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Abstract
Diffusion tensor imaging is widely used to evaluate the development of white matter. Information
about how alterations in major neurotransmitter systems, such as the dopamine (DA) system,
influence this development in healthy children, however, is lacking. Catechol-O-metyltransferase
(COMT) is the major enzyme responsible for DA degradation in prefrontal brain structures, for
which there is a corresponding genetic polymorphism (val158met) that confers either a more or
less efficient version of this enzyme. The result of this common genetic variation is that children
may have more or less available synaptic DA in prefrontal brain regions. In the present study we
examined the relation between diffusion properties of frontal white matter structures and the
COMT val158met polymorphism in 40 children ages 9–15. We found that the val allele was
associated with significantly elevated fractional anisotropy values and reduced axial and radial
diffusivities. These results indicate that the development of white matter in healthy children is
related to COMT genotype and that alterations in white matter may be related to the differential
availability of prefrontal DA. This investigation paves the way for further studies of how common
functional variants in the genome might influence the development of brain white matter.
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Introduction
By increasing action potential conduction speed for axons, the white matter (or myelin) of
the brain facilitates the rapid exchange of signals among different brain regions. In normal
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development, the volume of white matter increases linearly through the second decade of
life (Barnea-Goraly et al., 2005b; Eluvathingal et al., 2007; Hasan et al., 2007; Lenroot and
Giedd, 2006; Sowell et al., 2003; Toga et al., 2006), a period during which there are also
significant gains in cognitive capacity. The proliferation and differentiation of developing
oligiodendrocytes that extend myelinating projections that encircle axons are controlled, in
part, by neurotransmitters (Belachew et al., 1999; Bongarzone et al., 1998; Karadottir and
Attwell, 2007). Little is known, however, about how neurochemical effects might modulate
human brain structural development. Studies of genes that affect neurotransmitter systems,
such as catechol-O-methyltransferase (COMT), can provide insight into the neurochemical
modulation of the development of brain white matter. The present investigation applied
diffusion tensor imaging (DTI) to examine for the first time the effects of the COMT
polymorphism on white matter structure in 40 healthy children between 9 and 15 years of
age.

COMT is a gene that encodes a key enzyme in the metabolism of dopamine (DA). A single
nucleotide polymorphism (SNP; G → A transition at codon 158) leading to a valine (val) to
methionine (met) substitution in a coding region of COMT has been found to be associated
with a greater than two-fold decrease in COMT enzyme activity and DA catabolism (Chen
et al., 2004; Lachman et al., 1996; Lotta et al., 1995). Consequently, the met allele of this
polymorphism confers reduced enzymatic activity and subsequently increased DA
availability (Chen et al., 2004; Tenhunen et al., 1994; Tunbridge et al., 2004), especially in
the prefrontal cortex (PFC), in which COMT enzyme activity is the primary factor that
determines synaptic levels of DA (Garris and Wightman, 1994; Karoum et al., 1994).

