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Summary
Methods for performing multiple tests of paired proportions are described. A broadly applicable
method using McNemar's exact test and the exact distributions of all test statistics is developed;
the method controls the familywise error rate in the strong sense under minimal assumptions. A
closed form (not simulation-based) algorithm for carrying out the method is provided. A bootstrap
alternative is developed to account for correlation structures. Operating characteristics of these and
other methods are evaluated via a simulation study. Applications to multiple comparisons of
predictive models for disease classification and to post-market surveillance of adverse events are
given.
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1 Introduction
McNemar's test is used to compare dependent proportions. Applications related to
McNemar's test abound in recent issues of Biometrics and elsewhere, for example in the
evaluation of safety and efficacy data in clinical trials (Klingenberg and Agresti, 2006;
Klingenberg et al., 2009). The test is also used to compare classification rates (sensitivity,
specificity, and overall) among multiple predictive models, such as those for predicting
prostate cancer from diagnostics tests and patient characteristics (Leisenring, Alono and
Pepe, 2000; Durkalski et al., 2003; Lyles et al. 2005; Demšar, 2006).

Despite the wealth of applications involving comparing multiple dependent proportions, it is
surprising that the problem of multiple comparisons of dependent proportions has been so
little studied in the literature. Existing solutions have not taken advantage of recent
developments in multiple testing: when multiple tests have been considered at all, they have
typically used simple Bonferroni or Scheffé-style methods, or have not taken advantage of
discreteness in the distributions (Bhapkar and Somes, 1976, Rabinowitz and Betensky,
2000; Kitajima et al., 2009).
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Multiple comparisons of dependent proportions can be made more powerful by utilizing
stepwise testing methods, incorporating specific discreteness characteristics of the exact
tests, and incorporating dependence structures. Improvements in power obtained from
stepwise testing methods and incorporating correlation structures are well known and
documented (see e.g., Hochberg and Tamhane, 1987); but power gains from discreteness are
less well known. As shown in Westfall and Troendle (2008), use of discrete data
characteristics can offer dramatic improvements over the Bonferroni method in cases of
highly sparse and discrete data; the methods also control the familywise error rate (FWER)
precisely, regardless of sample size, under minimal assumptions.

Our main contribution is the development of a method that utilizes stepwise testing and
discrete characteristics for exact McNemar tests. The method can be used in a very wide
variety of applications including cases with missing values, different sample sizes for the
various tests, data from overlapping sources, and data from separate sources. While this
method uses the Boole inequality and therefore does not accommodate correlation structure
directly, it is nonetheless valid in the sense of controlling the FWER for all correlation
structures. Further, we show that large correlations do induce greater discreteness of the
distributions, thereby inducing power gains. The problem of incorporating dependence
structures into the multiple comparison of dependent proportions with an exact procedure
seems complicated; instead, we develop an approximate method based on the bootstrap that
is applicable to the special case of multivariate binary data, and compare it to the Boole
inequality-based method via examples and simulations. Recommendations are given.

2 The McNemar Test
2.1 Exact Version

The exact version of the McNemar test results in a multiple comparisons procedure that
precisely controls the FWER for finite samples under minimal assumptions. While
McNemar's test is known to lack power in the univariate context, it turns out to be
surprisingly powerful in the multiple testing context.

Suppose (Yi1, Yi2), i = 1,…, n are i.i.d. bivariate Bernoulli data vectors with mean vector (θ1,
θ2), and that the null hypothesis H : θ1 = θ2 is of interest. The observable data may be
arranged in the table

(1)

with N00 + N01 + N10 + N11 = n. Correspondingly, we have the joint probability distribution
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with θ00 + θ01 + θ10 + θ11 = 1.0. We have θ1 = P(Y1 = 1) = θ10 + θ11 and θ2 = P(Y2 = 1) =
θ01 + θ11; under H : θ1 = θ2, note θ10 = θ01. Call the common value of these off-diagonal
probabilities θd when H is true. The subscript “d” denotes “dissimilarity”: θd = 0 denotes
perfect agreement between Y1 and Y2; larger θd implies more mismatches.

