under 10 km d−1, a significant
improvement in sampling rate over the standard water samples (Fig. 3).

4.2. Impact forecasts
The skill assessment depends on the degree of uncertainty, the resolution of the forecasts,
the quality, and the spatial/temporal resolution of the validation data. The accuracy
assessment for the first bloom season showed high user accuracy (a correct forecast); for all
forecasts it was typically >90%. The change to a higher (and appropriate) resolution for
impact forecasts and the use of the unbiased lifeguard data, led to a much different accuracy:
<20% for events with moderate or high impact. The change in accuracy results from several
factors. The low resolution of the forecasted condition certainly caused part of the error, as
the condition resolution was modified as a result of the Fisher et al. (2006) study. However,
the validation data set may have also played a role. For the first year, 42% of the forecasts
were not assessable. Of these, it is likely that a majority had low or no impact, although this
cannot be confirmed. As there were no routine official reports of impact, many of the
impacts were defined by verbal reports, through email, newspaper accounts, etc. Informal
reporting on the coast tends to note when there is a problem, rather than when there is not. If
so, then the assessable forecasts are biased toward days with an impact. This suggests that
bias in the validation data must be examined to determine whether it produces large errors in
the assessment of accuracy. With the lifeguard data, observations were taken twice each day
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regardless of conditions (Fig. 3), removing sampling bias. The nearly continuous sampling
should better identify false positives—forecasts of impact when none occurred. This is
consistent with the observed high rate of false positives. These results show that even a
model with inherently high point-to-point misfit, as seen in the impact forecasts of the first
year, can be assessed to be quite accurate when predictions and observations are spatially
and temporally aggregated. The resolution has to be considered in the analysis; increasing
the forecast resolution and data resolution resulted in a lower accuracy in subsequent years.

Using the lifeguard data, we get a sense for the influence of resolution on misfits in the
forecasts (Table 8). The countywide forecast was assessed against observations at individual
beaches. When the resolution of the lifeguard data was reduced to the county level, the
accuracy of the forecast increased. K. brevis blooms are considered to be patchy, so the
forecasts often noted that the impacts would be patchy, e.g., a forecast would be for “patchy
moderate” impacts in a county. The results actually validate the defined county level
forecast. Forecasts of “patchy moderate to high impacts” within the county are correct 78%
of the time. The question of whether the impact will occur at a specific location and time
(morning or afternoon) is only 20% accurate. The difference confirms that patchiness does
occur and that the model is both correct in identifying “patchiness” and that it is inadequate
at this time for higher resolution forecasts. The resolution of both the forecast and the
validation data constrains the results of the skill assessment. Haeffner (1996) noted that
increased detail in modeling increases commission (user error), exactly as found here. The
ultimate user application is the latter, so that accuracy is important, although not achievable
at this time.

4.3. Winds
The presence of respiratory impacts at the shore is largely a function of cell count patchiness
and wind direction. One cause for inaccurate impact forecasts could be sensitivity to
seabreeze. Seabreezes are included in some of the coastal marine forecasts, but they are not
included in standard modeled forecast winds. The seabreeze is considered in some of the
HAB forecasts, when seabreeze is clearly identified in the marine forecast, but this requires
additional analysis for routine implementation. The tendency for a strong onshore seabreeze
in the afternoon along with the evidence of a higher frequency of moderate to high impacts
in the afternoon, indicate the need for the consideration of seabreeze effects when
forecasting K. brevis impact.

4.4. Assessment of forecast utility
Finally, we should note another aspect of skill assessment that is vital to an operational
system: the value of the forecast to the user community. The metrics may involve socio-
economic analyses, but a minimum metric is whether the forecast is used by the target
audience. Each week, analysts determined whether manager’s reports either referenced the
forecasts or sampled in an area to verify a forecasted bloom. Between October 2004 and
April 2006, the weekly bulletin information was used by managers 93% of the time.
Bulletins were identified as high, medium or low priority based on the importance of the
information they contained (high indicating that a management action is recommended). Of
the 37 high priority bulletins that were released, 94% were utilized. Similar analyses would
be critical as a part of the skill assessment used to maintain or improve an operational
forecast system.

5. Conclusions
The assessment of skill of the operational forecasts depends on the ability of the model to
forecast conditions at an appropriate resolution, within the constraints of the available
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validation data. The availability of higher resolution validation data through the volunteer
lifeguard program provided information necessary to identify limitations in our current K.
brevis forecast of impacts. On the other hand, the assessment also indicates that limitations
in the validation data will preclude evaluations of new models for transport or extent. As
changes in both the validation system and forecast resolution are undertaken, consideration
should be made as to whether comparisons can be made in an equivalent way as in previous
years. Implementing or evaluating models at high resolution, such as the potential for 1-km
resolution of HAB boundaries from satellite, may be unproductive without an appropriate
validation system. A low resolution validation data set, however, may demonstrate the
accuracy of the forecast model at larger scales than is desired for management purposes.