A useful but simplistic description of the COMT behavioral phenotype is that met allelic
loading confers a cognitive processing advantage but concomitant difficulties in affective
processing. Moreover, there appears to be specificity to the met-allele cognitive advantage:
individuals who carry the met allele perform better on higher-order cognitive processing
(i.e., tasks requiring mental manipulation) (Bilder et al., 2002; Bruder et al., 2005; Diaz-
Asper et al., 2008; Egan et al., 2001; Goldberg et al., 2003; Joober et al., 2002; Malhotra et
al., 2002; Rosa et al., 2004), but do not outperform their val-allele homozygous counterparts
in the foundations of these operations (i.e., storage, updating, temporal order, maintenance,
planning) (Bilder et al., 2002; Bruder et al., 2005; Goldberg et al., 2003; Williams-Gray et
al., 2007). Met-allele carriers have also been found to be characterized by a form of
cognitive inflexibility (Drabant et al., 2006; Nolan et al., 2004); consequently, investigators
have begun to question the cognitive advantage of carrying the met allele (Barnett et al.,
2008; Ho et al., 2005). In the domain of emotional functioning, individuals with a met allele
have been found to show higher endocrine and subjective responses to stress (Jabbi et al.,
2007), higher harm avoidance (Enoch et al., 2003), increased neuroticism (Enoch et al.,
2003; Stein et al., 2005), higher trait anxiety (Woo et al., 2004), lower extraversion (Stein et
al., 2005), higher pain sensitivity along with reduced μ-opioid receptor response (Zubieta et
al., 2003), potentiated startle reflex (Montag et al., 2008), and increased aggression/hostility
(Han et al., 2006; Lachman et al., 1998; Rujescu et al., 2003; Volavka et al., 2004). This
pattern of findings suggests that met-allele carriers are more emotionally reactive than are
their val-allele homozygous counterparts. Given the extensive descriptions of the behavioral
phenotype associated with the COMT gene, investigators have suggested that the COMT
gene plays a critical role in an apparent evolutionary trade-off between cognitive and
affective functions (Papaleo et al., 2008). Thus, it appears that neither polymorphism is
clearly advantaged; instead, we may need to rely on brain endophenotypes, like those
measured by DTI, to better delineate the function and role of this gene.

DTI is a non-invasive in vivo method of measuring the diffusion of water as it probes tissue
microstructure (Basser et al., 1994b; Basser and Pierpaoli, 1996; Moseley et al., 1990). In
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areas of densely packed neural fibers, the many axonal membranes will restrict diffusion
perpendicular to the fiber orientation, resulting in anisotropic diffusion (Beaulieu, 2002; Le
Bihan, 2003; Sen and Basser, 2005). Similarly, in areas with small cell composition, reduced
intracellular space will cause restriction of diffusion (Sehy et al., 2002). DTI has been used
effectively to obtain information about white matter structure, even in compromised
populations such as infants (Berman et al., 2005; Gao et al., 2009; McGraw et al., 2002;
Morriss et al., 1999; Mukherjee et al., 2002; Neil et al., 1998; Partridge et al., 2005; Sakuma
et al., 1991; Schneider et al., 2004), and children with psychiatric disorders (Ashtari et al.,
2005; Barnea-Goraly et al., 2005a; Barnea-Goraly et al., 2004; Eluvathingal et al., 2006;
Engelbrecht et al., 2002; Ewing-Cobbs et al., 2006; Hermoye et al., 2006; Lebel et al.,
2008a; Nagy et al., 2003; Ono et al., 1997; Zimmerman et al., 1998). Moreover, DTI allows
investigators to characterize neural endophenotypes in developmental disorders, particularly
those that may involve different brain networks (Muller, 2007). For example, in studies of
autism researchers have used DTI to document anomalous values in diffusion and
anisotropy (e.g., Barnea-Goraly et al., 2004; Bashat et al., 2007; Sundaram et al., 2008).

DTI yields measures of anisotropy (a measurement of the directionality of water motion)
and diffusivity (a measurement of the magnitude of random water diffusion) (Basser, 1995;
Basser et al., 1994b; Pierpaoli et al., 1996). The following parameters can be used to
quantify the pattern of diffusion: (i) fractional anisotropy (FA), a measure of the intravoxel
preferred directionality of water translational random motion, expressed as a ratio ranging
from 0 to 1 (0 = isotropic and 1 = unidirectional); (ii) axial diffusivity (AD), the magnitude
of water diffusion along the long axis of the axons, equivalent to the primary eigenvalue of
diffusion tensor, λ1; and (iii) radial diffusivity (RD), the magnitude of water diffusion
perpendicular to the long axis of the axons, equivalent to the average of the 2nd and 3rd

eigenvalues of diffusion tensor, λ2 and λ3. These parameters can be obtained for each voxel
within the brain and, combined with diffusion tensor tractography, for each major white
matter pathway. Recent work indicates that considering FA in conjunction with directional
diffusivity information (e.g., AD and RD) is superior to using FA alone for interpreting
white matter features (Dougherty et al., 2007; Gao et al., 2009; Hasan, 2006; Song et al.,
2005). A fourth possible parameter, mean diffusivity (MD), was not reported in the present
study because it is a simple linear combination of AD and RD [MD=(AD+2RD)/3].