Refer to (1), and let Nd = N01 + N10 denote the total number of observed “dissimilarities.”
Under H, the conditional distribution of N01 given Nd = nd is the binomial distribution B(nd,
0.5) (Mosteller, 1952). For observed values N01 = n01 and Nd = nd, define the upper-tailed p-
value for testing against the alternative θ2 > θ1 as

(2)

where Bν,p is a random variable distributed as binomial with parameters ν and p; similarly
define p(n01, nd;lower) = P(Bnd,.5 ≤ n01). The two-sided p-value is

(3)

The hypothesis H is rejected in favor of the appropriate alternative when p(n01,nd;*) ≤ α;
type I error control is assured in all cases as follows.

Let PH and EH denote probability and expectation, respectively, when H is true. For the
upper-tailed case, define

by construction, q(α, nd;upper) ≤ α for all nd = 0, 1,…,n. Hence the Type I error rate is

(4)

The argument for the lower tail and two-tailed cases is virtually identical; simply replace
“upper” with either “lower” or “two.”
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2.2 Asymptotic Versions
For large samples, a z-statistic may be used to test H. Define δ = θ1 − θ2, δ̂ = θ ̂1 − θ ̂2 = N1+/n
− N+1/n and θ ̂ab = Nab/n. Since Var(Yi1−Yi2) = (θ01 + θ10) − (θ01 − θ10)2, a reasonable

estimate of Var(δ̂) is , leading to

(5)

for large n, assuming that Var(Yi1 − Yi2) ≠ 0. Note that (5) is simply the paired-t statistic
applied to the binary data pairs (Yi1, Yi2), using n rather than n − 1 for the denominator of
the standard deviation estimate.

Under the null hypothesis H : θ1 = θ2 we have θ10 = θ01; hence under the null hypothesis an
asymptotically equivalent version uses  and either  or 
could be used to normalize the test statistic. Using the  normalization,

(6)

when δ = 0, again assuming that Var(Yi1 − Yi2) ≠ 0

For two-sided tests one may use the fact that  under H; this manifestation is what is
most commonly known by ‘McNemar's test,’ but we use (6) instead to allow one-sided tests.
While (5) is not as commonly used, it is familiar as the paired-t statistic. It is also more
convenient than (6) for the bootstrap analyses given in Section 7, since it provides the
correct normalization when resampling from data that do not precisely obey the null
hypothesis.

3 Multiple McNemar Tests
Suppose there are m hypotheses, each involving paired data with nℓ observations, ℓ = 1,
…,m. For example, with trivariate binary data and all pairwise comparisons we have m = 3,
with H1 : θ1 = θ2, H2 : θ1 = θ3, and H3 : θ2 = θ3. As in Westfall and Troendle (2008), the
proposed multiple comparisons method developed here is valid under very minimal
assumptions. The main theorem of the paper requires the following assumption:

Assumption: Bivariate binary data pairs , are observable for pairs ℓ = 1,
…,m.

Notice, we do not even assume any probability model at this point. Also, the data pairs may
overlap: they may be pairs of columns of a multivariate binary matrix Y = {Yij}, i = 1,…, n; j
= 1,…, p; or they may be disjoint, arising from distinct subgroups for example, thus the
sample sizes nℓ are allowed to vary.

All probabilistic assumptions needed for the main theorem are embedded in the statements
of the null hypotheses:
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Hℓ :The data pairs  are realizations of an i.i.d. bivariate Bernoulli process

with .

As shown in Section 2.1, each Hℓ can be tested using the exact McNemar test; the present
goal is to test all m hypotheses with strong control of the FWER. We define the FWER to
depend on a subgroup of true null hypotheses: suppose I = {ℓ1,…,ℓm1} ⊆ {1,…,m} is the set
of indexes of hypotheses that happen to be true (I is unknown in practice). Should I = Ø,
there can be no type I errors, hence for the definition we assume I ≠ Ø:

Here “sup” refers to the supremum over all probability models for which the hypotheses in I
are true. Strong control of the FWER at level α ∈ (0, 1) means that FWER(I) ≤ α no matter
which set of null hypotheses indexed by I happens to be true (Hochberg and Tamhane,
1987). Weak control of the FWER means that FWER(I) ≤ α when I = {1,…,m}.

4 Testing Intersection Hypotheses
Since strong control of the FWER requires control for all subsets I, one typically must test
intersection hypotheses of the form HI = ∩ℓ∈IHℓ to control the FWER. We use the “minP”
test statistic

to test HI, where  is the p-value for  and .
Sidedness is understood from the subscript ℓ on p that indicates the researcher's choice for
that particular comparison, and the indices “upper,” “lower” and “two” in (2) and (3) will
henceforth be dropped.

