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ABSTRACT

Transcription regulation in eukaryotes is known to
occur through the coordinated action of multiple
transcription factors (TFs). Recently, a few genome-
wide transcription studies have begun to explore
the combinatorial nature of TF interactions. We
propose a novel approach that reveals how multiple
TFs cooperate to regulate transcription in the yeast
cell cycle. Our method integrates genome-wide
gene expression data and chromatin immuno-
precipitation (ChIP-chip) data to discover more
biologically relevant synergistic interactions
between different TFs and their target genes than
previous studies. Given any pair of TFs A and B, we
de®ne a novel measure of cooperativity between the
two TFs based on the expression patterns of sets of
target genes of only A, only B, and both A and B. If
the cooperativity measure is signi®cant then there
is reason to postulate that the presence of both TFs
is needed to in¯uence gene expression. Our results
indicate that many cooperative TFs that were
previously characterized experimentally indeed
have high values of cooperativity measures in our
analysis. In addition, we propose several novel,
experimentally testable predictions of cooperative
TFs that play a role in the cell cycle and other
biological processes. Many of them hold interesting
clues for cross talk between the cell cycle and other
processes including metabolism, stress response
and pseudohyphal differentiation. Finally, we have
created a web tool where researchers can explore
the exhaustive list of cooperative TFs and survey
the graphical representation of the target genes'
expression pro®les. The interface includes a tool
to dynamically draw a TF cooperativity network of
113 TFs with user-de®ned signi®cance levels. This
study is an example of how systematic combination
of diverse data types along with new functional
genomic approaches can provide a rigorous plat-
form to map TF interactions more ef®ciently.

INTRODUCTION

Precise transcriptional control is one of the major steps in gene
expression and regulation. Understanding the mechanisms
behind this precise control remains a challenge. The current
view is that the cell exerts this control by employing principles
of cooperativity and synergy. This process allows small
combinations of ubiquitous, signal-speci®c transcription fac-
tors (TFs) binding to promoter DNA, to execute an exponen-
tially larger number of regulatory decisions. The involvement
of different kinds of TFs in gene regulation makes possible the
integration of several signaling pathways in the nucleus. The
interactions between TFs on promoter DNA that underlie this
so-called `combinatorial transcriptional regulation' can be
classi®ed into three modes: those between a DNA-binding
factor and a non-DNA-binding factor; those between DNA-
binding factors adjacently located on the promoter; and those
between DNA-binding factors separately or distantly located
on the promoter (1).

With advances in experimental approaches and diverse data
resources, functional genomics has begun to investigate the
more complex, cooperative interactions required by combin-
ations of TFs to properly regulate gene expression (2±4).
Pilpel et al. (3) screened for cooperatively binding TFs by
correlating pairs of computationally derived motif combin-
ations with gene expression data. The presence of computa-
tionally derived motif combinations in the promoter, however,
does not automatically give direct evidence of TF binding. As
a result, such analysis can potentially suffer from a large
number of false positives in predicting functional TF-binding
sites.

Recently, genome-wide location data (ChIP-chip) (5±7)
elucidated the in vivo physical interactions of TFs with their
chromosomal targets on the genome and as a result can
provide a more reliable view of functional TF-binding site
interaction. Lee et al. (5) and Itamar et al. (6) have used
genome-wide location analysis to explore the yeast cell cycle
gene expression program and showed that TFs that function
during one stage of the cell cycle regulate those that function
during the next stage. These studies have underscored the need
to integrate diverse data resources and construct tools that will
assimilate them into biological models (8).

In this paper, we exploit ChIP-chip data (5) (for determining
downstream targets of TFs in vivo) and genome-wide gene
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expression data (9) to rigorously assess cooperativity among
TFs in the yeast cell cycle. We generate statistically signi®cant
cooperative TFs by exploring the effect of cooperative binding
versus independent binding of the TFs on gene expression.
The assumption is that if two TFs are cooperative then they
should both bind (either directly or through another DNA-
binding protein) to the promoters of their target genes and the
expression pro®les of these target genes would be similar. If
they are not cooperative, the TFs will either bind independ-
ently or not bind at all to the promoters and the expression
pro®les will likely not be coherent overall. With our statistical
measure we aim to identify the subset of cooperative TFs
where the synergistic binding of two TFs in¯uences gene
expression. In contrast to analysis on computationally derived
putative motifs, our approach exploits direct evidence of
where the TFs are binding, to explore the TFs' control over
gene expression.

