Table 2.
Lag | Monthly malaria incidence | Fitting residual | Predictive residual | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | PAC | LB | P | AC | PAC | LB | P | AC | PAC | LB | P | |||
1 | 0.84 | 0.84 | 102.48 | < 0.01 | -0.06 | -0.06 | 0.20 | 0.66 | 0.29 | 0.29 | 1.25 | 0.26 | ||
2 | 0.60 | -0.33 | 155.20 | < 0.01 | -0.04 | -0.05 | 0.31 | 0.86 | -0.33 | -0.45 | 3.12 | 0.21 | ||
3 | 0.30 | -0.33 | 168.51 | < 0.01 | 0.06 | 0.06 | 0.54 | 0.91 | -0.13 | 0.18 | 3.45 | 0.33 | ||
4 | 0.03 | -0.07 | 168.64 | < 0.01 | 0.03 | 0.03 | 0.59 | 0.97 | 0.17 | 0.01 | 4.04 | 0.40 | ||
5 | -0.19 | -0.05 | 173.85 | < 0.01 | 0.04 | 0.05 | 0.67 | 0.99 | 0.07 | -0.03 | 4.17 | 0.53 | ||
6 | -0.27 | 0.17 | 185.02 | < 0.01 | 0.01 | 0.02 | 0.68 | 0.99 | -0.02 | 0.09 | 4.18 | 0.65 | ||
7 | -0.24 | 0.12 | 194.14 | < 0.01 | 0.05 | 0.06 | 0.88 | 0.99 | -0.17 | -0.26 | 5.11 | 0.65 | ||
8 | -0.11 | 0.15 | 196.02 | < 0.01 | -0.04 | -0.04 | 0.98 | 0.99 | -0.28 | -0.18 | 8.47 | 0.39 | ||
9 | 0.09 | 0.18 | 197.33 | < 0.01 | 0.07 | 0.07 | 1.32 | 0.99 | -0.19 | -0.16 | 10.47 | 0.31 | ||
10 | 0.32 | 0.20 | 213.76 | < 0.01 | -0.14 | -0.14 | 2.62 | 0.99 | 0.06 | -0.02 | 10.80 | 0.37 | ||
11 | 0.51 | 0.08 | 254.12 | < 0.01 | 0.06 | 0.06 | 2.92 | 0.99 | ||||||
12 | 0.56 | -0.18 | 303.34 | < 0.01 | -0.22 | -0.25 | 6.51 | 0.89 |
AC: autocorrelation coefficient. PAC: partial autocorrelation coefficient. LB: Ljung-Box Q Statistic. Lag: the number of lagged months. For the monthly malaria incidence, P < 0.05 indicates a strong autocorrelation of monthly malaria incidence. For the fitting and predictive residuals, P > 0.05 indicates that the model extracted the information sufficiently and had good prediction validity.