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Multistability, the coexistence of multiple attractors in a dynamical system, is explored in bursting
nerve cells. A modeling study is performed to show that a large class of bursting systems, as defined
by a shared topology when represented as dynamical systems, is inherently suited to support
multistability. We derive the bifurcation structure and parametric trends leading to multistability in
these systems. Evidence for the existence of multirhythmic behavior in neurons of the aquatic
mollusc Aplysia californica that is consistent with our proposed mechanism is presented. Although
these experimental results are preliminary, they indicate that single neurons may be capable of
dynamically storing information for longer time scales than typically attributed to nonsynaptic
mechanisms. © 2010 American Institute of Physics. �doi:10.1063/1.3413995�

Neurons that support bursting dynamics are a common
feature of neural systems. Due to their prevalence, great
effort has been devoted to understanding the mechanisms
underlying bursting and information processing capabili-
ties that bursting dynamics afford. In this paper, we pro-
vide a link between neuronal bursting and information
storage. Namely, we show that the mechanism implicit to
bursting in certain neurons may allow near instantaneous
modifications of activity state that lasts indefinitely fol-
lowing sensory perturbation. Thus, the intrinsic, extra-
synaptic state of these neurons can serve as a memory of
a sensory event.

I. INTRODUCTION

Bursting is a dynamic state characterized by alternating
periods of fast oscillatory behavior and quasi-steady-state ac-
tivity. Nerve cells commonly exhibit autonomous or induced
bursting by firing discrete groups of action potentials in time.
Autonomously bursting neurons are found in a variety of
neural systems, from the mammalian cortex1 and brain-
stem2–4 to identified invertebrate neurons.5,6

Multirhythmicity in a dynamical system is a specific
type of multistability which describes the coexistence of two
or more oscillatory attractors under a fixed parameter set.
Multirhythmicity has been shown to occur in vertebrate mo-
tor neurons,7 invertebrate interneurons,8 and in small net-
works of coupled invertebrate neurons.9 Additionally, multi-
rhythmicity has been demonstrated in models of intracellular
calcium oscillations10 and coupled genetic oscillators.11

Multistable systems can act as switches in response to an
external input. The feasibility of multistability as an informa-

tion storage and processing mechanism in neural systems has
been widely discussed in terms of neural recurrent loops and
delayed feedback mechanisms.12–14 Theoretical studies have
shown multirhythmic bursting behavior in a number of
single neuron models15,16 as well as in a model two-cell in-
hibitory �half-center oscillator� network.17 In biological neu-
rons, it is possible that these dynamics are employed as a
short term memory. This report provides a general explana-
tion for the existence of multirhythmic bursting in previous
studies15,16,18 and the characteristics of a bursting neuron that
allow multirhythmic dynamics. Additionally, we provide ex-
perimental evidence, suggesting the existence of this behav-
ior in several identified bursting neurons of the aquatic mol-
lusc Aplysia californica.

II. A SIMPLE PARABOLIC BURSTING MODEL

Dynamical bursting systems are a subset of the singu-
larly perturbed �SP� class of differential equations,

ẋ = f�x,y� , �1�

ẏ = �g�x,y�, x � Rm, y � Rn, �2�

where 0�� is a small parameter. Using singular perturbation
methods,19,20 the dynamics of bursting models can be ex-
plored by decomposing the full system into fast and slow
subsystems: Eqs. �1� and �2�, respectively. The slow sub-
system can act independently,21 be affected synaptically,17 or
interact locally with the spiking fast subsystem5,15–17 to pro-
duce alternating periods of spiking and silence in time. To
examine the dynamical mechanism implicit to a bursting be-
havior, y is treated as a bifurcation parameter of the fast
subsystem. This is formally correct when �=0 and Eq. �2�
degenerates into an algebraic equation, but the assumption is
reasonable when there is a large time separation between fast
and slow dynamics.