Anecdotal evidence suggests patchiness at a scale of a few kilometers. The difference in
accuracy of the impacts between beach level and county level supports this evidence,
indicating patchiness at scales of 10 km or finer. Data to resolve patchiness will be critical to
providing more accurate forecasts at finer scales. The analysis performed here, using
validation data of different resolution, further demonstrates how the assessment of skill
changes depending on the combination of model resolution and validation data resolution.
Highly resolved validation data sets can indicate limitations in a forecast, therefore
indicating the limitations of the model at particular scales. Once the models achieve 10 km
resolution, no further improvement will be quantifiable without improvements in the
resolution of the validation data. The investment in validation should keep pace with the
investment in improvements in the model. Ultimately the results need to be validated and
maintained in a way to be usable and applicable to managers and the public.
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Fig. 1.
Map of the study area showing its location and the coastline from Pinellas County to Collier
County, Florida, USA. Dashed lines show the extension of the county boundaries offshore,
solid lines represent the boundaries for equidistant (61.4 km) segments along the coast
(represented by solid black line). Circles represent the location of available K. brevis
samples within 3 miles of the coast, from October 2004 to February 2007. These are coded
dark or light to distinguish samples in adjacent equidistant segments. Inset shows the
location of lifeguard beach stations.
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Fig. 2.
SeaWiFS satellite image from November 21, 2004. Yellow areas indicate where the
chlorophyll anomaly based on Stumpf et al. (2003) exceeded 1 µgL−1 cyan/green show
anomalies between 0 and 1, blue indicates no positive anomaly. Red represents locations of
K. brevis blooms based on the criteria listed in Table 1. The yellow areas failed the criteria
in Table 1 and are not considered to be due to K. brevis.
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Fig. 3.
Comparison of the number of cell counts samples per week to lifeguard reports by week
from Sept. 2006 to March 2007. The lifeguard reports also show the distribution of impacts,
both the Slight impacts and the combined Moderate and High impact reports.
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Fig. 4.
Median number of cell count samples per week by segment and the equivalent resolution in
km d−1 per sample for transport (or km per sample per day for extent). Results shown for
2005 and 2006, and segments identified in Fig. 1.
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Fig. 5.
Distribution of octant wind directions as a function of time of day. Standard meteorological
data from Venice Pier C-MAN Station (VENF1) from Sept. 2006 to March 2007.
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Table 1

Nowcast/identification heuristic model

Chlorophyll
anomaly

> 1 µgL−1

Season Aug–Jan (or during persistent HAB)

Geography Pinellas to Collier Counties (unless know bloom is tracked
outside this area)

Size >30 km2

Shape Patch, not coast-wide

Upwelling/
winds

>20 km onshore transport

Respiratory Impact reported with onshore winds

Cell counts Used for subsequent confirmation
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Table 3

Impact levels as defined by county lifeguard sampling program

Respiratory irritation report In a 30 s sample

None No coughing/sneezing heard in ~30 s

Slight A few coughs/sneezes heard in ~30 s

Moderate A cough/sneeze heard every ~5s

High Coughing/sneezing heard almost continuously
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Table 4

Forecasted bloom component accuracy and percent of assessable forecasts for period October 2004–April
2006

Forecast Number of forecasts Assessable (%) Accuracy (%)

Identification 10 100 80

Transport 184 67 90

Extent 48 56 77

Intensification 84 63 73

Impact 209 49 99

Combined 525 58 89
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Table 8

A comparison of forecast user accuracy for only moderate–high reports using (1) all wind data and all
lifeguard reports, (2) only correctly forecasted winds and all lifeguard reports, (3) all wind data and area level
reports and (4) correctly forecasted winds and county level reports

1 2 3 4

Forecast/
observed

All winds/all
reports
(# reports)

Correct winds/
all reports
(# reports)

All winds/
county level
reports
(# days)

Correct winds/
county level
reports
(# days)

Forecast
correct

116 115 33 32

Forecast
total

567 521 45 41

Percent 20.5% 22.1% 73.3% 78%
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Table 9

Morning and afternoon impacts

Samples/impact No impact Slight Moderate–high

All (2114) 73.4% (1551) 18.4% (390) 8.2% (173)

Morning (1163) 78.8% (916) 15.4% (179) 5.8% (68)

Afternoon (951) 66.8% (635) 22.2% (211) 11.1% (105)
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