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Summary
Gene co-expressions have been widely used in the analysis of microarray gene expression data.
However, the co-expression patterns between two genes can be mediated by cellular states, as
reflected by expression of other genes, single nucleotide polymorphisms, and activity of protein
kinases. In this paper, we introduce a bivariate conditional normal model for identifying the
variables that can mediate the co-expression patterns between two genes. Based on this model, we
introduce a likelihood ratio test and a penalized likelihood procedure for identifying the mediators
that affect gene co-expression patterns. We propose an efficient computational algorithm based on
iterative reweighted least squares and cyclic coordinate descent and have shown that when the
tuning parameter in the penalized likelihood is appropriately selected, such a procedure has the
oracle property in selecting the variables. We present simulation results to compare with existing
methods and show that the likelihood ratio-based approach can perform similarly or better than the
existing method of liquid association and the penalized likelihood procedure can be quite effective
in selecting the mediators. We apply the proposed method to yeast gene expression data in order to
identify the kinases or single nucleotide polymorphisms that mediate the co-expression patterns
between genes.
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1. Introduction
Gene expression profiling is now widely used in biomedical research. One of the
applications of such data is to infer functionally-related genes and to identify genes that are
differentially regulated. A common way of doing this is based on correlations of expression
profiles of two genes across all samples. Genes with high correlations are likely to be
functionally associated and the encoded proteins may participate in the same pathway, form
a common structural complex, or be regulated by the same mechanism. However, not all
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functionally-associated genes are co-expressed; indeed, the majority of them are not. For
example, dependent on certain cellular states, two genes may be positively correlated in
particular samples while negatively correlated in other samples. But the overall correlation
can be nearly 0, failing the usual similarity-based test. In order to capture the subtle changes
of correlation between two genes, “liquid association” (LA), which describes the changing
correlations for different cellular states, has been introduced by Li (2002). The LA is
developed in order to identify the other genes whose expression levels can mediate the
correlation between any two given genes. Li (2002) presented a very efficient way of
computing the LA score between two genes conditioning on the third gene. LA has been
applied to gene expression data to identify mediated genes and to find disease candidate
genes (Li, 2002; Li et al., 2007). Li et al. (2004) further extended the LA definition to more
than two genes by projecting the gene expression levels in the directions that show the
maximum LA. It has also been applied to analysis of expression quantitative trait loci
(eQTL) data in order to identify the genetic variants that can mediate the co-expression
patterns between two genes (Sun, Yuan and Li, 2008). Ho et al. (2009) further extended the
LA using a conditional normal model that allows one to characterize means, variances, as
well as liquid association structures. These applications clearly demonstrated that the co-
expression patterns between two genes are often affected by the other genes or variables,
which we call dynamic co-expression in this paper.

For a given pair of genes, the focus of this paper is to identify other genes or variables that
can affect their co-expression patterns. These genes or variables are called the mediating
variables, which can be a set of genes in microarray gene expression studies or a set of
genetic variants in eQTL analysis. Note that our use of mediating variables is very different
from that typically seen in causal inference or psychology literatures, where a mediator is
often used to explain the effect of an initial variable on an outcome variable and the
mediator is presumed to cause the outcome (Baron and Kenny, 1986). The focus of
mediation analysis in causal inference settings is trying to understand the mechanism
through which the initial variable affects the outcome (MacKinnon, Fairchild and Friz,
2007). In our settings, we focus on identifying the variables that can effect the co-expression
patterns between two genes. We do not assume any causal relationship between the two
genes under consideration. In fact, for typical eQTL studies, the genetic variants cannot
serve as possible mediators (in causal inference settings) between two gene expression
variables since it is not biologically meaningful to assume that gene expression variation can
cause genotype variation. However, genetic variants can still affect the co-expression
patterns between two genes at the expression levels.

Although a very fast algorithm has been developed for calculating the LA among three
genes when normal distributions are assumed, the LA only considers one mediating gene at
a time. In addition, a permutation procedure has been employed to determine the statistical
significance of the observed LA scores, which can be time consuming. In this paper, we
consider the problem of identifying the mediating variables for dynamic co-expression from
a set of candidate variables and propose a simple statistical model based on conditional
bivariate normal distribution with covariate-dependent correlations. Under such a model, we
can consider more than one mediating gene that may affect the co-expression patterns
between two genes. The model is more general than the original LA definition of Li (2002)
and the generalized LA defined in Ho et al. (2009) since the liquid association between two
genes may be determined by the expression levels of several genes simultaneously or some
combination of multiple SNPs. In some situations, conditioning on a set of genes makes
more biological sense and can lead to more powerful methods for identifying the mediating
genes. For example, we can use the expression levels of all genes in a particular pathway to
represent the cellular state instead of using only one gene. Based on this model, we propose
a simple likelihood ratio test for testing LA between a pair of genes conditioning on the third
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gene. We also propose a penalized likelihood approach in order to identify the other genes
that may mediate the co-expression between two genes.

