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Abstract
To investigate the role of C5a generated on complement activation in brain, the lupus model, MRL/
lpr mice were treated with C5a receptor(R) antagonist (ant). Neutrophil infiltration, ICAM, TNF-α
and iNOS mRNA expression, neuronal apoptosis and the expression of p-JNK, pSTAT1 and p-Erk
were reduced and p-Akt increased on C5aR inhibition in MRL/lpr brains. MRL/lpr serum caused
increased apoptosis in neurons showing that lupus had a direct effect on these cells. C5aRant
pretreatment prevented the lupus serum induced loss of neuronal cells. Our findings demonstrate for
the first time that C5a/C5aR signaling plays an important role in the pathogenesis of CNS lupus.
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1. Introduction
The complement system is a powerful arm of the innate immune system and plays a key role
in infection and inflammation. It is a ‘double edged’ sword playing an important role in health
and disease (Muller-Eberhard, 1988; Johnston, 1993; Carroll and Fischer, 1997; van Beek et
al., 2003; Alexander et al., 2008a; Zipfel, 2009). Although inroads have been made to decipher
the role of the complement cascade in different settings such as stroke and lupus, yet it is not
completely understood. The complement proteins have a fairly ubiquitous distribution both in
the CNS and systemically (Barnum, 1995; Morgan and Gasque, 1996; Gasque et al., 1997).
Complement activation generates the anaphylatoxin, C5a, which produces both inflammatory
and immune effects by binding to the G-coupled receptor, C5aR (Huber-Lang et al., 2002) and
a second receptor, the C5a-like receptor 2 (C5L2). Although both receptors are expressed in
the CNS, little is currently known about the potential role of the receptor, C5L2. Several studies
have shown that generation of C5 plays a role in the pathology of neuroinflammatory diseases
(Niculescu et al., 2003; Niculescu et al., 2004b). Conversely, other studies have raised the
tantalizing possibility that in some settings C5a could be beneficial (Weerth et al., 2003; Guo
et al., 2004; Fonseca et al., 2009). In this study we hypothesized that C5a acting through its
receptor C5aR could cause neuroinflammation and could be a potential target for therapy, in
CNS lupus.

The anaphylatoxin, C5a is a 74-aa fragment of C5 generated on complement activation and
binds to C5aR inducing potent inflammatory effects (Sayah et al., 1997). They mediate a
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number of biological processes, including chemotaxis and degranulation of mast cells and
basophils, vascular permeability, increased production of reactive oxygen radical species and
cytokines (Langkabel et al., 1999; Guo et al., 2004). They could cause the intravascular
aggregation of neutrophils with subsequent leukostatic occlusion of the cerebral arteries,
contributing to vascular injury. This could alter release of cytokines and cause cell necrosis or
apoptosis (Guo et al., 2004). Neuronal apoptosis is a key event in CNS lupus (Sakic et al.,
2000; Ballok et al., 2003; Alexander et al., 2005a) and could occur through a number of
signaling mechanisms, including p-Erk and JNK pathways (Gabai et al., 1998). Signaling
pathways behave differently in various settings. For example, STAT1 has been implicated in
modulating pro- and anti-apoptotic genes following several stress-induced responses,
depending on STAT1 phosphorylation (Wesemann et al., 2004; Wang et al., 2008). Therefore,
elucidation of the signal transduction pathways and the genes activated during this process may
provide new insights concerning the prevention and treatment of CNS lupus.

