Skip to main content
. 2010 Jun 25;9:185. doi: 10.1186/1475-2875-9-185

Table 2.

Autocorrelation and partial correlation of monthly malaria incidence, and the fitting and predictive residuals of the model

Lag Monthly malaria incidence Fitting residual Predictive residual

AC PAC LB P AC PAC LB P AC PAC LB P
1 0.84 0.84 102.48 < 0.01 -0.06 -0.06 0.20 0.66 0.29 0.29 1.25 0.26
2 0.60 -0.33 155.20 < 0.01 -0.04 -0.05 0.31 0.86 -0.33 -0.45 3.12 0.21
3 0.30 -0.33 168.51 < 0.01 0.06 0.06 0.54 0.91 -0.13 0.18 3.45 0.33
4 0.03 -0.07 168.64 < 0.01 0.03 0.03 0.59 0.97 0.17 0.01 4.04 0.40
5 -0.19 -0.05 173.85 < 0.01 0.04 0.05 0.67 0.99 0.07 -0.03 4.17 0.53
6 -0.27 0.17 185.02 < 0.01 0.01 0.02 0.68 0.99 -0.02 0.09 4.18 0.65
7 -0.24 0.12 194.14 < 0.01 0.05 0.06 0.88 0.99 -0.17 -0.26 5.11 0.65
8 -0.11 0.15 196.02 < 0.01 -0.04 -0.04 0.98 0.99 -0.28 -0.18 8.47 0.39
9 0.09 0.18 197.33 < 0.01 0.07 0.07 1.32 0.99 -0.19 -0.16 10.47 0.31
10 0.32 0.20 213.76 < 0.01 -0.14 -0.14 2.62 0.99 0.06 -0.02 10.80 0.37
11 0.51 0.08 254.12 < 0.01 0.06 0.06 2.92 0.99
12 0.56 -0.18 303.34 < 0.01 -0.22 -0.25 6.51 0.89

AC: autocorrelation coefficient. PAC: partial autocorrelation coefficient. LB: Ljung-Box Q Statistic. Lag: the number of lagged months. For the monthly malaria incidence, P < 0.05 indicates a strong autocorrelation of monthly malaria incidence. For the fitting and predictive residuals, P > 0.05 indicates that the model extracted the information sufficiently and had good prediction validity.