Our results indicate that many cooperative TFs that were
previously characterized experimentally indeed have a high
cooperativity in our analysis, thus validating the use of this
measure as a predictor of potential cooperativity. In addition,
we propose several novel predictions of cooperative TFs that
might play a role in the cell cycle and other biological
processes, hence generating experimentally testable hypoth-
eses. The target genes of the combination of TFs can be
assigned a level of con®dence in terms of functional relevance
based on known binding motifs and expression pro®les of
known targets.

Integration of diverse genome-wide resources and analysis
of regulatory mechanisms, as described above, critically
hinges on the accessibility of a computational platform
complete with analytical and visualization tools. To that
end, we have created a web tool to facilitate exploring the
exhaustive list of cooperative TFs and surveying the graphical
representation of the target genes' expression pro®les.
Furthermore, the tool allows dynamic generation of circular
cooperativity networks with user-de®ned signi®cance levels.

MATERIALS AND METHODS

Selecting sets of target genes of TF combinations

For all pairs of TFs A and B, we identi®ed three sets of target
genes from Lee et al.'s (5) genome-wide binding data of 113
yeast regulators. The three sets are selected based on
signi®cant binding (binding P-value or PB < 0.001 as
described in Lee et al.'s paper) of TF A but not B (A Ç B),
TF B but not A (A Ç B), and both TFs A and B (A Ç B),
respectively. Each set was required to have at least ®ve genes.

Calculating expression correlation score

To quantify the clustering of expression pro®les within a given
set of genes we calculate an expression correlation score
similar to that used by Pilpel et al. (3). We de®ne this
expression correlation score, ECG, as the fraction of gene pairs
in a given set G with correlation higher than a threshold lT.
The threshold correlation lT was determined to be the 95th
percentile correlation value of all the pairwise correlations
between 1000 randomly chosen genes from Cho et al.'s (9)
cell cycle gene expression data.

Assessing signi®cant transcription factor cooperativity

A combination of TFs were considered cooperative if the
expression correlation score of genes showing binding of both
TFs was signi®cantly greater than any set of genes with
binding of either TF alone. To accentuate any existing
difference between the two cases mentioned above, we used
a model based on multivariate hypergeometric distribution.

We calculate:
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na = number of gene pairs in set A Ç B, nb = number of gene
pairs in set A Ç B, nab = number of gene pairs in set A Ç B, ma

= number of correlated gene pairs in set A Ç B, mb = number of
correlated gene pairs in set A Ç B, mab = number of correlated
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In Table 1, we list all combinations of TFs with cooperativity
P-values (Pc) < 0.05.

We evaluate multiple hypothesis tests and therefore the
cooperativity P-values need to be corrected to represent the
true alpha level. After the correction we have at most 0.05
probability of having at least ®ve false positives. For the
adjustment of the P-values we use Bonferroni correction and
Holm's correction with 261 as the number of true null
hypotheses.

Ranking ChIP-enriched target genes according to
functional relevance

The binding motif matrix of Mcm1 and Fkh2, obtained from
Spellman et al. (10) was scanned across the promoters (500 bp
upstream of ATG) of each of the Mcm1 and Fkh2 ChIP-
positive genes (PB < 0.0001). A core expression pro®le was
created based on some of the known targets: ACE2, SWI5,
CLB2, CDC20 and BUD4. Then, the correlation of this core
pro®le to each ChIP-positive target gene's expression pro®le
was determined. Finally, for each ChIP-positive gene the
maximum motif score was plotted against correlation to core
expression pro®le.
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RESULTS