The paper is organized as follows. We first introduce a simple bivariate normal model with
covariate-dependent correlations and a likelihood ratio test for mediating effects on gene co-
expressions. We then present a penalized likelihood approach for variable selection when a
high-dimensional mediator set is considered and an efficient computation algorithm based
on cyclic coordinate descent (Friedman, Tibshirani and Hastie, 2008; Wu and Lange, 2008)
and the iterative reweighted least squares (IRWLS) (Green, 1984). We show that the
procedure has an oracle property in the sense of Fan and Li (2001) when the tuning
parameter is appropriately chosen. We present simulation studies to evaluate our methods
and application to yeast gene expression data sets. Finally, we present a brief discussion of
the methods and results.

2. A Bivariate Conditional Normal Model and the Likelihood Ratio Test for
Mediating Effect

Let X, Y be the expression levels of the gene pair under study and Z = (Z1, · · ·, Zp) be the set
of candidate mediating variables, which can be the expression of other genes or the SNPs in
eQTL studies. Suppose that there are n independent samples and let (xi, yi)i =1, …, n denote
the expression level of X and Y in the ith sample and (zi)i =1, …, n be a vector denoting the
expression levels of gene set Z or the SNP types (binary value −1 or 1) of the SNP set in the
ith sample. Since the mean expression levels of X and Y are also possibly affected by some
genes or SNPs in Z, we can first perform regression analysis or penalized regression
analysis such as Lasso (Tibshirani, 1996) or SCAD (Fan and Li, 2001) to adjust the effects
of Z on the means and then model the residuals. We assume that the covariate-adjusted
expression levels are appropriately centered to have mean values of zero and further assume
that the expression levels of genes X, Y conditioning on Z follow a bivariate normal
distribution with the correlation determined by a linear combination of the elements of Z,
that is,

(1)

where

is the covariance matrix, and

(2)

where β = (β1, · · ·, βp)T is the coefficient vector corresponding to the p candidate mediating
variables and β0 is the intercept. Note that model (2) can be rewritten as
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where F[ρ(z; β0, β)] is the classic Fisher transformation function of the correlation
coefficient and is modeled as a linear function of z. In our analysis of real data sets, we
apply the normal score transformation to data for both genes to ensure that the data are
normally-distributed.

For a given mediating variable s, the null hypothesis of having no mediating effect on the
co-expression between X and Y can be formulated as H0: βs = 0. Given samples (xi, yi,
zi)i=1, · · ·, n, we estimate the parameter θ = (β0, β, σ1, σ2) by maximizing the following log-
likelihood function,

(3)

and denote the resulting maximum likelihood estimate of θ as θ ̂. When p is small, we can
apply any numerical optimization to maximize this function. In this paper, we use the R
function nlm for our analysis of simulated and real data sets. We can then use the likelihood
ratio (LR) test for H0: βs = 0 and obtain the corresponding p-value based on the χ2

distribution of degree 1.

3. A Penalized Likelihood Estimate and Its Asymptotic Properties
When the dimension of the mediating set Z is large, direct maximization of the log-
likelihood function (3) becomes infeasible or unstable. Our goal is to select those genes or
SNPs that can mediate the correlations between two genes X and Y, which is a variable
selection problem. In this section, we present a penalized likelihood approach to select the
relevant mediating variables.