Using this technique, all autonomously bursting single
neuron models displaying multirhythmic bursting in
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literature15,16 are topologically classified as the circle/circle
type;22,23 that is, their fast subsystem is driven back and forth
across a saddle node on invariant circle �SNIC� bifurcation to
produce alternating spiking and silent states. These models
can be reduced to a form that supports a topological normal
SNIC to and from the active phase.23 This system is

v̇ = I + v2 + u1, �3�

u̇1 = − �u2, �4�

u̇2 = − ��u2 − u1� , �5�

where I is a constant current, and � and � are small positive
constants. Trajectories are reset after a voltage spike by
v=vc ,v←vr and �u1 ,u2�← �u1+d1 ,u2+d2�, where vc−vr,
and d1 and d2 are discrete shifts in variables that account for
the effects of a spike. Thus, the slow subsystem defined by
Eqs. �4� and �5� is a damped linear oscillator defining a
stable focus when ��4� or node when ��4�. Under the
parameter sets used here, the slow subsystem is a focus.
Equation �3� is the fast subsystem and is a quadratic integrate
and fire neuron.

Equations �3�–�5� are SP systems for small � and �.
When u1 is used as a bifurcation parameter of the singular
system �Eq. �3��, a saddle node bifurcation occurs when
u1=usn=−I. When u1�usn, v→� like tan�t� �see Appendix
A 1�. In the full system, when u1�usn, trajectories slowly
converge on the equilibrium point of the slow focus. When
u1�usn, trajectories of the slow subsystem are interrupted by
spiking events when v goes to vc and �u1 ,u2� are discretely
modified. The existence of a bursting solution is reliant on
the interaction between spiking events and a flow of the slow
focus—neither activity type can exist indefinitely when iso-
lated. A necessary condition for the existence of a limit cycle
that represents bursting or tonic spiking is that the equilib-
rium point of the slow subsystem �u1

� ,u2
�� must satisfy

u1
��usn.

A general aspect of SP systems of the form �Eqs. �1� and
�2�� is that if M = ��x ,y� � f�x ,y�=0� is a stable equilibrium
manifold of the fast subsystem on which Dxf is nonsingular,

trajectories on M follow the reduced field, ẏ=g�h�y� ,y�,
where h�y� is a function satisfying f�h�y� ,y�=0.24 With this
in mind, consider an m+n dimensional circle/circle bursting
system �e.g., Eqs. �3�–�5��. Let 	t be the flow of the full
system. On M, h�y� is dependent on y and static parameters.
With �=0, 	t�x ,y�=	t�h�y� ,y� since the time scales of the
singular and slow subsystem are assumed to have infinite
separation. Hence, if local cross section 
�Rm+n of dimen-
sion m+n−1 is everywhere transverse to 	t, the condition
	��h�y0� ,y0�= �h�y0� ,y0� on 
 shows a �-periodic closed or-
bit. This condition reduces to 	��y0�=y0 and fixed points of a
n−1 dimensional map generated from an n−1 dimensional
section on M show closed orbits in Rm+n �Fig. 1�. In the case
of Eqs. �3�–�5�, n=2. Therefore, a one-dimensional return
map equivalent to the full system can be created using a
one-dimensional section �.

III. BURSTING SOLUTIONS RESULT
FROM COUNTERACTING DYNAMICS

Figure 2 indicates that discrete spiking events on a
circle/circle bursting solution have a contraction-balancing
action in phase space; they periodically force the stable fo-
cus, returning it to its initial condition after a single period,
and transforming the focal trajectory into a limit cycle. When
trajectories containing different numbers of spiking events
return to their initial condition after a full revolution, mul-
tiple coexisting limit cycles are formed and multirhythmic
bursting is achieved.

Consider multirhythmic bursting produced by Eqs.
�3�–�5� in Fig. 2. Let Mc represent the equilibrium manifold
of Eq. �3� parametrized by u1. We recall from Sec. II that an
n−1=1 dimensional section is needed to form a return map
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FIG. 1. A generic circle/circle bursting system projected into R1+2. The
dynamics of x is much faster than that of y. At some points, trajectories are
smashed onto the fast equilibrium manifold, allowing return maps created
from Poincaré sections of dimension n−1 to provide a complete dynamical
description of the continuous system �see text for details�.
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FIG. 2. �Color online� Multirhythmic bursting produced by Eqs. �3�–�5�. �a�
Voltage traces showing a single period of three coexisting, limit cycles of
10, 11, and 12 spikes. Note that the period of coexisting bursting solutions is
different as indicated by three endpoint markers. �b� The corresponding limit
cycles projected into the plane of the slow variables �thick� with the aver-
aged solution shown in gray. Dotted gray lines are the nullclines of the
averaged bursting system �see Eqs. �13� and �14��. Contraction metrics, Cr,
Cs, and C� �Eqs. �9�–�11�� are demonstrated on a portion of a trajectory of
the full system spiraling outward �thin�. The dashed line ��+� and dot-
dashed line ��−� are the Poincaré sections used to define G and H �Eqs. �6�
and �7��. �c� Cr, Cs, and C� for the multirhythmic system in �a�. When the
contraction of the slow focus is balanced by expansive spiking events, C�=0
and there is a fixed point of the map. Contraction metrics for the averaged
system are thin solid lines. Parameters used here are I=0.5 �I=1.2 for aver-
aged system�, �=0.2, �=0.05, d1=0.4, d2=0.6, vc=10, and vr=−1.
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for the system defined by Eqs. �3�–�5� so long as that section
is on Mc. Therefore, we can define this section as the line of
saddle nodes that divide the silent and spiking regimes of
phase space, �c= ��u1 ,u2��R �u1=usn�. Consequently, a one-
dimensional recurrence map, P :u2→u2, is formed by inter-
sections with the Poincaré section,25