In the present study we examined COMT gene-related differences in four major white
matter fiber tracts in a group of children and adolescents. Because the PFC exhibits the
greatest alteration in DA function as a result of this SNP (Garris and Wightman, 1994;
Gogos et al., 1998; Karoum et al., 1994), we selected four pathways with significant
prefrontal terminations as ROIs (Mori et al., 1999). Specifically, we used tractography to
delineate genu of the corpus callosum (GCC), which connects the left and right frontal
lobes; the anterior thalamic radiation (ATR), which is formed by fibers interconnecting
thalamic nuclei and the cerebral cortex of the frontal lobe; the inferior fronto-occipital
fasciculus (IFO), which connects anterior frontal regions to the parietal and occipital lobes;
and the uncinate fasciculus (UNC), which connects the frontal and temporal lobes. These
tracts were traced in each participant and saved as ROIs within which the three DTI
parameters of interest (FA, AD, RD) were calculated. We tested these parameters as
indicators of differences in white matter microstructure in the three COMT genotype groups
(met/met, met/val, and val/val). We hypothesized that altered brain DA levels, influenced by
children’s COMT genotype, would be related to altered white matter diffusion properties in
these four major prefrontal fiber bundles. In addition, to test the specificity of COMT effects
on prefrontal white matter, we also examined a control fiber pathway, the splenuim of the
corpus callosum (SCC), that does not have prefrontal terminations, and that was used as a
control region in a study examining localized group differences in white matter (Pacheco et
al., 2009).
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Material and methods
Participants

Participants were 40 children and adolescents (26 females) between the ages of 9 and 15
years (M=11.06, SD= 1.4). They were recruited through their mothers by online
advertisements (posted free on the classified-style website: www.craigslist.com) and parent
networks (two www.yahoo.com California Bay Area parent groups comprising more than
4000 members). They responded to notices of Stanford University research studies seeking
community participants. Each mother-child pair was compensated $25/hour. All participants
had no reported history of brain injury, no behavioral indications of possible mental
impairment, no past or present Axis I disorder, were right-handed, fluent in English, and
reportedly had no learning disorder. Parents and children gave informed consent and assent,
respectively, as approved by the Stanford Institutional Review Board.

We are sensitive to the ethical concerns of imaging studies among children, and paid special
attention to the unique comfort and information needs of this group. We recently published a
set of recommendations for imaging children (Thomason, 2009), and we followed these
recommendations in this study.

Procedure
Participants were assessed in two sessions. In the first session, participants were
administered structured interviews to assess current and lifetime psychopathology. Trained
interviewers assessed the diagnostic status of the adolescents by administering the Schedule
for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime
version (K-SADS-PL) (Geller et al., 1996; Geller et al., 2001), which has been shown to
generate reliable and valid psychiatric diagnoses (Kaufman et al., 1997). Any child/
adolescent who received a current or past diagnosis was eliminated from the study. To
assess inter-rater reliability, an independent trained rater evaluated 30% of all K-SAD-PL
interviews by randomly selecting audiotapes. In all cases, these diagnoses matched the
diagnoses made by the original interviewer, κ=1.00, indicating excellent inter-rater
reliability. During this session, children and parents also provided saliva samples for genetic
testing and viewed a video to prepare them for the MRI scan session. Fourty-six children
were recruited for this study and participated in the initial interview session; of these, 40
went on to contribute the MRI data reported in the present study. The remaining 6 were
eliminated for technical concerns (movement or acquisition error) or because they did not
complete the imaging component of the study; none were eliminated for psychiatric
diagnosis. In the second session, brain-imaging data were acquired using a whole-brain MRI
scanner.