3.1 A penalized likelihood formulation
When the dimension of Z is high, regularization on β is needed to avoid overfitting and to
select the relevant mediating variables. For a given candidate mediating gene or SNP set Z
of p dimension, we expect that most of the genes or SNPs in Z are irrelevant and therefore β
should be sparse. In order to select the relevant variables, we consider the following
penalized log-likelihood formulation,

(4)

where l(θ) is the log-likelihood function defined as equation (3) and pλ (βs) is a penalty
function and λ is a tuning parameter controlling the degree of sparsity. We consider in this
paper both the L1 or Lasso penalty with pλ (βs) = λ|βs|, and the adaptive Lasso penalty as
proposed by Zou (2006) with
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where β̃s is a root-n consistent estimate of β and ν > 0. In our analysis we used ν = 1.0. For
both penalty functions, when λ is large, we expect many of the estimates of β to be zero,
which serves as a way of variable selection. Note that these two penalty functions were
mainly proposed in regression settings, which are quite different from our current setting
where we focus on the effects of the covariates on the correlations between two variables.

We now provide some theoretical justifications for the proposed procedures. Here we
assume that p is fixed and we study the asymptotic properties of our penalized estimates
with the adaptive Lasso penalty as the sample size n → ∞. For simplicity of the notation
and with a slight abuse of notation, we let β include both β0 and β. Suppose the true value of
β is β* and let  be the set of variable indices that include the
relevant variables and  be the corresponding true coefficients, where p0 < p.
Denote the Fisher information matrix corresponding to the likelihood function(3) as

where I11 is a p0 × p0 Fisher information matrix with the true nonzero coefficients known.
We consider the asymptotic properties of the adaptive Lasso estimates, denoted by β ̂*(n),
which is defined by

(5)

where  is the contribution to the log-likelihood from the ith observation, ws̃ = 1/|
β̃s|γ, γ > 0 and β̃ is a root-n consistent estimator of β*. Let  be the index set

of the variables selected by the penalized procedure and  be the estimated
coefficients of the true relevant variables, then we have the following oracle properties of
the estimator from the adaptive Lasso penalized log-likelihood function,

Theorem 1—For n i:i:d: observations (xi, yi, zi), i = 1, · · ·, n from a bivariate normal
model (1), the optimizer of the adaptive Lasso penalized log-likelihood function (5) has the
oracle property in the sense of Fan and Li (2001), when  and λn n(γ − 1)/2 → ∞.
Namely,

1. Consistency in variable selection: limn Pr(  = ) = 1.

2. Asymptotic normality: .

The proof of this theorem can be obtained by simply verifying the regularity conditions
given in Zou (2006). We omit the details here.
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3.2 Cyclic coordinate descent algorithm with IRWLS

To minimize the objective function (4), we can first estimate the marginal variance  and
 from the data since they are not part of the penalty term. We then plug in these estimates

and treat the objective function (4) as the function of β only. The Newton-Raphson method
for maximizing the log-likelihood function l(β0, β) can be transformed into an IRWLS
procedure (Green, 1984), where the log-likelihood function can be approximated by a
quadratic function at current estimate ( , β*),

where

Note that in order for the  (weights) to be positive, the expectation of the second
derivative  is used (Green, 1984). Based on this, we can approximate the
optimization problem of (4) as finding (β0, β), which minimizes the following objective
function,

(6)

For the Lasso or adaptive Lasso penalty, the cyclic coordinate descent algorithm can be used
to solve this penalized weighted least-squares problem very efficiently. The overall iterative
reweighted penalized likelihood estimation involves the following three nested loops:

Outer loop: Decrement λ.

Middle loop: Update lQ using the current estimates ( , β*).

Inner loop: Run the cyclic coordinate descent algorithm to minimize plQ defined as
equation (6).

This is similar to the regularization path algorithms for generalized linear models via cyclic
coordinate descent (Friedman et al., 2008). We compute the solutions for decreasing
sequences of values for λ, starting at the largest value λmax for which the entire vector β ̂ = 0.
This algorithm also employs warm starts for each new λ, which leads to a more stable
algorithm.

3.3 Tuning parameter selection
As in every regularization procedure, the tuning parameter λ controls the model complexity
and has to be tuned. The choice of tuning parameter λ in the penalized likelihood approach
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can be based on BIC or cross-validation on the likelihood function. The BIC selects the
tuning parameter λ that minimizes the following quantity

where n is the sample size, k is the number of the non-zero elements of β ̂(λ) and L(β ̂(λ)) is
the value of the likelihood function of the estimated model with parameter β ̂(λ) for tuning
parameter λ.

Alternatively, we can use M-fold cross-validation (CV) method to choose λ. First, we divide
all the samples in the into M disjoint subgroups, also known as folds, and denote the index
of samples in the mth fold by Tm for m = 1, · · ·, M. The M-fold cross-validated likelihood
function is defined as

where l(β ̂(λ)) and l(−m)(β ̂(λ)) are the log-likelihoods based on all the samples  and
based on samples , respectively, and β ̂(λ) is the estimate of β based on the
samples  with λ as the tuning parameter. We then choose λ* = argmaxλ CV (λ)
as the best tuning parameter.