�− � ��u1,u2� � R�u1 � �c, u̇1 � 0� . �6�

To further explain how bursting and multirhythmicity arises
in circle/circle systems, we divide the full return map P into
two components, G and H, in terms of two Poincaré sections,
�−, and an additional section,

�+ � ��u1,u2� � R�u1 � �c, u̇1 � 0� . �7�

Here, G is a mapping from some initial condition, u2�0�
��−, to a point on �+. H is then a mapping from G�u2�0��
back to �− �Fig. 2�. Thus, over the course of a periodic
trajectory, G accounts for the dynamics in the silent �contrac-
tive� region to the left of �c and H accounts for the dynamics
in the spiking �expansive� region to the right of �c. The
functional composition of these maps,

P�u2� = H�G�u2�� , �8�

is the discrete time Poincaré recurrence map as previously
defined. Using G and H, distance metrics,

Cr�u2� = u2 − G�u2� , �9�

Cs�u2� = G�u2� − H�u2� , �10�

C��u2� = Cs�u2� − Cr�u2� �11�

can be compared to describe contraction of trajectories in the
resting, spiking, and combined regions of state space, respec-
tively �see Fig. 2�. For points u2

���− that C��u2
��=0, the

contraction of the resting portion of the trajectory is balanced
by the net expansion of the spiking portion. Hence, u2

� are
fixed points of P and therefore show closed orbits in the full
system.

Contraction and expansion of Eqs. �3�–�5� are clarified
by examining the averaged slow subsystem. This uses a near-
identity change of variables to account for the time-averaged
effect of fast spiking when u1�usn. Let �t ,u� be the limit
cycle of the fast subsystem defining T-periodic spiking.
u̇=�g��t ,u� ,u� is the periodically forced slow subsystem.
By the Pontryagin–Rodygin theory,26 the averaged slow sub-
system for u1�usn is defined as

ż =
�

T�z�	0

T�z�

g��t,z�,z�dt , �12�

where z=u+O���. So, for our simple model, the averaged
slow subsystem is the switched system,

ż1 = 
 − �z2 if z1 � usn

− �z2 +
d1

T�z1�
if z1 � usn, � �13�

ż2 = 
 − ��z2 − z1� if z1 � usn

− ��z2 − z1� +
d2

T�z1�
if z1 � usn, � �14�

where

T�z1� =
1

�z1 + usn
arctan vc

�z1 + usn
�

− arctan vr

�z1 + usn
�� �15�

�see Fig. 2 and Appendix A�. Now opposing contraction dy-
namics are explicit between terms on the right hand side of
Eqs. �13� and �14� when z1�usn.

IV. CONDITIONS FOR MULTIRHYTHMICITY

Nonmonotonicity of C� is a necessary condition for mul-
tirhythmic bursting in circle/circle models because it means
that P may support several isolated contraction mappings.
Fluctuations in the contraction of P as measured by C� are
the result of near quantal spike addition in the active phase of
bursting. Because the averaged system produces a monotonic
C�, it cannot generate a saddle node bifurcation of closed
orbits �SCOs� and therefore cannot support multiple coexist-
ing stable solutions.