Letting  and nI denote an observed value of NI, define the critical value as

(7)

if such a c exists, and let  otherwise.

Theorem 1 The test that rejects HI when  has type I error rate ≤ α.

The proof is given online at www.biometrics.tibs.org.

It is convenient to express rejection rules using p-values rather than fixed α-level rejection

rules. The rejection rule  is equivalently stated as  where
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(8)

Expression (8) shows most clearly why the discrete method offers power gains. If the

conditional distributions of p-values  were uniform, then we would have

and (8) would reduce to , the Bonferroni test statistic. However, as

noted in Section 2.1,  by construction. In fact,

for small  the support of the binomial distribution extends little into the tails and we have

for example,  when  and Pℓ is the two-sided McNemar p-
value. Discreteness of the binomial distributions may imply

for other ℓ The end result is that in cases of small to moderate sample sizes (implying small

), we can have , i.e., a dramatic improvement over the Bonferroni

test. High correlation between variables also produces sparseness as  is inversely related
to correlation; hence, even though the method uses the Boole inequality and thus does not
incorporate correlation directly, its power can still be high due to high binary correlations.

5 The Bonferroni-Holm Method
Holm (1979) introduced a step-down procedure to control the FWER with uniform
improvement over the classic Bonferroni method. Letting p(1) ≤ … ≤ p(m) denote ordered p-
values corresponding to hypotheses H(1), …, H(m), the method rejects all H(j) where
maxℓ≤j{(k − ℓ + 1)p(ℓ)} ≤ α. Equivalently, defining the Bonferroni-Holm adjusted p-value as

, the method rejects all H(j) where . Assuming
that the unadjusted p-values are uniformly distributed or stochastically larger than uniform
so that P(Pℓ ≤ α) ≤ α, all α ∈ (0, 1), Holm proved FWER control in the strong sense.

As shown in (4), the exact McNemar p-value satisfies the stochastic uniformity condition,
hence Holm's method applied to the exact McNemar p-values has strong control of the
FWER. However, the classical McNemar test (6) does not satisfy stochastic uniformity
(Berger and Sidik, 2003), hence FWER control when using Holm's method applied to (6)
can be stated only approximately.

Westfall et al. Page 6

Biometrics. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



6 The Discrete Bonferroni-Holm Method for Exact McNemar Tests
As described after (8), use of discrete distributions can dramatically improve the power of
joint tests. The discrete multiple testing method proceeds by testing successive subset
intersection hypotheses in the order of the observed p-values. For exact McNemar p-values
(using (2), (3), or the lower-tail version), define p(j) = prj, so that r1,…,rm are the indexes of
the p-values sorted from smallest to largest. When there are ties, the indexes may be chosen
in arbitrary order. Define nested index sets Rℓ = {rℓ,…,rm},ℓ = 1,…,m and consider the p-

values  defined in (8) for testing these subsets. The discrete Bonferroni method
proceeds by sequentially testing the subset hypotheses HRℓ as shown in Section 4, stopping
as soon as a hypothesis is not rejected. Specifically, defining the adjusted p-value for H(j) as

, the discrete Bonferroni method rejects all H(j) where p̃(j) ≤ α. That the
method controls the FWER in the strong sense is proven in the following theorem whose
proof is given online at www.biometrics.tibs.org.

Theorem 2 If the assumption and null hypotheses are as given in Section 3, then the discrete
Bonferroni method controls the FWER in the strong sense.

7 Incorporating Dependence Using the Bootstrap
The discrete method may be criticized for relying on the Boole inequality and thus not
accounting for dependence structure among the tests. Klingenberg and Agresti (2006)
describe a special multivariate structure where the variables fall into two groups, in which
case one can randomly permute groups within a row, independently for all rows. Extending
their method to the general case described here, one might permute all observations within a
row, but this approach would destroy the correlation structure, enforce an artificial complete
null hypothesis, and be incompatible with the marginal McNemar tests in that the number of
dissimilarities Nd for a given column would not be fixed for all permutation samples.
Instead, we develop a bootstrap approach. We lose the generality of the discrete method,
restricting our attention to pairwise comparisons of proportions from i.i.d. multivariate
Bernoulli data. Specifically, we assume

where the  are i.i.d. multivariate Bernoulli, with . Null
hypotheses are Hℓ : θaℓ = θbℓ, for a set of index pairs (aℓ, bℓ), ℓ = 1,…,m. Commonly
considered sets of pairs are all pairwise comparisons of proportions (m = g(g − 1)/2), and
comparisons against a common proportion (m = g − 1).