Systemic lupus erythematosus (SLE) or lupus is a devastating disorder (Diamond and Volpe,
2003; Diamond et al., 2006) in which complement activation is an integral event (Alexander
and Quigg, 2007). Our earlier studies demonstrated that by inhibition of the complement
cascade with the pan complement inhibitor, Crry (Alexander et al., 2005a, b) or by deletion of
factor B (Alexander et al., 2007), the disease could be alleviated. However, these inhibitors
will shut down the complement cascade or the alternative pathway respectively. This would
open the door to infections and may not be therapeutically viable. Therefore, this study
examined the role of downstream complement proteins, C5a/C5aR in the well established lupus
rodent model, MRL/MpJ-Tnfrsf6lpr (MRL/lpr) (Brey et al., 1997). MRL/lpr mice are felt to
accurately reflect that which occurs in human SLE, including the neuropsychiatric
manifestations (Sakic et al., 1997; Ballok et al., 2003). MRL/lpr mice differ from the congenic
MRL/MpJ (MRL+/+) strain by the nearly complete absence of the proapoptotic membrane Fas
protein, due to a retroviral insertion in the Tnfrsf6 gene (Adachi et al., 1993; Watanabe-
Fukunaga et al., 1992).

We demonstrate that signaling through C5aR induces neuronal apoptosis in CNS lupus. In
parallel, the expression of proinflammatory mediators ICAM, TNF-α, MIP2 and iNOS were
significantly increased. Further, our results suggest that the apoptosis occurs through the JNK
and STAT1 signaling pathways. In addition, to determine whether neuronal apoptosis was a
primary or secondary event in CNS lupus, the role of C5a/C5aR signaling on neuronal cells in
culture, was studied. The results obtained indicate that C5a/C5aR signaling plays an important
role in lupus setting and may be a viable location for therapeutic intervention in
neuroinflammatory and neurodegenerative diseases.

2. Materials and methods
2.1. Mice and treatment

MRL/lpr mice were bought from Jackson lab and maintained at the University of Chicago. To
determine the role of C5aR in lupus brain, the MRL/lpr mice were treated with a cyclic
hexapeptide antagonist of C5aR (C5aRant; acetyl-Phe-(Orn-Pro-D-cyclohexylalanine)-Trp-
Arg) obtained from Dr Lambris (U. Pennsylvania). C5aRant was administered continuously
using osmotic pumps (Alzet model 2001; Durect) that were inserted subcutaneously using
sterile surgical techniques. They were chosen for weekly delivery based on the solubility,
stability and effectiveness of C5aRant from earlier studies (Bao et al., 2005b). Eighteen male
MRL/lpr mice (The Jackson Laboratory) were randomly divided into two groups to receive
C5aRant (n=9) or vehicle alone (n=9). Starting at 13 week of age, mice were implanted with
osmotic pumps containing 0.42 g/kg C5aRant in 0.2 ml of 50% DMSO to deliver 60 mg/kg/
day C5aRant, which was the effective dose chosen based on earlier studies (Bao et al.,
2005a). Osmotic pumps containing C5aRant were replaced weekly. Control animals were
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treated identically, except the 50% DMSO solution did not include C5aRant in the osmotic
pump. At 19 week of age, all surviving animals were sacrificed for tissue harvest. These studies
were approved by the University of Chicago Animal Care and Use Committee.

2.2. Reagents
Unless otherwise stated, all chemicals were purchased from Sigma (St. Louis, MO, USA).
Antibodies were chicken anti-mouse C5aR (Dr Scott Barnum, Birmingham); rabbit anti-mouse
p-Akt, anti-mouse p-Erk, anti-mouse p-JNK, anti-mouse STAT1 (Cell Signaling), rabbit anti-
CD54 (Pharmingen), rabbit anti-Actin (Sigma), rabbit anti-C3 (Bethyl Laboratories,
Montgomery, TX, USA). All primary antibodies were used at a dilution of 1:1000.

2.3. Tissue processing
Brains were isolated, and brain stem and cerebellum were discarded. Cerebral cortex was
processed for immunofluorescence (IF), RNA, DNA and protein. For IF, brains were snap
frozen in OCT compound placed in precooled 2-methylbutane and kept at −80 °C until use.
The rest of the brains were frozen at −80 °C and processed accordingly for RNA, DNA and
protein.