Consider a closed orbit of the simple model � projected
into the plane �u1 ,u2� containing N spiking events. The dy-
namics on trajectories originating on the plane inside � is
dominated by expansive spiking and they spiral outward.
The dynamics on trajectories originating outside � is domi-
nated by contraction of the focus and they spiral inward.
However, when initial condition �u1�0� ,u2�0�� lies some
critical distance outside �, the arc length of the resulting
trajectory past usn is long enough such that it contains N+1
spikes and its dynamics may become net expansive, causing
it to spiral outward, indicating a “jump” in C�. If this occurs,
this trajectory forms the inner boundary of the trapping re-
gion of a second oscillatory attractor. Since in Eqs. �13� and
�14� quantal spiking is averaged over time, divisions between
expansive and contractive annuluses about the equilibrium
point are lost and P is a single contraction mapping for all
initial conditions �Fig. 2�c��.

Concentric basins of attraction in the plane must be di-
vided by an unstable invariant set. In Eqs. �3�–�5�, unstable
periodic orbits �UPOs� are merely conceptual since spike ad-
dition occurs in a strictly discrete fashion. For a continuous
system, UPOs form separatixes for concentric basins of at-
traction. They are closed orbits that contain a dynamically
unlikely attenuated action potential in the active phase. This
can be seen in the biophysical models that support multi-
rhythmic bursting.15,16 UPOs in these systems correspond to
the unstable fixed points of P which separate contraction
mappings.

C� is nonmonotonic for Eqs. �3�–�5�, so moving toward
some parameter sets causes its local minima and maxima to
cross zero, indicating the creation or annihilation of a stable/
unstable orbit pair via a SCO. The damping ratio of the slow
subsystem is �=� /2���. As damping is reduced in the slow
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subsystem by �→0 and �→�, the dynamics moves toward
quasistable. This effectively reduces the average slope of C�,
pushing more of its extrema across zero, causing SCOs to
occur. Additionally, in circle/circle bursting systems, the fir-
ing rate past the SNIC scales as �b−bsn, where b is the
bifurcation parameter and bsn is its value at the saddle node
bifurcation �e.g., Eq. �15� for the simple model�. Since
�u̇1 / u̇2� increases as �→� and �→0, flow increases into u1

following these parameter limits. This allows spike addition
to occur more readily as a function of the initial condition
�Fig. 3�.

An interesting consequence of the mechanism underly-
ing multirhythmic bursting in the simple model is that as
�→� and �→0 and when d1 and d2 are sizable, arbitrarily
many stable bursting solutions can coexist.

V. CLASSIFICATION OF POSSIBLE BURSTING
BEHAVIORS

From Sec. IV, it is apparent that a circle/circle bursting
system can be reduced to a one-dimensional map that
switches between two modes. This can be verified for com-
plicated models of circle/circle bursting which produce
highly nonlinear return maps, but preserve an alternating,
sawtoothlike structure.16

To explore the dynamics possible under this constraint,
we introduce a simple piecewise linear map acting on a slow
variable u that is depicted in Fig. 3, top. Starting with a local
contraction mapping symmetric about the origin, the map

alternates in both directions between two moduli, s1 and s2,
which act over sets of sizes r1 and r2, respectively. Since the
map defined by un+1=s1un is a contraction mapping, we
confine �s2��1 so that it is possible to have multiple basins
of attraction. The average slope of the map is given by
sav= �s1r1+s2r2� / �r1+r2�. �sav��1 requires the existence of at
least one attractor under the map. Compared to P, the map is
translated so that a central fixed point is located at the origin.
Therefore, we consider the fixed point at the origin a nominal
bursting solution with N spikes. Jumps to different contrac-
tion mappings indicate jumps to new bursting solutions with
N�k , k=1,2 ,3 , . . . spikes in the active phase.

Now the limiting behavior of circle/circle bursting can
be explored by inspecting the map for different values of s1

and s2. This analysis is carried between Fig. 4 and Table I.
We note that the range of behaviors described by this simple
system account for all the dynamics reported in previous
multirhythmic bursting studies15,16 including the coexistence
of chaotic attractors. However, those models are not topo-
logically conjugate to our piecewise linear map since they
can produce combinations of limit sets seen in different pa-
rameter regimes of the one-dimensional system under a
single parameter set �e.g., the coexistence of a limit cycle
and a strange attractor�.