Analysis of cooperative TF combinations

We integrated Lee et al.'s genome-wide location data (5) with
Cho et al.'s mitotic cell cycle gene expression data (9) to
identify cooperativity among all possible pairwise interactions
among 113 TFs. First, given any of the pairs of TFs A and B in
the ChIP-chip data, we identi®ed three mutually exclusive sets
of target genes based on signi®cant binding of A but not B (i.e.
A Ç B), B but not A (i.e. A Ç B) and both A and B (i.e. A Ç B).
Now, if the gene expression patterns of the target genes of the
TF pair (A Ç B) are signi®cantly more tightly correlated
compared with the expression patterns of the target genes of A
Ç B and A Ç B separately, then it is likely that the presence of
both TFs is needed to in¯uence gene expression (Fig. 1). In
this case, TFs A and B will be assumed to share a cooperative
relationship. Using the ®ltering criterion of at least ®ve target
genes in each set we obtained 261 TF pairs. Before P-value
adjustments, 31 out of the 261 TF pairs showed a signi®cant
level of cooperativity. Table 1 shows cooperative TF pairs
where the P-value threshold for TF binding to chromatin (PB)
was <0.001 and the cooperativity P-value threshold (Pc) was
0.05 (see Materials and Methods). Since we evaluate multiple
hypothesis tests, we have also adjusted the P-values to re¯ect
Bonferroni correction and Holm's correction. Table 1 also

shows the subset of the TF pairs that are signi®cant after
Bonferroni correction and Holm's correction (11). In this
section, we include discussions on TF pairs from Table 1 that
are signi®cantly cooperative after Holm's correction and those
that were not signi®cant after P-value adjustment but had
biological evidence to suggest potential cooperativity. As
expected, many of the cooperative TF pairs belong to the cell
cycle but others span the environmental stress response,
pseudohyphal differentiation and metabolism. There are some
TF pairs that do not belong to any well de®ned functional
group and would need to be further characterized. In Table 1,
we also include evidence of protein±protein interaction for the
TF pair as indicated by the MIPS database.

Cell cycle

The G1 to S phase transition of the eukaryotic cell cycle is a
critical point for the coordination of cell cycle progression
with cellular growth. This transition is mediated by MluI cell
cycle box binding factor (MBF) and Swi4 binding factor
(SBF). MBF is composed of Mbp1 and Swi6 while SBF is
composed of Swi4 and Swi6. Swi6 does not bind DNA
directly and is thought to have regulatory functions (12). As
positive controls, our analysis was able to capture this
cooperative interaction between the pair Mbp1±Swi6 and the
pair Swi4±Swi6.

Table 1. Statistically signi®cant cooperative TF pairs (PBa < 0.001 and Pc
b < 0.05)

TF1 TF2 PC Literature evidence Protein±protein interactionc

1 Mbp1 Swi6 9.2E±59 11 Y
2 Mcm1 Ndd1 2.9E±49 17 N
3 Fkh2 Mcm1 1.5E±45 16 N
4 Fkh2 Ndd1 9.2E±21 17 N
5 Hir1 Hir2 4.0E±17 15 Y
6 Pdr1 Smp1 2.0E±09 NA N
7 Swi4 Swi6 2.9E±08 11 Y
8 Gat3 Pdr1 1.9E±06 NA N
9 Fhl1 Gat3 1.2E±05 NA N
10 Nrg1 Yap6 1.2E±04 NA N
11 Gat3 Msn4 1.5E±04 NA N
12 Reb1 Skn7 1.5E±04d NA N
13 Ace2 Reb1 2.5E±04 NA N
14 Hsf1 Reb1 2.9E±04e NA N
15 Gal4 Rgm1 5.7E±04 NA N
16 Gcn4 Sum1 6.7E±04 NA N
17 Fkh1 Fkh2 6.7E±04 16,18 N
18 Cin5 Nrg1 9.2E±04 NA N
19 Smp1 Swi5 1.1E±03 NA N
20 Fkh1 Ndd1 1.3E±03 17 N
21 Arg80 Arg81 3.4E±03 28 Y
22 Msn4 Yap5 4.2E±03 NA Y
23 Ace2 Swi5 7.3E±03 19 N
24 Cin5 Yap6 7.8E±03 NA N
25 Stb1 Swi4 1.8E±02 NA N
26 Arg81 Gcn4 3.2E±02 NA N
27 Ndd1 Stb1 3.2E±02 NA N
28 Dal81 Stp1 4.0E±02 NA N
29 Ace2 Hsf1 4.3E±02 21,23 Y
30 Hsf1 Skn7 4.5E±02 20 N
31 Nrg1 Phd1 5.5E±02 NA N