2.4. Immunofluorescence microscopy
To stain for neutrophils, 4 µm cryosections were fixed in ether/ethanol and then blocked with
10% normal goat serum. Slides were then sequentially incubated in rat anti-mouse neutrophil
antibody (Serotec), followed by Alexa 488-conjugated goat anti-rat IgG (absorbed with mouse
Ig; Serotec). To quantify cells in each section, neutrophils were counted in at least 20 low-
power fields (lpf, 200×) in a blinded manner as described by others (Jacob et al., 2007). To
assess ICAM expression, brain sections were stained with anti-CD54 and Alexa 547-labeled
anti-rabbit antibody (Molecular Probes). The sections were observed at 20× using a Zeiss
microscope.

2.5. Apoptosis determination
2.5.1. Ligase-mediated (LM)-PCR—Brains were harvested and immediately frozen at −80
°C DNA was purified using the DNeasy DNA purification system (Qiagen, Valencia, CA).
DNA laddering was detected by LM-PCR (Clontech Laboratories, Palo Alto, CA) according
to the manufacturer's instructions. In brief, DNA isolated from each animal or culture dish was
incubated with the supplied primer targets and T4 DNA ligase for 18 h at 16 °C. Twenty
milligrams of this ligated DNA was then used as substrate for PCR, using supplied primers
and Advantage DNA polymerase (Clontech Laboratories) for 23 cycles at 94 °C for 1 min and
at 72 °C for 3 min. The reaction product for each animal was electrophoresed through a 1.2%
agarose gel with ethidium bromide and visualized with UV light.

2.6. Immunoblotting
Frozen cortical tissue was homogenized in RIPA buffer and protein estimated using BCA
reagent (Hill and Straka, 1988). Equal amounts of samples were separated by SDS-PAGE and
electrophoretically transferred to a polyvinylidene difluoride membrane (Millipore).
Membranes were blocked with 5% nonfat milk for 1 h at room temperature and incubated with
antibodies to C5aR, phosphorylated JNK, STAT1 or Erk (Cell Signaling Technology).
Membranes were then incubated with peroxidase-conjugated anti-chicken IgY (Sigma-
Aldrich) or anti-rabbit antibody (Pierce). Chemiluminescent substrate (Pierce) was used to
develop signals. Membranes were then stripped followed by probing with anti-actin (Sigma-
Aldrich), anti-PTEN, or anti-Akt antibodies (Cell Signaling Technology). Controls in which
the primary antibody was omitted were negative. X-ray films were scanned and optical density
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of corresponding bands was determined with ImageJ software from NIH
(http://rsb.info.nih.gov/ij/).

2.7. Quantitative RT-PCR
Total RNA was extracted from brains using TriZol and cDNA produced as described
previously (Alexander et al., 2008b). qRT-PCR was performed on brain cortical RNA using
QuantiTect SYBR Green RT-PCR kit. Data were normalized to GAPDH RNA. The primers
used are provided in Table 1.

2.8. Cortical neuronal cultures
Cultures were grown from fetal mouse brains (E E16.5 pooled mouse embryos from one litter
as previously described (Li et al., 2005). Cells were plated on poly-L-lysine-coated 15- or 25-
mm cover slips at a density of 8×104 cells/cm2 and maintained in serum-free medium
(Neurobasal A/B-27; Invitrogen Corp., Grand Island, NY) supplemented with 0.5 mM L-
glutamine. Under these conditions neuronal purity is >95%. Cells were treated for 3 h with
serum isolated from 20 week old mice (control serum from MRL+/+ mice, lupus serum from
MRL/lpr mice). The activity of C5a was inhibited in the serum-treated cells by pretreatment
with 1 µM C5aRant. Cells were assessed for apoptosis by two methods, TUNEL (Trevigen,
MD) and Annexin V staining (Southern Biotech). Some cultures were fixed with 4%
paraformaldehyde and immunostained for C5aR.