VI. MULTIRHYTHMIC BURSTING IN BIOLOGICAL
NEURONS

We now provide evidence for the existence of multi-
rhythmicity and multirhythmic bursting in invertebrate inter-
neurons and neurosecretory cells. Cells R15, L3-L6, and L10
are identified neurons �neurons that are preserved animal to
animal� located in the abdominal ganglion of Aplysia califor-
nica. These neurons burst spontaneously in situ with or with-
out synaptic isolation. Additionally, they display the “para-
bolic” bursting type, as distinguished by two key features.
First, they are characterized by root scaling in firing rate
during the active phase �Fig. 5�. Second, action potentials
during bursting have afterhyperpolarizations that are lower
than the voltage threshold for the active phase, ruling out a
hysteresis mechanism for bursting.19 Therefore, we can con-
clude that the circle/circle type mechanism for bursting well
describes their dynamics.
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FIG. 3. �Color online� An idealization of P and C� for a circle/circle burst-
ing model with a slow variable u. Stable and unstable fixed points are filled
and open dots, respectively. The slow subsystem becomes less dissipative
and spiking events are capable of balancing contraction over larger areas of
phase space. This effectively decreases the average slope of C�, leading to
the formation of multiple fixed points via SCOs �curved arrows�. Parametric
changes that drive trajectories of the slow subsystem further past usn cause
the number of spikes during an active phase to be increasingly sensitive to
the initial condition. This effectively compresses C�, increasing the number
of separate contraction mappings via SCOs �straight arrows�. P has three
separate contraction mappings over the three sets of preimages within the
dotted lines.
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FIG. 4. Examples of the maps corresponding to the different parameter sets
outlined in Table I. Qualitative dynamics are classified by the following
symbols: M—may support multirythmicity, C—chaotic, and NB—
nonbiological. Dashed sections of the maps show a single link in a chain of
chaotic maps �sawtooth or tent map�. The block for 0�s1�1,
s2�−1, is crossed out because the resulting map is not well defined.
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R15 is the most heavily studied of the aforementioned
neurons due to its particularly stable activity and long burst
period.6 Numerous models5,20,27–29 have attempted to de-
scribe the mechanisms underlying bursting in this cell and
many of these models are of the circle/circle type.22 One
class of models16,20,27,29,30 postulates that the slow variables
underlying bursting are �1� the degree of voltage-gated acti-
vation of a slow, inward Ca2+ current ISI and �2� intracellular
calcium concentration. Activation of ISI increases intracellu-
lar Ca2+ and ISI displays voltage dependent activation and
Ca2+ dependent inactivation.

We used a traditional “current-clamp” technique to con-
trol the applied current across the cell membrane, while
monitoring the membrane potential. Since ISI and intracellu-
lar Ca2+ concentration are directly and indirectly voltage de-
pendent, current perturbations that change the membrane po-
tential may influence these variables such that a
multirhythmic cell is forced to switch attractors. Specifically,
since our hypothesized mechanism of attractor switching
involves spike addition, we aimed to change the number of
action potentials in the active phase of bursting.

Models of R15 predict that outward current perturba-
tions hyperpolarize the cell from its spiking threshold and
when the cell is released from this hyperpolarized state, it
spikes vigorously �“rebounds”�, leading to spike addition.
Since activation of ISI is depolarization dependent, prolonged
hyperpolarization completely deactivates Ca2+ channels sup-
porting ISI. Additionally, in the absence of an inward Ca2+

flux, the intracellular Ca2+ concentration decreases due to
cytosolic buffering27 and the ion channels supporting ISI are
deinactivated. When the inhibitory current is released, the
resulting depolarization quickly activates ISI, allowing it to
pass inward Ca2+ current which maintains a high membrane
potential causing spikes. Since intracellular Ca2+ was ini-
tially very low, ISI must pass more Ca2+ than usual before it
is inactivated, resulting in a prolonged active phase. A depo-
larizing current has an opposing effect. Using 2–8 s, from

�0.5 to �2.5 nA hyperpolarizing current perturbations dur-
ing the silent phase of bursting to add spikes to the subse-
quent active phase, we were able to show evidence for a
multirhythmic behavior in four out of eight bursting cells
�see Appendix B for details of the experimental method�.
Figure 6 shows recordings in two different bursting neurons
from separate animals that display a multirhythmic behavior
along with the current perturbations used to induce an attrac-
tor switch.