Genetic data
DNA was analyzed through saliva collected using the Oragene Kit (DNA Genotek, Inc.
Ottawa, Ontario, Canada), an all-in-one system for the collection, preservation,
transportation and purification of DNA from saliva. This is a minimally invasive procedure.
DNA extracted by this method is of high quality and allows for genotyping with a high
success rate (Rylander-Rudqvist et al., 2006). Participants were asked to refrain from eating
30 minutes before saliva collection, to rinse their mouth with water and wait for five minutes
before spitting saliva into the collection container, and then to spit sufficient saliva into the
container. A research assistant then screwed the cap of the container and shook it vigorously
for at least 10–20 seconds. Samples were sent to the lab at room temperature.

Saliva samples were visually inspected in the laboratory for any noticeable food debris or
phlegm. DNA was extracted only from clean and clear saliva samples. If there was any
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evidence of cloudiness or low DNA yield after DNA extraction participants were re-
contacted and asked to provide a second sample. DNA was extracted according to the
manufacturer’s protocol for manual purification. Briefly, samples were mixed. Following
overnight incubation at 50°C the Oragene® purifier was added and centrifuged at 3000 × g
for 20 minutes. The supernatant was transferred to a new tube and DNA was precipitated by
adding 100% ethanol. The DNA pellet was washed with 70% ethanol, dried, and
resuspended in DNA hydration solution (Qiagen, Valencia, CA). To ensure complete
rehydration the sample was incubated at 37°C overnight. The amount of DNA was
quantified using a spectrophotometer and diluted for genotyping.

The target 217bp COMT gene fragment was amplified using sense primer 5′-TCG TGG
ACG CCG TGA TTC AGG-3′ and the antisense primer 5′-AGG TCT GAC AAC GGG
TCA GGC-3′. The PCR reaction was carried out in a final volume of 15μl consisting of
50ng of genomic DNA, 50ng each of sense and antisense primers, 7.5ul of Taq PCR Master
mix (Qiagen, Cat.#201445) and 10% DMSO. The PCR conditions included an initial
denaturation step at 95C for 3 min, followed by 35 cycles of denaturation at 95C for 30s,
annealing at 55C for 45 s and extension at 72C for 1 min, with a final extension of 10 min at
72C. The PCR products were digested at 37C for 3 hours with 5 U of the restriction enzyme
NIa III (New England Biolabs, Cat#R0125S). The products were electrophoresed through
10% Polyacrylamide gel (Acrylamide/bis-Acrylamide ratio 19:1) at 150 V for 40 min. 10bp
marker was used to measure the fragments size. The H allele (high activity val-108) showed
2 bands, at 136bp and 81bp. The L allele (low activity met-108) showed 3 bands, at 96bp,
81bp and 40bp.

DTI and structural data acquisition
Magnetic resonance imaging was performed on a 3.0 T GE whole-body scanner.
Participants were positioned in a purpose-built single channel T/R head coil and stabilized
by clamps and a bite bar formed with dental impression wax (made of Impression
Compound Type I, Kerr Corporation, Romulus, MI) to reduce motion-related artifacts
during scanning.

The DTI acquisition used five 3:38 (min:sec) whole-brain scans that were averaged to
improve signal quality (18:10 min:sec total scan time). The pulse sequence was a diffusion-
weighted, spin-echo, echo-planar imaging sequence (repetition time = 7.8 sec; FOV = 22;
matrix size = 128x128). We acquired 56 axial 2.5-mm-thick slices (no skip) for two b-
values, b=0 and b=900 sec/mm2. The high b-value was obtained by applying gradients along
28 different diffusion directions. Frequency encode direction was along the left-right
direction and conventional chemical-shift-selective (CHESS) fat suppression was used to
preserve a good slice profile.

A high-resolution volume scan (140 slices, 1mm slice thickness) was collected for every
participant using a spoiled grass gradient recalled (SPGR) sequence for T1 contrast in axial
image orientation (TR = 3000ms, TE = 68ms, TI = 500ms, flip angle = 11°, FOV = 25 cm,
256 × 256).