2.8.1. In situ apoptotic cells detection—Cells were treated for 3 h and fixed in 4%
paraformaldehyde and examined for the degree of apoptosis using the TACS Fluorescent label
in situ apoptosis detection kit (Trevigen) according to the manufacturer's instructions. Briefly,
the free 3′-OH ends of nuclear DNA fragments were labeled with BrdU using TdT.
Cryosections were then incubated with biotinylated anti-BrdU Ab and streptavidin-594. A
positive control treated with nuclease and unlabeled negative experimental controls were also
included. A different set of cultured cells were treated and stained with fluorescently labeled
Annexin V. Nuclei were stained with DAPI. Apoptotic cells, which were positively labeled
for Annexin (green) or TUNEL (red), were counted in a blinded manner from at least 5 lpf
(×200)/cover slip. The total numbers of cells were based on counts obtained for DAPI staining.
Results are given as mean of three different experiments.

2.9. Statistical analyses
Data are expressed as mean±SEM and were analyzed using Minitab (version 12; Minitab)
software. For the comparison between two groups at one time point, t testing was used for
parametric data, and Mann–Whitney testing was used for nonparametric data. Potential
correlations among variables were determined by calculating Pearson product moment
correlation coefficients and their p values. p<0.05 was considered statistically significant.

3. Results
3.1. C5aR mRNA and protein expression is up-regulated in brains of MRL/lpr mice

The expression of C5aR in brain was significantly up-regulated in MRL/lpr mice compared to
MRL/+ mice (0.92±0.22 vs 1.73±0.11; p<0.02) as assessed by western blotting. In line with
the protein expression, the mRNA for C5aR was found to be increased in MRL/lpr mouse brain
compared to the control MRL/+ mice, although they did not reach statistical significance (Fig.
1). The up-regulation of C5aR protein expression could make the brain more susceptible to the
effects of C5a.
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3.2. Effect of C5aRant on brain expression of inflammatory mediators
Expression of ICAM mRNA was significantly increased in brains of MRL/lpr mice.
Immunostaining demonstrates increase in ICAM expression especially around the
microvasculature (Fig. 2). Since ICAM along with other inflammatory mediators facilitates
recruitment of mononuclear cells into inflamed tissue, infiltration of neutrophils into the lupus
brain was assessed. In line with ICAM expression, significant number of neutrophils was
present in lupus brain compared to controls (Fig. 3). The neutrophils were concentrated around
the lumina of blood vessels and extravascularly throughout the brain parenchyma. Blockade
of C5aR reduced ICAM expression (Fig. 2) and neutrophil infiltration (Fig. 3) in brains of
MRL/lpr mice. Since neutrophils are recruited to sites of inflammation and can release
proinflammatory molecules, we studied the brain expression of mRNAs for TNF-α, CXCL2/
MIP-2 and iNOS by qRT-PCR to provide insight into potential mechanism(s) causing
pathology. As shown in Fig. 4, the expression of all three mediators were significantly reduced
(p<0.05) by inhibition of C5aR, confirming that the expression of these cytokines appears to
be mediated, at least in part, through signals delivered through C5aR.

3.3. Inhibition of C5aR reduces neuronal apoptosis in MRL/lpr mouse brain
Our earlier studies demonstrate complement-dependent neuronal apoptosis is a key event in
MRL/lpr brain (Alexander et al., 2005a). The increase in expression of inflammatory molecules
could be one of the factors that induce apoptosis. In addition, C5a was previously shown to
induce or reduce apoptosis, depending on the setting in which complement activation occurs.
Therefore, we assessed the role of C5a/C5aR signaling in apoptosis by DNA fragmentation,
in CNS lupus. As seen in our earlier experiments, significant DNA fragmentation was observed
in control MRL/lpr mouse brain cortex, which was localized to the neurons. In contrast, the
brains of mice treated with C5aRant had substantially less DNA fragmentation (Fig. 5). The
changes in neurons could occur due to events in the brain per se or due to stimuli that obtain
access to the brain through a disturbed BBB. The ability of the C5aRant to reduce neuronal
apoptosis in vivo prompted us to determine effects in an in vitro system. Therefore we assessed
the effect of lupus serum on neurons in culture.