aPB, P-value for TF binding to chromatin as described in Lee et al. (5).
bPc, cooperativity P-value on the hypothesis that the target genes of synergistic pairs of TFs should be signi®cantly correlated compared with non-synergistic
pairs of TFs.
cProtein±protein interaction data were obtained from MIPS (http://mips.gsf.de/proj/yeast/CYGD/interaction/).
dP-value cut-off for signi®cant cooperative TF pairs with Bonferroni correction.
eP-value cut-off for signi®cant cooperative TF pairs with Holm's correction.
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Sin three-binding protein (Stb1) is also an important
regulator of the timing of Start transcription in the absence
of CLN3 function and binds to Swi6 in vitro (13). Stb1
encodes a protein that was ®rst identi®ed in a two-hybrid
screen with the general transcriptional repressor Sin3 even
though the role of Stb1 as a transcriptional repressor is still
unclear. A recent study suggests that Stb1 may affect MBF-
dependent transcription (14). We found Stb1 to be cooperative
with Swi4. It is possible that Stb1 regulates SBF in an alternate
pathway. Many of the Stb1 Ç Swi4 ChIP-positive target genes
(12/18) also show Mbp1 binding and are mostly G1 speci®c
(10/18). In addition, we ®nd that Stb1 is cooperative with
Ndd1. Ndd1, a ChIP-chip positive target of Swi4, is necessary
for the nuclear division process and NDD1 mRNA is most
abundant in the S phase (15). The targets of Stb1 Ç Ndd1
also show binding to Mbp1, Swi4 and Fkh2. The role of Stb1
and Ndd1 in the late S phase will be worth exploring
experimentally.

Also in the S phase, Hir1 and Hir2 are known to participate
in transcriptional repression through a DNA-binding protein
that contacts the negative site at each of the negatively
regulated histone gene promoters (16). Cooperativity between
Hir1 and Hir2 was in agreement with our results. The other
TFs binding to the targets of Hir1 and Hir2 (HHF1, HHF2,
HHT1, HHT2, HTB1, HTA1) were Swi4 and Fkh2. Our results
indicate that Swi4 and/or Fkh2 could be the DNA-binding
protein through which Hir1 and Hir2 achieves speci®city.

We also identi®ed the strong cooperative relationship
between Mcm1 and Fkh2Ðknown to be important regulators
in the G2/M phase of the cell cycle (17,18). Besides Mcm1 and
Fkh2, the other signi®cant cooperative TF pairs in the G2/M
phase include Ndd1±Mcm1. Ndd1 is recruited by Fkh2 (19) in
the G2 stage so its apparent cooperativity with Mcm1 is not
surprising. Interestingly, Mcm1 Ç Fkh2 Ç Ndd1 target genes
do not show cooperativity. This suggests that the three-way
interaction is crucial for G2/M phase-speci®c cell cycle
regulation.

In M/G1, we found the Ace2 and Swi5 cooperativity to be
consistent with the standard model (20). Even though both TFs
have been shown to cooperate to induce the expression of a set
of target genes, sometimes one partner can have a stronger
contribution towards regulation. For example, expression of
RME1 (a target of Ace2 and Swi5) is reduced in either Ace2 or

Swi5 deletions, but loss of Ace2 has the more dramatic effect
(19).

