

NIH Public Access

Author Manuscript

Tetrahedron Lett. Author manuscript; available in PMC 2010 July 12.

Published in final edited form as:

Tetrahedron Lett. 1993 May 7; 34(19): 3055-3056. doi:10.1016/S0040-4039(00)93377-X.

Thermodynamic Origin of Prolyl Peptide Bond Isomers

Eric S. Eberhardt, Stewart N. Loh, and Ronald T. Raines

Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1569 USA

Abstract

The thermodynamic preference for the *trans* isomer of prolyl peptide bonds arises almost entirely from enthalpy in aqueous buffer and in toluene.

The *trans* (*Z*) isomer of a typical peptide bond is favored greatly over the *cis* (*E*) isomer. In contrast, a *trans* bond involving the nitrogen atom of a proline residue is favored only slightly, and both isomers are common in folded proteins.¹ Knowing the thermodynamic origin for the relative stability of peptide bond isomers is essential for understanding the thermodynamic basis of protein stability.² The difference in enthalpy for the *cis* and *trans* isomers of X–Pro bonds in aqueous solution has been reported to be zero for model peptides,³ or small (ca. 1.2 kcal/mol) for poly(Pro–Gly).⁴ The difference in free energy for the *cis* and *trans* isomers of amides has been calculated with the 6-31G** basis set of the Gaussian 82 *ab initio* program to be largely enthalpic in the gas phase.⁵ We have synthesized a peptide containing ¹³C-labeled proline, and used ¹³C NMR spectroscopy to determine the precise difference in enthalpy and entropy between the X–Pro bond isomers in protic and aprotic solvents.

Racemic Ac–Gly–[β , γ -¹³C]Pro–OMe (1) was synthesized by using standard methods.⁶ The *N*-and *C*-termini of 1 were capped so as to minimize intramolecular electrostatic interactions, which have been shown to alter the relative stability of the *cis* and *trans* isomers of X–Pro bonds.⁷ The equilibrium constant (*K*) for the isomerization of 1 was determined by integration of the C_{β} resonances observed with ¹³C NMR spectroscopy at temperatures relevant for the study of protein stability.⁸

The effect of temperature on the value of *K* in aqueous buffer and in toluene is shown in Fig. 1. Van't Hoff analysis of these results (assuming $\Delta C_p^{\circ} = 0$) indicates that the difference in free energy for the X-Pro isomers of **1** originates almost entirely from enthalpic differences between these isomers. Further, the similarity of the enthalpies determined in aqueous buffer $[\Delta H^{\circ} = -(1.27 \pm 0.04) \text{ kcal/mol}]$ and in toluene $[\Delta H^{\circ} = -(1.27 \pm 0.06) \text{ kcal/mol}]$ suggests that the enthalpic forces that differentiate the *cis* and *trans* isomers of prolyl peptide bonds are similar in protic and aprotic environments. Differences in entropy, though small, favor the *cis* isomer in both aqueous buffer and toluene. The entropy difference is, however, less in water $[\Delta S^{\circ} = -(0.25 \pm 0.11) \text{ cal-mol/K}]$ than in toluene $[\Delta S^{\circ} = -(0.71 \pm 0.18) \text{ cal-mol/} \text{ K}]$. This result is consistent with the lower solvent accessibility of the amide C=O group in the *trans* isomer of **1**, which diminishes the ability of this group to restrict H₂O molecules through hydrogen bonding.⁹

Correspondence to: Ronald T. Raines.

Acknowledgments

E.S.E. was a Wharton Predoctoral Fellow. S.N.L. was supported by Cellular and Molecular Biology Training Grant GM07215 (NIH). R.T.R. is a Presidential Young Investigator (NSF), Searle Scholar (Chicago Community Trust), and Shaw Scientist (Milwaukee Foundation). The National Magnetic Resonance Facility at Madison is supported by Grant RR02301 (NIH).

REFERENCES AND NOTES

- (a) Thomas WA, Williams MK. J Chem Soc, Chem Commun 1972:994. (b) Evans CA, Rabenstein DL. J Am Chem Soc 1974;96:7312–7317. [PubMed: 4427053] (c) Stewart DE, Sarkar A, Wampler JE. J Mol Biol 1990;214:253–260. [PubMed: 2370664]
- (a) Evans PA, Kautz RA, Fox RO, Dobson CM. Biochemistry 1989;28:362–370. [PubMed: 2706262] (b) Alexandrescu AT, Hinck AP, Markley JL. Biochemistry 1990;29:4516–4525. [PubMed: 2372535] (c) Schultz DA, Baldwin RL. Protein Sci 1992;1:910–916. [PubMed: 1338975]
- 3. (a) Madison V, Schellman J. Biopolymers 1970;9:511–567. [PubMed: 5443954] (b) Maia HL, Orrell KG, Rydon HN. J Chem Soc, Chem Commun 1971:1209–1210. (c) Raleigh DP, Evans PA, Pitkeathly M, Dobson CM. J Mol Biol 1992;228:338–342. [PubMed: 1453444]
- 4. Torchia DA. Biochemistry 1972;11:1462-1468. [PubMed: 5021599]
- 5. Radzicka A, Pedersen L, Wolfenden R. Biochemistry 1988;27:4538-4541. [PubMed: 3166998]
- 6. (a) Eberhardt ES, Loh SN, Hinck AP, Raines RT. J Am Chem Soc 1992;14:5437–5439. (b) Hinck AP, Eberhardt ES, Markley JL. submitted.
- 7. Grathwohl C, Wuthrich K. Biopolymers 1981;20:2623-2633.
- NMR experiments were performed on a Bruker AM500 instrument. Samples contained 0.1 M 1 in 100 mM sodium phosphate buffer, pH 7.2, containing 20% (v/v) D₂O, or in dry toluene-*d*₈. ¹³C NMR of 1 (125.77 MHz, CDCl₃, 25 °C) δ 29.01 (C_β, *trans*), 31.26 (C_β, *cis*), 45.96 (C_δ, *trans*), 46.61 (C_δ, *cis*). δ was essentially independent of solvent or temperature.
- 9. Loh SN, Eberhardt ES, Edison AS, Weinhold F, Raines RT, Markley JL. submitted.

NIH-PA Author Manuscript

Eberhardt et al.

Fig. 1.

Van't Hoff plot for the *cis* to *trans* isomerization of **1**. •, aqueous buffer: $\Delta H^{\circ} = -(1.27 \pm 0.04) \text{ kcal/mol}$ $\Delta S^{\circ} = -(0.25 \pm 0.11) \text{ cal·mol/K}$ •, toluene: $\Delta H^{\circ} = -(1.27 \pm 0.06) \text{ kcal/mol}$ $\Delta S^{\circ} = -(0.71 \pm 0.18) \text{ cal·mol/K}$ At 25°C in aqueous buffer: $\Delta G^{\circ} = -(1.34 \pm 0.05) \text{ kcal/mol}$ At 25°C in toluene: $\Delta G^{\circ} = -(1.48 \pm 0.08) \text{ kcal/mol}$

Tetrahedron Lett. Author manuscript; available in PMC 2010 July 12.