3.4. Signaling pathways involved in C5aR induced neuronal apoptosis
To obtain insights as to the pathways and proteins involved in neuronal apoptosis in CNS lupus,
expression of phosphorylated Akt, Erk, JNK and STAT1 were assessed by western blotting
and normalized to actin to circumvent any loading efficiency errors. The decrease in p-Akt
expression and increase in expression of p-Erk, p-JNK and pSTAT1 that occurred in the brains
of MRL/lpr mice and assessed by western blotting was reduced by treatment with C5aRant
(Fig. 6, p<0.05). The changes in expression of these proteins were calculated using the ImageJ
software. Further studies are required to determine the effect of the altered expression of these
proteins on their activity and their downstream targets.

3.5. C5a/C5aR signaling regulates apoptosis in neurons in vitro
Treatment of cultured neuronal cells with lupus serum enhanced C5aR expression in these cells
(Fig. 7). In addition, cells treated with lupus serum as assessed by TUNEL and Annexin V
(Fig. 8) staining underwent significant apoptosis compared to cells treated with serum from
control mice. These results suggest that in a setting where the BBB is compromised, C5a is
one of the factors in the circulating serum that cause neuronal apoptosis.

4. Discussion
Lupus is a complex disease of unknown etiology in which complement activation plays an
important role (Belmont et al., 1986; Abramson et al., 1987; Arora et al., 2004). Our earlier
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studies, using Crry and complement factor B located upstream in the complement cascade is
protective in lupus, but to date no one has examined the role of downstream complement
protein, C5a in this disease. Our present data clearly demonstrate that treatment with the
C5aRant, inhibiting C5a/C5aR signaling results in significant and substantial decreases in brain
pathology in MRL/lpr, lupus mouse model, thereby leaving the upstream potentially protective
complement activation events intact. Our results provide novel evidence for a relationship
between complement activation, inflammation and neuronal viability in lupus brain.

Complement activation product, C5a, is thought to play a role in the pathogenesis of numerous
neurological diseases, although its precise role remains an enigma. Transcriptional and
translational analysis revealed up-regulation of C5aRs on CNS cells in CNS lupus. C5aR
expression is increased on cortical endothelia (van Beek et al., 2003), neurons and astrocytes
(Gasque et al., 1997) during inflammation. The dual role of C5 in increasing inflammation
(Weerth et al., 2003) and reducing apoptosis (Niculescu et al., 2004a), makes it important to
decipher its role in CNS lupus. In this study we utilized a C5aR antagonist to study the role of
C5a in CNS lupus. C5a dependent increase in the expression of the proinflammatory cytokines,
ICAM-1, MIP-2, TNF-α and iNOS were observed in lupus brain. A similarity between the
human disease and the mouse model is the increased ICAM-1 expression and a statistically
significant positive correlation between ICAM-1 levels and SLE disease activity index
(SLEDAI) score (Baraczka et al., 2001; Norman et al., 2008). In line with the fact that ICAM-1
recruits cells into tissues undergoing inflammatory responses, we observed increased
infiltration of neutrophils into MRL/lpr brain. Infiltrating cells along with resident cells could
result in complement activation and generation of proinflammatory molecules in the tissues
that could cause the cells to apoptose. MRL/lpr mice treated with C5aRant had significantly
reduced neutrophil infiltration and associated apoptosis. Both these events could be partially
caused by other factors such as C3a, generated by complement activation and increased during
inflammation in ischemia, sepsis and CNS lupus (Gasque et al., 1998; Nadeau and Rivest,
2001; Jacob et al., 2009).