The method uses paired differences. Construct the derived variables Diℓ = Yiaℓ − Yibℓ, the
collated vectors  and the data matrix
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Note that the rows of D are i.i.d. with 

Let D ̅) = [D ̅1 … D ̅m]′ with D̅ℓ Σℓ Diℓ/n, and let  with .
Provided Var(Diℓ) > 0 for all ℓ, standard asymptotic theory yields that

converges in distribution to a (possibly singular) multivariate normal distribution with mean
vector 0 and covariance matrix Ω whose diagonal elements are 1. Individual elements of Z
are the Z-statistics in (5).

The main results shown in Sections 4 and 6 of this paper provides rigorous theory for exact
tests in finite samples. Rigorous asymptotic theory surrounding the various versions of the
approximate McNemar test are straightforward and are found elsewhere; rigorous
asymptotic theory concerning the bootstrap multiple testing methods to be described can
also be found elsewhere in closely related contexts (e.g., Bickel and Freedman, 1981;
Romano and Wolfe, 2005).

Let

be obtained by sampling the rows of D with replacement; this is a bootstrap sample. Identify
corresponding summary statistics D ̅* and S*. Standard bootstrap asymptotic theory holds
that the distribution of Z* = n1/2S*−1/2(D ̅* − D ̅) also converges to N(0, Ω) (e.g., Theorem
2.2 of Bickel and Freedman, 1981).

Consider an intersection hypothesis HI and let ZI = {Zℓ; ℓ ∈ I}, where Zℓ is obtained as in (5)
but setting δℓ = 0. If HI is true, then ZI converges in distribution to N(0, ΩI), where ΩI
denotes a covariance matrix that is constrained by HI but is otherwise arbitrary; by standard
bootstrap theory  also converges to N(0, ΩI) when HI is true. Supposing the

test statistic is  (modifications for upper-tailed, lower tailed or mixed tests

are straightforward but clutter the notation), the null distribution of  is asymptotically

the same as that of . Hence an approximately valid bootstrap p-value for
testing HI is

Using these bootstrap p-values to test intersection null hypotheses, the step-down algorithm
based on testing intersection hypotheses in the order of the observed test statistics z(1) ≥ …≥
z(m) as described in Section 6 is used. Approximate FWER control can be established
loosely as in the proof of Theorem 2; however, FWER control is not guaranteed. On the
other hand, the method might be more powerful since it incorporates dependence structures,
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both those inherent among the original binary variables Y, and also those that are
manufactured through the pairwise contrasts.

A difficulty caused by discreteness is seen in the definition of the Z-statistics. In cases where
the standard of deviation of {Diℓ} is 0, both Zℓ and  are undefined. In most testing
applications, this will happen when Diℓ = 0 or , all i = 1,…,n; it would be highly
unusual for this to occur in practice with either Diℓ ≡ 1, Diℓ ≡ −1, , or .
Hence in the case where any standard deviation (raw or bootstrapped) is zero, the
corresponding Z-statistic is also assigned to zero.

8 Applications
8.1 Multiple Classification Models

Data mining and machine learning algorithms produce many complex classification models.
Deciding on the best model is typically done using out-of-sample prediction accuracy;
heretofore, rigorous methods are lacking for performing multiple comparisons among the
models. When the true state is binary (e.g., existence of cancer) and the model provides a
similar Yes/No prediction, prediction accuracy can be measured by binary matches where
(model prediction) = (true state). Typically these matches are separated into positive and
negative true states; the proportion of matches is called sensitivity and specificity
respectively.

Multiple comparisons problems arise when comparing sensitivity, specificity, and overall
accuracy among several models. For example, if there are 5 models, there are 10 pairwise
model comparisons, and 10 (comparisons) ×3 (accuracy measures)= 30 total tests. The
dependence structure among this collection of tests is complex and there are intricate logical
dependencies among the sensitivity, specificity, and global tests, as well as among the
multiple pairwise comparisons. Developing a bootstrap model to incorporate all such
complexities can be done, but with difficulty, and without guarantee of FWER control. The
discrete Bonferroni method with McNemar's exact test mathematically controls the FWER
in this case as in many other cases and, as we will see, has reasonable power.