DTI preprocessing
Eddy current distortions and subject motion in the diffusion-weighted images were removed
by a 14-parameter constrained non-linear co-registration based on the expected pattern of
eddy-current distortions given the phase-encode direction of the acquired data (Rohde et al.,
2004). Each diffusion-weighted image was registered to the mean of the (motion-corrected)
non-diffusion-weighted (b = 0) images using a two-stage coarse-to-fine approach that
maximized the normalized mutual information. After the T1 image was manually aligned to
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the anterior commissure - posterior commissure (AC-PC) line, the mean of the non-
diffusion-weighted images was automatically aligned to the T1 image using a rigid body
mutual information algorithm. All raw images from the diffusion sequence were resampled
to 2-mm isotropic voxels by combining the motion correction, eddy-current correction, and
anatomical alignment transforms into one omnibus transform and resampling the data using
a 7th-order b-spline algorithm based on code from SPM5 (Friston and Ashburner, 2004). An
eddy-current intensity correction (Rohde et al., 2004) was applied to the diffusion-weighted
images at the resampling stage.

The rotation component of the omnibus coordinate transform was applied to the diffusion-
weighting gradient directions to preserve their orientation with respect to the resampled
diffusion images. The tensors were then fit using a least-squares algorithm (Basser et al.,
1994a). We confirmed that the DTI and T1 images were aligned to within a few millimeters
in most brain regions. In regions prone to susceptibility artifacts, such as orbito-frontal and
inferior temporal regions, the misalignment was somewhat larger due to uncorrected EPI
distortions, but never exceeded 5mm.

All the custom image processing and analysis software is available as part of our open-
source mrDiffusion package available for download from
http://vistalab.stanford.edu/software/.

DTI tractography
Whole brain fiber tracking was performed on AC-PC aligned tensor maps. The seeds for
tractography were selected from a uniform 1mm 3D grid spanning the whole brain mask for
voxels with FA>.3. Fiber tracts were estimated using a deterministic streamlines tracking
algorithm (Basser et al., 2000; Conturo et al., 1999; Mori et al., 1999) with a fourth-order
RungeñKutta path integration method (Press et al., 2002) and 1-mm fixed-step size. A
continuous tensor field was estimated with trilinear interpolation of the tensor elements. Path
tracing proceeded until the FA fell below 0.15 or until the minimum angle between the
current and previous path segments was greater than 30 deg. Starting from the initial seed
point, fibers were traced in both directions along the principal diffusion axis.

Classification of fiber tracts
As noted above, we examined five major fiber tracts described in Johns Hopkins University
(JHU) white-matter tractography atlas (Wakana et al., 2004): the GCC; the ATR; the IFO;
the UNC; and the control tract, the SCC, defined as the region posterior to the narrowing
(isthmus) of the callosum (Witelson, 1989). The SCC was recently used as a control region
in a DTI study of the serotonin transporter gene (5-HTTLPR) in adults (Pacheco et al.,
2009). Of these, three are bilaterally represented (ATR, IFO, and UNC) and two connect the
hemispheres via the corpus callosum (GCC, SCC). These pathways, and their voxel-wise
probabilities, are provided by the JHU white mater tractography atlas. Custom software
(included in the mrDiffusion package) was used to conduct the automated fiber
classification. Using spatial transformation from individual to MNI space, each point in each
fiber was mapped to the JHU atlas, determining the probability that that fiber point belonged
to each of the JHU atlas groups (there are 20 possible groups). These probabilities were
averaged across the points within each fiber. The fiber was then classified as representing
the JHU group with the highest average probability. The pathways classified as from JHU
atlas fiber groups other than those corresponding to the GCC, the ATR, the IFO, the UNC
and the SCC, as well as the fibers with average probability under .1 for the JHU atlas groups
of interest, were removed from further analyses. Following classification, we removed
redundant fibers within tracts in order to reduce oversampling within a tract, a step we refer
to as ‘culling’ of fibers. Culling was executed using an algorithm based on three criteria: the
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length of a trajectory (minimum = 10.0 mm), the linear anisotropy along a trajectory
(minimum = 0.10), and the distance between them (minimum average point-to-curve
distance = 2.7mm, distance computed across portions of the fibers that were at least 1 mm
apart) (Zhang et al., 2003).