Stress response

Apart from cooperativity among cell cycle-related regulators,
our analysis also detects cooperative interactions among
regulators representing different biological processes. It is
known that Hsf1 and Skn7 cooperate to achieve maximal
induction of particular stress-responsive genes (21). We
identify an Hsf1±Skn7 synergy but we also ®nd the following
cooperative pairs: Ace2±Hsf1, Skn7±Reb1 and Ace2±Reb1.
Could there be a functional role of Ace2 and/or Reb1 in
assisting Hsf1 and Skn7 during stress response? It has been
noted that a protein other than Hsf1 and Skn7 can bind to
HSEs in vitro, is localized to the nucleus under normal and
oxidative stress growth conditions and is required for the full
induction of heat shock genes in response to oxidative stress
(22). Recent genetic and biochemical studies reveal a cell
cycle-speci®c binding of Hsf1 to nucleosomal DNA (23). It is
possible that a coactivator of Hsf1 might be cell cycle
regulated, inactive during G1, and reactivated following entry
into S phase (24). Given our analysis, we suggest that a
combination of Ace2 and Reb1 could be the additional feature
that in¯uences full induction of a subset of the Hsf1 and Skn7
target genes and have a cell cycle-related role in M/G1. Skn7 is
known to have a G1 transcriptional role, speci®cally in bud
emergence mediated by Mbp1 (25). Such a heat shock-related
signal is not surprising since in the Cho et al. (9) study, all
samples were subjected to heat shock when they were
transferred to a 37°C water bath.

Other environmental changes can have a great impact on
expression of genes too. Smp1 is thought to play an important
role not only in osmostress responses, but also in a Hog1
MAPK pathway required for cell survival in the stationary
phase (G0) (26). It is a MADS-box TF (like human TF
MEF2A) and exhibits low DNA bending propensities. Pdr1 on
the other hand, affects growth on low-iron medium despite
normal high af®nity iron uptake (27,28). Our analysis suggests
cooperativity between Pdr1 and Smp1. The connection
between metal metabolism and ion tolerance is not clear.
Further experimental analysis will be needed to elucidate the
mechanism and the role in the cell cycle of this cooperativity

Figure 1. Schematic diagram of the ChIP-based approach of identifying cooperativity. The promoters of the set of genes that show binding of both TFs A
(TFA) and B (TFB) show a much higher EC score (0.22) than the promoters of the sets of genes that show binding to only TF A (0.05) or TF B (0.06).
Therefore, TFs A and B are potentially cooperative.
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(seven out of 21 targets of Pdr1 and Smp1 are cell cycle
related).

Metabolism

Arginine metabolism is also regulated by DNA binding and
bending along with speci®c interactions with its cofactors.
Arg80 and Mcm1, two members of the MADS box family of
DNA-binding proteins, regulate the metabolism of arginine in
association with Arg81, the arginine sensor (29). Arg80±
Arg81 cooperativity in our results is in agreement with this
model. However, we cannot detect cooperativity between
Mcm1 and the Arg80±Arg81 complex under the given
conditions of ChIP-chip and microarray gene expression
experiments.

Uncharacterized functional representation

We also ®nd a group of cooperative TF pairs, where the TFs
have not been well studied. Their functional relevance in
terms of cooperativity is not intuitive and will need further
experimental exploration. Gat3, a member of the GATA
family of regulators responsible for the selective use of good
nitrogen sources in preference to poor ones (30) has been
found to be cooperative with Pdr1, Msn4 and Fhl1 (important
in the control of rRNA processing). Many of the Gat3±Pdr1
and Gat3±Msn4 targets are overlapping and belong to the
M/G1 or G1 phase. Yap5, Rgm1, Smp1, Gal4 and Rap1 are
some of the TFs that also bind to many of the targets.