Section IV predicts that an attractor switch in a multi-
rhythmic burster will be characterized by spike addition or
deletion and an increase or a decrease in burst period, respec-
tively. Figure 7 presents a comparison of slow-wave activity
in Fig. 6�b� for two bursts prior and subsequent to the stimu-
lus. Because coexisting bursting solutions are concentric in
our models, the path length of the solutions must differ, re-
sulting in distinct periods for each solution �see Fig. 2�a��.
Note that the existence of a constant phase advance devel-
oped after spike addition shown in Fig. 7�a� satisfies this

TABLE I. The qualitative behavior of the piecewise linear map shown in Fig. 4 is described for each parameter
regime. The top section describes why some parameter values are irrelevant to our analysis. The bottom section
describes relevant parameter ranges that can fully account for the dynamics witnessed in prior multirhythmic
bursting models.

s1 s2 Dynamics

¯ �s2��1 s2 must have modulus greater than 1
�s1��1 s2�−1 Nonbiological because sav�0
s1�1 s2�1 Nonbiological because sav�1 indicating that the system

is a repeller
0�s1�1 s2�−1 Map is not well defined

s1�−1 s2�1 Chaotic and possibly multirhythmic since the full map is
formed by a chain of sawtooth maps with only unstable
fixed points

−1�s1�0 s2�1 Attractors are oscillatory fixed points and the system is
possibly multirhythmic

0�s1�1 s2�1 Attractors are nonoscillatory fixed points and the system
is possibly multirhythmic

s1�1 s2�−1 Chaotic and possibly multirhythmic since the full map is
formed by a chain of tent maps with only unstable fixed
points
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FIG. 5. Early studies of R15 deemed the neuron a “parabolic” burster since
the spike-period profile resembles a parabola. However, it is now known that
root scaling �gray line� better describes the frequency profile of this shape,
since after a SNIC, the period of the resulting limit cycle scales as 1 /�� �Eq.
�15� for the simple model�. This figure confirms that this behavior in an in
situ recording of R15. The instantaneous spike frequency during the active
phase is shown with open circles.
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prediction. In an attempt to elucidate the shape of the two
coexisting attractors, we plotted voltage versus its estimated
derivative in Fig. 7�b�. Our multirhythmic model predicts
that an unstable bursting solution containing an attenuated
spike separates stable solutions. This separatix appears to
exist, separating one attractor from the other it proceeds for
an additional spike in Fig. 7�c�.

One may argue that the current perturbations we provide
are too large both temporally in terms of current amplitude to
resemble a synaptic effect. However, the volume of charge
moved across the membrane is a very superficial definition
of synaptic efficacy. Smaller synaptic currents that rely on
specific charge carriers �e.g., synaptic activation of calcium-
specific channels� can be more effective in terms of altering
specific neuron dynamics than our large chloride based cur-
rents. In the future, it would be interesting to repeat our
experiment with direct perturbations to the hypothesized
slow subsystem via intracellular calcium uncaging.

VII. POSSIBLE IMPLICATIONS OF MULTIRHYTHMIC
BURSTING

Since the time scales associated with short term memory,
for example, the multirhythmic motor memory suggested in
Ref. 7 are shorter than those associated with morphological
synaptic plasticity, it is possible that neural systems employ
some activity dependent multistability as a memory. Most
proposed mechanisms of dynamic multistability in neural
systems rely on some delayed feedback mechanism in a
small neural circuit as the driving force in the creation of
multiple coexisting attractors.12–14 Here, we have shown that

a sufficiently underdamped slow subsystem in a single circle/
circle bursting neuron is enough to ensure the existence of
multirhythmic behavior.