Statistical analyses
For each of the four major fiber tracts and the control tract, mean (i) FA; (ii) AD; and (iii)
RD were computed. Because, Pearson correlations were significant for every right and left
hemisphere FA tract value (all r > .45; all p < .01), data for these tracts were averaged across
the right and left hemispheres before submitting them to the multivariate analyses.

The effects of COMT genotype on measures of anisotrophy and diffusion were examined
within a general linear model framework using multivariate analyses. A multivariate
analysis of variance (MANOVA) was conducted for each fiber pathway. Three DTI
parameters (FA, AD, RD) were entered into each model as dependent variables, and COMT
genotype (met/met, val/met, val/val) was entered as a fixed factor. We followed up
significant (p<.05) MANOVAs with univariate analyses of variance (ANOVAs) and t-tests
where appropriate to determine the source of the significant effects. All statistical analyses
were conducted using SPSS.

Results
Participants

Participants were 25 Caucasians (62.5%), 3 Asian Americans (7.5%), 2 Hispanic Americans
(5%), 8 participants of multi- or bi-racial descent (20%), and 2 who were not classified
(5%). Participants were 9 to 15 years of age, covering a range in which the dynamic
processes of brain myelination are still occurring. Genotyping yielded three groups of
children: homozygous met (n = 6); homozygous val (n = 13); and met/val (n = 21). These
allelic frequencies were in Hardy-Weinberg equilibrium, χ2(2)=0.63, p = .73. Demographic
data for the three COMT genotype groups are presented in Table 1. The three groups did not
differ significantly with respect to age, F(2,39) = 1.2, p = .30, or gender, χ2

(2) = 3.5, p = .
18.1

COMT genotype influences white matter microstructure
Separate one-way (by genotype group) MANOVAs with FA, AD, and RD as dependent
variables were conducted to examine the effects of gene group for the four fiber pathways
with significant prefrontal terminations. These analyses yielded significant main effects for
COMT group for three of the four fiber pathways: GCC, F(3,70) = 3.04, p = 0.011; ATR,
F(3,70) = 2.79, p = 0.017; and UNC, F(3,70) = 2.47, p = 0.032; the MANOVA conducted on
the IFO was not significant, F(3,70) = 1.85, p > .10. In the sections below we present the
results of follow-up one-way (by genotype) univariate ANOVAs and t-tests conducted on
the three significant tracts in greater detail.

COMT genotype associated with diffusivity in frontal fiber pathways
Genu of the corpus callosum (GCC)—ANOVAs conducted on the GCC yielded
significant effects of COMT group on FA, F(2,39) = 3.62; AD, F(2,39) = 3.32; and RD,
F(2,39) = 4.28, all ps < .05. Follow up t-tests indicated that the met/val heterozygotes had
significantly lower FA and significantly higher AD and RD than did the val-allele

1Multivariate and regression analyses yielded no significant main effects or interactions involving either age or gender on FA for any
of the tracts.
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homozygotes; the met-allele homozygotes did not differ significantly from either of the
other gene groups for any of the three parameters (see Table 2 and Fig. 2).

Anterior thalamic radiation (ATR)—For the ATR, too, ANOVAs yielded significant
main effects of COMT genotype for FA, F(2,39) = 3.80, p < .05; AD, F(2,39) = 5.72, p < .
01; and RD, F(2,39) = 5.82, p < .01. Follow up t-tests showed that val-allele homozygotes
had significantly higher FA than did met-allele homozygotes; val/met heterozygotes did not
differ significantly from either of the homozygote groups. For the other two parameters, AD
and RD, the val-allele homozygotes had significantly lower diffusivity than did met-allele
carriers (met/met or val/met) (see Table 2 and Fig. 2).

Uncinate fasciculus (UNC)—One of the three univariate ANOVAs conducted on the
DTI parameters was significant within this tract: AD, F(2,39) = 5.57, p < .01. T-tests
indicated that the met/val heterozygotes had significantly higher AD than did the val-allele
homozygotes; the met-homozygotes did not differ significantly from either of the other gene
groups (see Table 2 and Fig. 2).