In the Microarray Quality Control Phase II Project (MAQC-II, Shi et al., 2009), a goal is
evaluate classifiers that use microarray data. Using six training datasets, 36 data analysis
groups developed more than 18,000 gene-expression based models to predict 3 toxicological
and 10 clinical endpoints. The models were then applied to six independent and blinded
validation datasets to evaluate their performance at predicting the endpoints. A subset of the
data is used for the purposes of comparisons here; the particular endpoint used is Multiple
Myeloma two-year survival (MM), and the 20 models developed by the group at Cornell
university are studied. The data set is available from the authors.

The validation data set has (n = 214) study patients, 27 of whom have MM; the indicator
variable T = 0, 1 denotes absence or presence. Model predictions are T ̂ = 0, 1, and correct
classification is determined as Y = 1 −|T − T ̂|. The overall correct classification estimate is
ΣiYi/n, while the sensitivity and specificity estimates are ΣiYi1Ti=1/Σi1Ti=1 and ΣiYi1Ti=0/
Σi1Ti=0 respectively, where 1A is the indicator of the event A. There are 20 models, leading
to 20 × 19/2 = 190 pairwise model comparisons for each of the three measures, and there are
3 × 190 = 570 comparisons total. Table 1 summarizes the results for the most significant of
the 570 comparisons among accuracy measures.

Even though the “Exact” unadjusted p-values are larger than the McNemar asymptotic p-
values, the discrete method of multiplicity adjustment produces far smaller adjusted p-
values, showing 6 statistically significant differences at the nominal FWER = .05 level.
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8.2 Comparing Adverse Event Rates
Comparing adverse event (AE) rates for single-sample multivariate binary data is of interest
in crossover trials (Klingenberg and Agresti, 2006), where the same AEs are compared for
different treatments, as well as in Phase IV clinical trials, where significantly aberrant AEs
are flagged for further attention. Consider the adverse event data set provided by Westfall et
al. (1999, p. 243). There are two groups, control and treatment, with 80 patients in each
group, 28 adverse events reported, the last of which is an indicator of any adverse event and
is excluded from our analysis. To mimic a Phase IV study, we restrict our attention to the
treatment patients, and compare the adverse event rates among the 27 × 26/2 = 351 pairwise
combinations, all tested using McNemar tests and adjusted for multiplicity as shown above.
Table 2 displays the partial results.

Again, the discrete method shows better results, despite using exact McNemar tests for
which the unadjusted p-values tend to be larger than for the approximate McNemar tests. In
particular, the method shows adverse event labeled 1 as different from all others; the Holm
method misses the 1-2 difference when used with the approximate McNemar test, and it
misses both the 1-2 and the 1-3 differences when used with the exact McNemar test.

The last column in Table 2 shows the results of the bootstrap method. The discrete method
using exact tests clearly outperforms the bootstrap in this example, despite the fact that the
unadjusted p-values for the exact tests are larger, and despite the fact that the bootstrap
method incorporates dependence structure and the discrete method with exact tests does not.

On the other hand, comparing the last two columns (  and ) of the bottom four
rows shows that incorporating dependence structure reduces the adjusted p-values, as
expected. (The top rows are an exception due to unusual behavior in the extreme tails of the
distribution of the max Z* statistic.)

9 Simulation Study
In this section we compare the various procedures described above in the case of
comparisons against a “control” proportion, when there are g = 11 multivariate binary
proportions (hence there are m = 10 pairwise comparisons). We assume a multivariate probit
threshold model with either (i) fixed compound symmetric covariance matrix, (ii) random
covariance matrix with positive entries that follow the one-factor factor analysis model, or
(iii) a random covariance matrix model with both positive and negative entries that follow
the single-factor factor analysis model.

Specifically, we generate Xi∼iid Ng(μ,Φ), and define Yij = lxij<0. The parameter vector μ is
chosen to reflect either large probabilities (near .5) or small probabilities (near 0). In all
cases Φ has unit diagonals. In covariance model (i), the off-diagonals are specified as ρ, a
fixed constant, called the “CS” model. In models (ii) and (iii), we generate Φ at random via
Σ = ηη′ + σ2I, where η is a row vector of i.i.d. random variables and σ2 is a given constant,
then normalize to obtain Φ = (diagΣ)−1/2Σ(diagΣ)−1/2. For case (ii), the random variables
are generated as U(0, 1) (called the FA+ model), and for case (iii) they are generated as
U(−1, 1) (called the FA+/− model). In both (ii) and (iii), the off-diagonal squared

correlations are random with ; hence

. Setting σ = 0.033378, 0.21561 makes E(ρ2) =
0.9, 0.5; these values are used in the simulation study.