Protein kinase cascades are emerging as important modulators of the apoptotic response, by
phosphorylating apoptotic proteins or regulating the transcription of pro- and anti-apoptotic
genes (Tournier et al., 2000; Kuan et al., 2003). In lupus, a number of protein kinases could be
activated and cause apoptosis. Altered phosphorylation of p-Akt, p-Erk, p-JNK and pSTAT1
in our studies suggest that in CNS lupus, apoptosis could occur through these signaling
pathways. Since inhibition of C5aR allows MAC complex formation to continue unhindered,
the Akt activation observed could be induced by the MAC as shown earlier (Soane et al.,
2001; Fosbrink et al., 2006). Phosphorylation of STAT1 occurs through Erk and JNK in
response to stress signals and inflammation (Zykova et al., 2005). All these proteins interface
with each other and downstream targets to regulate the apoptotic machinery. Apoptosis could
occur through caspase-dependent and independent mechanisms, since caspase 3 activity is
increased in CNS lupus. Since inhibition of C5aR reduced the changes in expression and
activity of these signaling proteins, these signaling pathways are at least partially regulated by
C5a/C5aR signaling in CNS lupus. However, further studies are necessary to determine the
role and contribution of each of these molecules in CNS lupus.

Since the effect of C5aR inhibition was hypothesized to reduce inflammation globally in brain
in CNS lupus, the cellular environment and mechanism by which this occurs remain to be
unequivocally established, particularly since C5a receptors are expressed on other CNS cells
such as glia as well (Gasque et al., 1998). In vitro studies using primary cultures of neurons
indicate C5aR up-regulation on these cells when treated with lupus serum making them more
susceptible to C5a. Lupus serum caused apoptosis of neuronal cells in culture, which was
significantly reduced by C5aR inhibition, indicating that C5a caused neuronal apoptosis
through C5a/C5aR signaling. In lupus, it is possible that blood–brain barrier disruption (Abbott
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et al., 2003; Alexander et al., 2003; Diamond et al., 2006) could result in accumulation of
factors not normally present in the CNS which may subsequently contribute to neuronal
apoptosis. Neuronal C5aR activation has been suggested to be involved in the induction of
neuronal apoptosis (Guo et al., 2004), although this remains controversial. Therefore, further
experimentation is required to define the precise sequence of events as to how C5a causes the
pathology in lupus brain. However, our results in this study provide compelling evidence that
C5a plays a crucial proinflammatory role in this model.

In summary, these studies provide the first evidence of a neuroprotective role for C5aR
antagonist in the rodent lupus model, MRL/lpr mice. The therapeutic effects of C5aR
antagonists in this model suggest that neuroinflammation in the form of complement activation
and C5a generation plays a deleterious role in CNS lupus, and indicates a potential future role
in the treatment of a variety of human neurodegenerative diseases.