We chose to show the existence of this phenomenon us-
ing invertebrate neurons because of their relative ease of ex-
perimental manipulation. However, as is put forth in Secs. IV
and V, the dynamical mechanism underlying multirhythmic
bursting is general and the multirhythmic regime occupies a
nonfinite range of parameter space; circle/circle bursting sys-
tems appear inherently suited for short term information stor-
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FIG. 6. �Color online� Multirhythmicity in bursting neurons of Aplysia’s
abdominal ganglion. �a� A “left-upper-quadrant” cell, most likely L3, show-
ing bistability between bursting and tonic spiking. This behavior is predicted
in biophysical models �Refs. 15 and 31� and was shown previously in R15
�Ref. 8�. Fundamentally, it is explained by the one-dimensional map P �Sec.
V� with N=11 spikes per burst in the nominal �nonperturbed� mode and
N=1 spike per burst after the current pulse. Applied current pulses likely
manipulate intracellular Ca2+ concentrations, effectively moving the trajec-
tory about in the plane of the slow variables, and allowing an attractor
switch. �b� R15 showing bistability between two bursting solutions. Al-
though the current pulse appears to have little effect, �c� shows the amount
of spikes in the active phase of each burst. After the perturbation is applied,
the number of spikes per burst increases by 2 and then relaxes onto the new
attractor containing 36 spikes per burst. The active phase for pre- and post-
perturbation is shown with the added spike highlighted.
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FIG. 7. �Color online� Attractor reconstruction from the experimentally de-
rived voltage traces. �a� Two bursts preceding and subsequent to stimulation
were used for a comparative attractor reconstruction �bars in Fig. 6�b� de-
note the bursts used�. A single burst period was defined by the time between
rising edges through �70 mV in the smoothed voltage trace. Voltage time
series was low pass filtered using an exponentially weighted moving aver-
age with a width of 2 s to prevent spiking events from dominating the
reconstructed attractor. Note the constant phase advance of the grey trace in
comparison with the black, which is predicted by our model in Fig. 2.
�b� Voltage plotted against its estimated derivative. This attractor shape can
be directly compared to biophysical models of neurons which rely on a
circle/circle bursting mechanism. A zoomed portion of the reconstruction is
shown to highlight the existence of a separatix dividing the two attractors,
an unstable closed orbit that contains an attenuated spike. The final portion
of the active phase is thickened and colored for each attractor to make this
clear.
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FIG. 8. “Fading” multirhythmicity in L4 of Aplysia’s abdominal ganglion.
�a� Voltage trace and the corresponding current perturbation. The three
bursts following the perturbation contain an extra spike. This results from
forcing the trajectory to pass through an bottleneck where dynamics is close
to fixed, which causes a lasting effect on bursting without the system actu-
ally being multirhythmic. �b� Fading multirhythmicity using the piecewise
linear representation of P. Note that the map has areas that are close to
forming fixed points. A trajectory can temporarily become caught here, al-
lowing a temporal amplification of a small perturbation �curved arrow�. �c�
Time series of the trajectory in �c�. The ruins of a SCO allow the system to
maintain N+1 spikes per burst for a time before falling back into the true
attractor with N spikes per burst.
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age. Circuits have been proposed that take advantage of this
fact.18 Even if a biological bursting neuron is not truly mul-
tistable, the shape of P indicates that the system will always
have a nonmonotonicity in the contraction of the vector field
about the attractor �in C��. This allows temporal amplifica-
tion of perturbations to the system even if it has only one
true attractor �Fig. 8�.

In this report, we have proposed a basic dynamical
mechanism for the existence of multirhythmic bursting in the
biophysical models that previously demonstrated this behav-
ior. We then explored the range of dynamics possible in
circle/circle type bursting systems. Finally, we provided evi-
dence for the existence of multirhythmic bursting in biologi-
cal neurons. These experiments demonstrate a response to
perturbations that is consistent with the dynamical model
described herein. Further work concerning the nature of mul-
tirhythmic bursting neurons embedded within neural circuits
is necessary to understand the importance of these findings in
terms of short term memory.
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APPENDIX A: MATHEMATICAL DETAILS
OF THE SIMPLE CIRCLE/CIRCLE BURSTING MODEL

1. The quadratic integrate and fire neuron
model

Consider the quadratic integrate and fire model �Eq. �3��.
When u1 is treated as a parameter,

v̇ = bsn + v2, �A1�

where bsn= I+u1. A saddle node bifurcation occurs when
�bsn=0, indicating that the roots of the right hand side of
Eq. �A1� have coalesced. When bsn�0, these roots are real,
veq= ��bsn, and are the equilibria of Eq. �A1�. When
bsn�0,

v�t� = �bsn tan��bsn�t + t0�� , �A2�

which is an exact solution for the membrane potential v�t�.
From this, we can calculate the periodicity of spiking

once the neuron has moved to the tonic regime by finding the
time for v�t� to go from vr to vc. Let t1+ t0 be the instant that
a spike begins such that v�t1�=vr and t2+ t0 be the instant that
a spike terminates such that v�t2�=vc. From Eq. �A2�

vr = �bsntan��bsn�t1 + t0�� , �A3�

vc = �bsntan��bsn�t2 + t0�� . �A4�

Solving for t1 and t2,

t1 = arctan vr

�bsn
���bsn� − t0, �A5�

t2 = arctan vc

�bsn
���bsn� − t0. �A6�

Therefore, the interspike period �the period of a fast oscilla-
tion� is given by T= t1− t2 which matches Eq. �15�.