However, it is well known that CV can perform poorly on model selection problems
involving L1 penalties due to shrinkage in the coefficient estimates and over-fitting. One
common approach to reduce the shrinkage problem in Lasso involves a two-stage CV (2CV)
procedure: using the penalized likelihood procedure to select the variables and then
replacing the nonzero coefficients with their corresponding MLE estimates. We study both
CV approaches in our simulations.

4. Simulation Studies
We have conducted Monte Carlo simulations to evaluate the proposed methods and to
compare them with the LA analysis of Li (2002) in terms of the performance of identifying
the relevant mediators for co-expressions between two genes.

4.1 Comparison of LA and likelihood ratio test
We first compare the performance of our proposed model-based LR test and the liquid
association of Li (2002) using simulations. We consider four different scenarios to assess the
sensitivity and specificity of these two different approaches for testing whether a variable Z
mediates the co-expression between two genes X and Y. For each scenario, we simulated 500
negative controls when the correlation between X and Y did not depend on Z and 500 true
positives when the correlation between X and Y was mediated by Z. For each simulation, we
generated 100 samples of (X, Y, Z). Since LA analysis is often done on normal-score
transformed data, we performed normal score transformations on all the data for LA analysis
and LR tests.
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For the first scenario, for the true positives, we generated Z from a standard normal
distribution and generated (X, Y) from a bivariate normal distribution with mean zero,
variance 1 and correlation

and for negative controls, we generated independent X and Y from a univariate normal
distribution. For each true positive, we randomly generated β0 from a uniform U(0, 1)
distribution and β from a uniform U(0, 2) distribution. For the second scenario, we generated
true positives in the same way as the first scenario, but we generated the negative controls
by generating (X, Y) from a bivariate normal distribution with correlations generated from a
uniform (0, 1) distribution but not dependent on Z. Figures 1(a) and (b) show the receiver
operator characteristics (ROC) curves based on our proposed likelihood ratio statistics and
the LA scores of Li (2002) at different cutoff values for these two scenarios. We observed
that for both scenarios, the LR statistics result in larger areas of the curves.

For the next two scenarios, we simulated data when model assumptions are violated. For
scenario 3, for the true positives, we generated Z from a standard normal distribution and
generated (X, Y) from a bivariate normal distribution with mean zero, variance 1 and
correlation

and we generated the negative controls in the same way as in scenario 2. For each true
positive, we randomly generated β0 from a uniform U (0, 1) distribution and β from a
uniform U(0, 2) distribution. For scenario 4, we simulated (X, Y) data from a mixture of a
common standard normal distribution X0 and two standard exponential distributions E1 and
E2 with the mixture proportion depending on Z. Specifically, we assume

where p(Z) = Φ(Z) and Z is generated from a standard normal distribution. Figures 1(c) and
(d) show the ROC curves based on our proposed likelihood ratio statistics and the LA scores
of Li (2001) for these two scenarios. We observed that for when the correlation between X
and Y is related to Z in a non-linear form, the LA resulted in much smaller AUCs. However,
when the data violate the normality assumption, both methods result in smaller AUCs.

4.2 Simulation evaluation of the regularized likelihood approach
In this section, we evaluate the proposed penalized likelihood approach for selecting the
variables that mediate the co-expression patterns between two genes. We simulated the
expression levels of two genes (X, Y) from the bivariate model (1) with three elements of β
being nonzero and the rest being zero. We considered two different sets of nonzero βs: β =
(3, 1.5, 2) with β0 = −3.2, which corresponds to strong signals and β = (−1.0, 1.5, 1.0) with
β0 = −0.5, which corresponds to relatively moderate signals. We considered the dimension
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of β to be p = 12, 50 and 100 and the sample size was set to be n = 100. For each model, the
simulations were repeated 1, 000 times and the average number of nonzero coefficients
correctly estimated to be nonzero (denoted by C), the average number of zero coefficients
incorrectly estimated to be nonzero (denoted by IC), and the average number of simulations
where the exact true models were selected were calculated over 1000 simulations. For each
simulated dataset, standard 5-fold CV, the 5-fold 2CV procedure and the BIC were used to
choose the tuning parameter λ.