Other cooperative TF pairs include Gal4±Rgm1, Gcn4±
Sum1, Smp1±Swi5, Msn4±Yap5, Arg81±Gcn4 and Dal81±
Stp1. They are likely to be involved in general regulatory rules
(both repressive and inductive) in amino acid biosynthesis and
metabolism. Fhl1 plays a key role in the control of rRNA
processing, presumably by acting as a transcriptional regulator
of genes speci®cally involved in that process (31). But its
association with Gat3 is unclear (30). Similarly, Gat3±Pdr1
cooperativity has not been documented before. Though, if
there is cross talk between nitrogen metabolism and metal
metabolism, Gat3±Pdr1 cooperativity would suggest func-
tional relevance.

Assessing biological relevance of the target genes

Our results also suggest that ChIP-chip data is contributing
more strongly towards identifying target genes of biological
relevance than previous studies. The related work by Pilpel
et al. (3) had uncovered a set of 30 target genes with
combinations of putative, computationally derived motifs of
Mcm1 and Fkh2 in their promoters. We compared this set with
the set of 34 target genes of Mcm1 and Fkh2 derived from the
ChIP-chip approach utilizing in vivo binding evidence and
found an overlap of eight genes. To assess the biological
relevance of these two sets of target genes of Mcm1 and Fkh2
we examined the extent of overlap of these two sets with the
established CLB2 cluster (10), which is known to be rich in
genes with Mcm1 and Fkh2 binding sites. The target genes of
our approach had far more overlapping genes with the CLB2
cluster than the motif- and expression-based approach (Fig. 2).

It is curious that there is such a small number of overlapping
target genes between the ChIP-based method and the motif-
based method. It is possible that choosing a less stringent
P-value can potentially identify additional overlapping genes.
But this underscores the fact that TFs do not always bind to

experimentally established sequence motifs. There might be
contextual information near the binding region of the TF,
which makes only some of the promoters with known motifs
functional. Studying the target genes identi®ed by the
ChIP-based method can further help characterize binding
speci®cities.

Among the ChIP-chip positive targets of Mcm1 and Fkh2,
many genes are uncharacterized. To get a re®ned list of target
genes that groups the genes according to target speci®city of
Mcm1 and Fkh2, other functional attributes were incorpor-
ated. A core expression pro®le was created based on
expression of some of the known targets (SWI5, CDC20,
BUD4, ACE2 and CLB2). The correlation of each ChIP-chip
positive target gene's expression to the core expression pro®le
was determined. Also, the binding motif matrix of Mcm1 and
Fkh2 (10) was scanned across the promoters of each target
gene. For each gene, the correlation value versus the motif
score was plotted as shown in Figure 3. The known targets
(circled in red) fall in the upper right-hand corner. The genes

Figure 2. Overlapping ORFs in ChIP, motif and expression analysis. ChIP-
based and expression-based approaches appear to identify more experimen-
tally established targets of Mcm1 and Fkh2 than the motif- and expression-
based approach described in Pilpel et al. (3).

Figure 3. Motif scores and gene expression of ChIP-positive target genes of
Mcm1 and Fkh2. The known targets (circled in red) fall in the upper
right-hand corner. The genes that are close to the known target genes in
expression and motif space are likely to be reliable additional targets of
Mcm1 and Fkh2 compared with those genes with low correlation with core
expression pro®le and low motif score.
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that are close to the known target genes in expression and
motif space are likely to be reliable additional targets of Mcm1
and Fkh2 (YJL051W, YLR190W, YHR151C, EKI1) compared

with those genes with low expression correlation with core
pro®le and low motif score (JSN1, PHM5, YML053C, SPO1
and YOR315W).

Figure 4. User interface to get a TF combination's target genes and their expression pro®les.

Figure 5. User interface to dynamically generate a TF cooperativity network with user-de®ned signi®cance values.
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User interface to explore cooperativity

Large-scale investigation of the interplay between TFs
critically hinges on a computational platform where different
data sets can be integrated with the aid of analytical and
visualization tools. To that end, we have created a web tool at
http://exon.cshl.org/nila/workbench/index.html and explore
the exhaustive list of cooperative TFs and survey the graphical
representation of the target genes' expression pro®les. Here
researchers can select any pairwise combination of TFs A
and B, and generate three lists of ORFs representing the
following combination of TF binding (below a P-value of
0.001): TF(A Ç B), TF(A Ç B) and TF(A Ç B). These sets of
ORFs are then used to generate dynamic graphs of their
members' gene expression pro®les (Fig. 4). This output page
gives a stage to visually explore the relationship between pairs
of TFs, evaluate how the pro®les of the different sets differ
from each other and speculate on the biological signi®cance of
the results.