Specificity of COMT associations with DTI parameters
To examine specificity of the genotype-based differences in major frontal pathways, FA,
AD, and RD values were extracted for the SCC. Although the pattern of the main effect of
genetic group was similar in this ROI to the effects obtained in the PFC ROIs (i.e., higher
FA in val-allele carriers), the MANOVA conducted on this tract did not yield a significant
effect for COMT genotype for the three dependent variables (FA, AD, RD), F(3,70) = 1.73,
p > .10.

Discussion
The present study was designed to examine COMT gene-related differences in major white
matter fiber tracts with prefrontal terminations in children and adolescents. Our results
indicate that the COMT genotype is associated with altered diffusion parameters in
subcortical white matter in a sample of children and adolescents. These findings support the
formulation that variants in COMT genotype affect brain development in major prefrontal
pathways. White matter microstructural variations may be one of several antecedents to later
life alterations in cognitive and affective processing that have been found to differ among
COMT val158met gene groups (Barnett et al., 2007; Bruder et al., 2005; Diaz-Asper et al.,
2008; Egan et al., 2001; Enoch et al., 2003; Goldberg et al., 2003; Joober et al., 2002;
Malhotra et al., 2002; Montag et al., 2008; Nolan et al., 2004; Rosa et al., 2004; Rujescu et
al., 2003; Stein et al., 2006; Stein et al., 2005).

A study currently in press examined the relation between COMT genotype and mean FA in
a sample of healthy adults and obtained results similar to those reported here (Liu et al.,
2009). Liu and colleagues examined other haplotypes in the COMT gene that cover a wider
range of protein expression and found that the groups with lower enzymatic activity (i.e.,
higher DA levels) had lower FA in PFC white matter tracts. Therefore, their study and ours
both report lower FA values in participants with COMT alleles that correspond to higher
brain DA levels. In contrast to these genetic imaging studies that are reliant on inferences
about participants’ brain neurotransmitter levels, previous in vitro work has shown direct
correspondence between DA and brain myelination. In vitro works supports what we have
shown here by demonstrating that DA receptor activation decreases differentiation in
immature oligiodendrocytes and inhibits myelination (Bongarzone et al., 1998; Karadottir
and Attwell, 2007). Therefore, the studies we are recounting converge on one conclusion:
that high levels of brain DA are associated with reduced human brain myelination.
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Higher FA and lower diffusivity are functionally significant (Deutsch et al., 2005;
Dougherty et al., 2007; Olesen et al., 2003) and have been described as markers of
developmental progress (Barnea-Goraly et al., 2005b; Eluvathingal et al., 2007; Lebel et al.,
2008b; McGraw et al., 2002; Morriss et al., 1999; Sakuma et al., 1991; Schneider et al.,
2004; Snook et al., 2005). Recent studies in rodents (Zahrt et al., 1997), children
(Wahlstrom et al., 2007), and adults (Mattay et al., 2003; Meyer-Lindenberg et al., 2005;
Williams-Gray et al., 2007) have indicated that an intermediate amount of DA is optimal for
PFC function. The present findings suggest that in terms of PFC white matter fiber
pathways, children are shifted to the right on this theoretical curve (Fig. 3). We posit that
val/val represents the optimal position, a position ‘overshot’ by heterozygotes and
homozygous met carriers by virtue of possessing too much prefrontal DA. This formulation
is tentative because it is based on the assumption that higher FA during development is
optimal. Recent work, however, may qualify this postulation; Hoeft and colleagues
demonstrated that increased FA is inversely associated with visiospatial ability in a sample
of children with Williams Syndrome (Hoeft et al., 2007). Thus, the functional significance
of reduced PFC DA levels for the development of white matter is not yet clear and should be
a focus for future research.