FWER is estimated as the proportion of simulations where any type I error occurs. Power
can be estimated as the proportion of simulations (i) where any non-null difference is

Westfall et al. Page 10

Biometrics. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



discovered, (ii) where all non-null differences are discovered, and (iii) as the average
proportion of non-null differences that are discovered. In the interest of space we use only
(iii). The nominal FWER is set to 0.05, the number of simulations is 10,000, and the number
of bootstrap samples is 999 for all cases shown in Table 3.

Additional simulations are provided in the web on-line content, including different sample
sizes, and the case of all pairwise comparisons.

Notes on the simulations, including those from the web on-line content:

• Higher correlations generally make tests more powerful because they increase the
precision of the estimated difference as noted by Agresti (2002, p. 412).

• Lack of power of the exact McNemar test relative to the approximate version is
shown in the comparison of the “Holm, Ex” columns with the “Holm, McN”
columns.

• Despite lack of power of the exact McNemar test relative to the approximate
version, the use of the exact McNemar test with the discrete Bonferroni-Holm
adjustments (the “Disc, Ex” columns) had higher estimated power than the
approximate McNemar test with Bonferroni-Holm adjustment in all cases
considered.

• There is no clear winner when comparing the step-down bootstrap adjustments (the
“Boot, (5)” columns) with the discrete Bonferroni-Holm adjustments. The power
differences can be large favoring either method.

• The “CS” covariance structure is most uniform in the correlations, the FA+/− is
least uniform, and FA+ is intermediate. The bootstrap fares relatively better when
the correlations are less uniform.

• FWER control is mathematically proven for the discrete method using exact tests,
and the Holm method when applied to the exact tests as shown above in Theorem
2. In all cases of the simulations, the estimated FWER levels were usually well
below .05 for these tests and are not shown. However, on occasions the bootstrap
method exceeded the nominal FWER=.05 level. For example, in the cases indicated
by the bottom three rows of Table 3, the estimates of FWER for the bootstrap
method were .053, .068, and .070, respectively The complete null configuration (μi
≡ −1.96, i = 1,…, 11) fares even worse for the bootstrap in these cases, with
estimated FWERs .068, .089, and .091. These six estimates are each based on
100,000 simulations of 9,999 bootstrap samples, so the excesses are real.
Particularly intriguing is the fact that the bootstrap method both exceeds the
nominal FWER and is less powerful for these cases.

10 Conclusion
We have developed stepwise multiple testing methods for dependent proportions that
account for discreteness and correlation structures. Analytical and simulation results suggest
using either the exact McNemar test with the discrete Bonferroni-Holm multiplicity
adjustment or the bootstrapped step-down procedure using the statistics (5) as base tests.
Bonferroni-Holm with the ordinary McNemar (large sample) test and with the exact
McNemar p-values are inferior methods.

Favoring the bootstrapped statistic (5) is the fact that it accounts for correlation structure,
which often improves power, in some cases dramatically. In addition, the discrete method is
asymptotically conservative since it does not account for correlation structures, while the
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bootstrap method is asymptotically consistent. Thus the bootstrap is preferred in applications
with large sample sizes.

On the other hand, we found occasional cases of excess Type I errors for the bootstrap
procedure in our simulations; see also Klingenberg et al. (2008). Troendle, Korn and
McShane (2004) note that the asymptotic convergence needed for successful application of
the bootstrap can be very slow in high dimensional multiple testing applications, also
leading to excess type I error rates for bootstrap multiple testing applications.

Favoring the discrete method is that it mathematically controls the FWER in finite samples;
one need not simulate to assess FWER control as is needed with the bootstrap or other
approximate methods. Also, the discrete method can be used under minimal assumptions on
the data structure, and one need not develop specific algorithms for every situation (see
Table 1 for an example of a non-standard application). Further, the finite-sample power of
the method in some cases is higher than that of the bootstrap procedure. Finally, there are
uncomfortable, ad hoc assignments that must be made using the bootstrap, such as how to
assign the value of the test statistic when the standard deviation is zero. There are also clear
signs with discrete data that the asymptotic plateau has not been reached, such as the case
where a column of the data set is all 0's. In this case, the bootstrap population probability is
0, which is clearly wrong. Such ad hoc assignments and lack of asymptotic validity in small
samples are of no concern when using the discrete method with exact tests.
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