In addition, the interface includes a tool to dynamically
draw a TF cooperativity network with user-de®ned signi®-
cance levels (Fig. 5). The color of a curved edge corresponds
to the con®dence in cooperativity based on cooperativity P-
values ranging from 0.05 (black) to 0.0001 (red). The TFs
have been clustered according to their functional categories as
de®ned by the MIPS database. The number of edges of the
network is determined by the stringency of PB.

DISCUSSION

It is clear that to understand the mechanisms behind
transcription regulation of the yeast cell cycle, it is imperative
to investigate the cooperative nature of TF interactions. But
very few computational approaches of studying genome-wide
transcription regulation have addressed the role of coopera-
tivity among TFs. In a recent study, Bussemaker et al. (32)
described a linear model that captured the additive effect of
oligomers on the expression levels of individual genes. But
they did not assess the effect of addition or subtraction of
motifs on gene expressionÐan important feature in determin-
ing cooperativity. This aspect was elegantly studied by Pilpel
et al. (3). However, their synergistic motif combinations lack
direct evidence of TF binding.

Our method integrated genome-wide gene expression data
and binding data, and con®rmed many of the known
cooperative TFs in the cell cycle. In addition, we propose
several novel cooperative TFs in the cell cycle (e.g. Ndd1±
Stb1, Ace2±Hsf1) and in other biological processes (e.g.
Pdr1±Smp1, etc.). It is interesting that cell cycle regulators
interact with a strikingly large number of other protein classes.
Many different processes in a cell during cell division have to
be precisely coordinated with cell cycle regulators. Such
cooperativity suggests cross talk that is essential to coordinate
different functions.

More sophisticated analysis will likely reveal different
nuances and levels of contribution to cooperativity among the
combinations of TFs that we are unable to detect so far.
Certain cooperative TF pairs might be a combination of a
general regulator and a regulator speci®c for a process while
others could be a combination of an activator and a repressor.
It is also possible that a TF pair when bound together to a set of

target genes produces coherent gene expression and when
bound alone also produces coherent expression pro®les for
its target genes. In our analysis, this case would be a false
negative. While there are some elegant motif-®nding
algorithms that have incorporated ChIP data (33) (Kato,M.,
Hata,N., Banerjee,N., Futcher,B. and Zhang,M.Q., manuscript
submitted for publication) and explored combinatorial regu-
lation, our method has the strength of identifying cooperative
interactions of regulators even when the target sequences are
not known or their binding motifs are not distinct. This
approach can be extended to combinations of more than two
TFs fairly easily.

It should be noted that the list of cooperative TFs is
dependent on PB. With a more stringent PB (0.0001) the
cooperative TFs are mostly limited to the cell cycle with a few
novel combinations that include Hir1±Swi4. A less stringent
P-value (0.01) reveals cooperativity among many general
regulators or regulators that inherently bind easily to many
promoters (e.g. Rap1 which is involved in rRNA processing).
For more details, see Tables 1 and 2 of our Supplementary
Material. Interestingly, many of the cell cycle-related
cooperative TF pairs appear largely insensitive to a wide
range of PB cut-offs.

Our study can be useful for several reasons. First, it
demonstrates that when multiple genomic resources are
combined the result is an increasingly detailed picture of
cooperativity among TFs. Secondly, it ensures a low number
of false positives in identifying the target genes of these
cooperative TFs. Thirdly, it provides an interface to visually
explore cooperativity. In future, this interface will enable
researchers to upload their own gene expression and binding
data and automatically generate TF network diagrams depict-
ing the relationships between TFs.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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