It is important to consider the strengths and limitations of the methods used in the present
study. One strength of this study is use of DTI tractography for deriving subject specific
ROIs; tractography relies on tracing the path of greatest diffusion across voxels (direction of
the eigenvector with the largest eigenvalue of the diffusion tensor) (Basser et al., 2000;
Conturo et al., 1999; Jones et al., 1999; Mori et al., 1999; Pajevic et al., 2002) and in the
present study, bases derivations on trajectories that are both anatomically plausible and
conform to well-characterized major fiber bundles. Moreover, tract-based-ROIs permit
quantification of specific white matter pathways across their entire trajectory and should
have less contamination from adjacent fiber tracts and non-white matter tissue than do
manually drawn ROIs (Snook et al., 2007). Still, tractography methods utilize various
acquisition schemes and algorithms for construction of fiber tracts and, like any
neuroimaging technique, the derived results can be influenced by methodological details. It
is important to note, however, that the three metrics that we selected for quantification of
white matter microstructure – FA, AD, and RD – are derived in a straightforward manner
from eigenvalue decomposition of the diffusion tensor itself, and are relatively robust with
respect to methodological choices. A limitation of the present study is that there are
biological and environmental factors that we did not assess in our sample that may affect
brain morphology. For example, substance use by pregnant mothers can have adverse effects
on brain maturation (Jones et al., 1973; Norman et al., 2009), and we did not assess this
factor in our sample.

Identifying significant differences in white matter fiber pathways as they relate to COMT
genotype in children is only a starting point for characterizing the putative role that altered
COMT enzymatic function may play in affecting the structure and development of white
matter. The quadratic age effects of white matter organizational metrics, namely FA and MD
(which is derived from AD and RD), are well documented; FA increases and MD decreases
until approximately age 30, after which they reverse direction (Hasan et al., 2007; Moseley,
2002). In this context, it is not clear what influence the COMT genotype exerts on white
matter organizational metrics in adulthood. It will be important to investigate whether
carriers of the met allele ‘catch up’ to their val-allele homozygous counterparts, or whether
the observed differences in childhood persist, ultimately altering the trajectory of these
parameters through the aging process.
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Figure 1.
3D Visualization of the targeted fiber tracts. The top and bottom-left panels show, in a
randomly selected participant, the major fiber tracts of interest with strong projections to
prefrontal cortical regions. ATR = anterior thalamic radiation (left: light orange; right:
yellow); GCC = genu of the corpus callosum (light green); IFO = inferior frontal occipital
fasciculus (left: blue; right: purple); and UNC = uncinate fasciculus (left: red; right: orange).
The bottom-right panel shows the control fiber tract tested to examine the regional
specificity of COMT genotype differences: SCC = splenuim of the corpus callosum (dark
green).

Thomason et al. Page 17

Neuroimage. Author manuscript; available in PMC 2011 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Aligned dot plots for Fractional Anisotropy (FA), Axial Diffusivity (AD), and Radial
Diffusivity (RD) by gene group. Larger horizontal bars indicate group means, and smaller
horizontal bars above means indicate standard error of the mean. Val-allele homozygotes
were significantly different from one or both of the other gene groups (for more detail refer
to Table 2) except FA in the GCC, for which the three groups did not differ significantly.
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Figure 3.
Past research supports an inverted U-shaped relation between performance measures and
dopamine level in the PFC (Goldman-Rakic et al., 2000; Williams-Gray et al., 2007). In the
present study we found that fractional anisotropy (FA) has an inverse relation with expected
dopamine level. Because higher FA is correlated with developmental maturation 1, 2 (see
Discussion), this result suggests that val-allele homozygotes are in the optimal position on
this curve.

Thomason et al. Page 19

Neuroimage. Author manuscript; available in PMC 2011 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Thomason et al. Page 20

Table 1

Participant demographics and summary statistics

Val/Val Met/Val Met/Met Statistic

N 13 21 6 χ2
(2) = .63, p = .73

Gender (F:M) 10:3 14:7 4:2 χ2
(2) = 3.48, p = .18

Age (yr) 11.14 (1.49) 11.24 (1.37) 10.25 (1.18) F2,39 = 1.22, p = .30

Data are expressed as mean (S.D.)
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