2. Average bursting dynamics

The slow subsystem of the simple model �Eqs. �4� and
�5�� is T-periodically perturbed. Each time an action potential
occurs in the fast subsystem �Eq. �3��, there is an instanta-
neous modification of the slow variables. Let di represent the
magnitude of this modification on a single slow variable ui

for each spike. Finding the average contribution of these
modifications on the time derivative of ui follows from the
insertion of a delta function into Eq. �12�,

1

T�u1�	0

T�u1�

di��t − T�u1��dt =
di

T�u1�
. �A7�

The time constant � is dropped in this calculation because
discrete changes to the slow variables are completely re-
moved from contributions of time constants in the continu-
ous dynamics defined by Eqs. �4� and �5�. The validity of this
result is confirmed by noting that

	
0

T�u1� di

T�u1�
dt =

d

T�u1�
T�u1� = di. �A8�

Therefore, when di /T�u1� is integrated over a single period,
it produces an equivalent continuous change in the slow vari-
ables as the discrete event does instantly per single period.

APPENDIX B: EXPERIMENTAL MATERIALS
AND METHODS

Aplysia californica was purchased from University of
Miami Aplysia Resource Facility �Miami, FL� and main-
tained in a tank with filtered artificial sea water �ASW;
Instant Ocean, Burlington, NC� at a temperature of about
19 °C until used. Each animal was anesthetized prior to ex-
perimentation via injection about 50% of the animal’s weight
of isotonic MgCl2: 71.2 g MgCl2 in 1 l of ASW solution
containing �in mM� 460 NaCl, 10 KCl, 11 CaCl2, 30 MgCl2,
25 MgSO4, and 10 HEPES �4-�2-hydroxyethyl�-1-
piperazineethanesulfonic acid, pH 7.6�. The animal was then
pinned to a large dissection dish and opened rostrally to cau-
dally along the dorsal midline. The abdominal ganglion was
excised and pinned dorsal side up in a dish coated with
Sylgard �Dow Corning, Midland, MI� in a saline solution of
30% isotonic MgCl2 and 70% ASW. The sheath of connec-
tive tissue covering the neurons of the ganglion was removed
with fine scissors and fine forceps. The desheathed abdomi-
nal ganglion was then perfused with high-Mg2+, low-Ca2+

saline, containing �in mM� 330 NaCl, 10 KCl, 90 MgCl2, 20
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MgSO4, 2 CaCl2, and 10 HEPES �pH 7.6� to prevent synap-
tic transmission. Intracellular recordings were obtained using
CLAMPEX8.2 software with an Axoclamp 2B amplifier �Axon
Instruments, Foster City, CA� in bridge mode using a micro-
electrode �10–20 M � resistance� filled with 3M potassium
acetate. The membrane potential was amplified and digitized
with a Digidata 1322A board �Axon Instruments� at a rate of
10 kHz. Current pulses �from �0.4 to �1.5 nA� of fixed
length �2–8 s� were triggered externally using a square wave
produced with an AFG3021 function generator �Tektronix,
Beaverton, OR� which itself was triggered by hand.

We performed experiments on 11 bursting cells from
eight animals. In order for a cell to be suitable for analysis,
its activity needed to be stable and stationary so we could be
confident that spike addition was experimentally induced and
not the result of some intrinsic variability. Therefore, we re-
quired at least seven bursts to contain the same number of
spikes before a stimulation was supplied and, if a mode
switch occurred, that it was maintained for seven bursts sub-
sequent to the perturbation. Eight out of the eleven cells
tested showed activity stationary enough to be analyzed, and
four of these eight cells showed instances of a sustained
mode switch due to perturbation. In the four cells that
showed no evidence of multirhythmicity, spike addition
could only be maintained for the burst directly following the
perturbation and the remaining bursts contained the nominal
�prestimulus� number of spikes in the active phase. In cells
that did show evidence of multirhythmicity, current pulses
were not consistently able to induce a switch in bursting
mode but our criteria for an attractor switch was met at least
one time for each of the four cells, with three out of the four
cells showing multiple instances of a mode change. We saw
no obvious qualitative correlation between characteristics of
bursting �periodicity, duty cycle, number of spikes in the
active phase, etc.� and whether a cell was capable of a mode
switch in response to perturbation due to the small sample
size and simplicity of our study.
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