Abbreviations

SLE System lupus erythematosus

IC Immune complex

qRT-PCR Quantitative RT-PCR

C5aRant Antagonist of C5aR

PKB Protein kinase B

CNS Central nervous system

MAC Membrane attack complex

Crry CR1-related protein y

CSF Cerebrospinal fluid

MRL/lpr MRL/MpJ-Tnfrsf6lpr/lpr

MRL+/+ MRL/MpJ-Tnfrsf6+/+

ERK Extracellular signal-regulated kinase

JNK c-Jun N-terminal kinase
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Fig. 1.
Expression of C5aR is up-regulated in lupus brain. Expression of C5aR was up-regulated in
the brains of MRL/lpr lupus mice (n=7), both at the mRNA level as determined by qRT-PCR
(A and B), and protein as determined by western blotting analysis (C, p<0.02) compared to
brains from MRL+/+ controls (n=7). mRNA expression was normalized to GAPDH and the
protein expression to actin in each sample. Values are expressed as Mean±S.D. *p<0.05.
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Fig. 2.
C5a alters ICAM expression in lupus brain. Immunofluorescence staining using anti-mouse
CD54 antibody and detection with Alexa-594 labeled anti-rabbit antibody demonstrates a
significant up-regulation of ICAM expression in MRL/lpr brain compared to control MRL+/
+ brains. Shown are representative sections from each group. The staining is mainly present
around the microvasculature as shown in the inset. The increase in expression of ICAM was
reduced on C5aRant treatment. mRNA expression of ICAM as assessed by qRT-PCR was
altered in brain in line with the observed protein changes. Values are expressed as Mean±S.D.
*p<0.05.
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Fig. 3.
Neutrophil accumulation in lupus brain is C5aR-dependent. Cortical sections from MRL/lpr
mouse brain stained with anti-neutrophil antibody had significant infiltration of neutrophils
compared to MRL/+ mice (8.05±3.2 vs 0.5±0.6; *p<0.05). In contrast, substantial reduction to
no neutrophils was observed in MRL/lpr mice that were treated with C5aRa (1.6±1.1 vs 8.05
±3.2; =p<0.05). Neutrophils were counted from 20 different fields each, per high-power field.
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Fig. 4.
Brain expression of inflammatory mediators is regulated by C5a in lupus. Expression of
proinflammatory mediators, MIP2, iNOS and TNF-α was significantly up-regulated in the
brains of lupus mice, as determined by qRT-PCR, normalized to 18 S expression. These
alterations were complement-dependent and were prevented by treatment with C5aRant.
Values are shown as Means±S.D.; *p<0.05 vs saline-treated.
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Fig. 5.
C5aR inhibition reduces apoptosis in lupus brain. DNA was isolated from brains and subjected
to LM-PCR to assess apoptotic DNA laddering. Significant apoptosis was observed in the
brains of the MRL/lpr mice, which was considerably reduced by C5aR inhibition. Given are
representative samples from the saline-treated and C5aRa-treated MRL/lpr groups. Each lane
contains brain tissue harvested from an individual animal.
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Fig. 6.
C5a/C5aR signaling regulates the expression of signaling proteins in lupus brain. The
expression of survival factors p-Akt and other signaling molecules, p-Erk, p-JNK, p-STAT1
was assessed by western blotting with equal amounts of protein. They were normalized to the
housekeeping protein, actin. The expression of p-Akt was significantly reduced while all the
other molecules were up-regulated in MRL/lpr brain. The alteration in expression was
alleviated by C5aR inhibition. All changes of *p<0.05 were considered significant. Shown are
representative blots from three separate experiments.
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Fig. 7.
C5aR expression is up-regulated on neurons, when treated with lupus serum.
Immunofluorescence using chicken anti-mouse C5aR antibody, clearly demonstrates the
increased expression of C5aR when primary neuronal cultures were treated with lupus serum
compared to cells treated with control MRL+/+ serum. C5aR was observed using a Zeiss
microscope and was present both on the surface and in the cytosol.
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Fig. 8.
C5aR inhibition reduces apoptosis in neurons. Cells treated with serum were processed for
Annexin V (A) and TUNEL (B) staining as described in the Methods. Positive cells (Annexin
and TUNEL) and total number of cells (DAPI) were counted in a blinded manner from 5
different fields of each sample using a Zeiss microscope and the values are given as Mean±S.D.
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Table 1

Primers used in qRT-PCR.

Genes Primer 1 (Forward) Primer 2 (Reverse)

C5aR 5′-gatgccaccgcctgtatagt-3′ 5′-acgaaggatggaatggtgag-3′

MIP-2 5′-caccaaccaccaggctac-3′ 5′-gcccttgagagtggctatga-3′

ICAM-1 5′-cgcaagtccaattcacactga-3′ 5′-cagagcggcagagcaaaag-3′

TNF-α 5′-ccgatgggttgtaccttgtc-3′ 5′-gtgggtgaggagcacgtagt-3′

GAPDH 5′-gcaaattcaacggcacagt-3′ 5′-agatggtgatgggcttccc-3′
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