We considered both scenarios when the candidate mediators Z are continuous and are
discrete. For continuous Z, we generate z, which has a multivariate normal distribution with
mean 0 and covariance between ith and jth elements being ρ|i−j| with ρ = 0.5. For discrete
values of Z, we generate z:

for i = 1 … Dim(β). We studied both the Lasso and adaptive Lasso penalty functions using
5-fold CV, 5-fold 2CV and the BIC for selecting the tuning parameter λ. For adaptive Lasso,
the MLE of β was used in the weights in the adaptive Lasso penalty function.

Simulation results are summarized in Table 1 and Table 2 for continuous Z and discrete Z,
respectively. First, we observed that the performances of the procedures considered are
similar for discrete as well as continuous mediators Z. Overall, we observed that the 2CV
and the BIC resulted in models with higher sensitivities and lower false discovery rates than
the models chosen by the standard CV procedure, giving better selection of the relevant
mediators, including an overall higher probability of selecting exactly the correct sets. In
most of the models and procedures compared, the 2CV performed better than the BIC in
selecting the tuning parameter λ, resulting in better identification of the true models. Third,
we observed that the adaptive Lasso performed better than Lasso penalty when p is small
relative to the sample sizes. The penalized likelihood procedure with adaptive Lasso penalty
tends to select more correct models than using the Lasso penalty. However, when p is large
(e.g., 100), using the Lasso penalty resulted in better identification of relevant mediators.
This is because when p is close to the sample size, the MLE used in the weights in the
penalty function cannot be well estimated.

We also examined the performance of the proposed procedure for p = 200 and p = 500 and
sample size of n = 100. Since no obvious consistent estimates of β are available when p > n,
we only studied the penalized likelihood approach with Lasso penalty. Table 3 summarizes
the simulation results for models with continuous covariates and moderate mediating effects
based on 200 replications. These results indicate that even when the number of the candidate
mediators is much larger than the sample size, our penalized likelihood method can still be
applied to identify the relevant mediators with good sensitivities. As expected, in such high
dimensional settings, the probability of identifying the exact true models is much smaller
than the settings when p < n. We also observed that the 5-fold 2CV procedure resulted in
better variable selection than the standard 5-fold CV.

Finally, as a comparison, we also performed single variable analysis based on the likelihood
ratio test using nominal p-value of 0.05 and also using Bonferroni adjustment for multiple
comparisons. The results are also presented in Tables 1, 2 and 3. These single variable
analyses clearly performed poorly when there were multiple true mediating variables,
further indicating the importance of considering multiple mediating variables using our
proposed model.
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5. Application to Real Data Sets
To demonstrate the proposed methods, we present results from the analysis of a data set
generated by Brem and Kruglyak (2005). In this experiment, 112 yeast segregants (one from
each tetrad) were grown from a cross involving parental strains BY4716 and wild isolate
RM11-1a. RNA was isolated and cDNA was hybridized to microarrays in the presence of
the same BY reference material. Each array assayed 6,216 yeast ORFs. Genotyping was
performed using GeneChip Yeast Genome S98 microarrays on all 112 F1 segregants. These
112 segregants were individually genotyped at 2,956 marker positions. Since many of these
markers are in high linkage disequilibrium, we combined the markers into 585 blocks where
the markers within a block differed by at most 1 sample. For each block, we chose the
marker that had the least number of missing values as the representative marker. For several
gene pairs, we used the gene expression data to identify the kinases that could mediate the
co-expression dynamics between a transcription factor (TF) and its regulated genes and to
identify the genetic markers that may mediate the co-expression dynamics between two
genes on the same biosynthesis pathway.

5.1 Identification of kinases that mediate the co-expression between a TF and its target
genes

A protein kinase is a kinase enzyme that modifies other proteins by chemically adding
phosphate groups to them (phosphorylation). Phosphorylation usually results in a functional
change of the target protein (substrate) by changing enzyme activity, cellular location, or
association with other proteins. Kinases are known to regulate the majority of cellular
pathways, especially those involved in signal transduction. We consider the problem of
identifying the protein kinases that mediate the co-expression patterns between a TF and
their regulated genes based on gene expression data. We consider the transcription factor
Sterile (STE12) and its target factor-induced gene (FIG 1) and cell fusion gene (FUS2) and
116 known yeast kinases. For each TF-gene pair, we first identified the kinases that affect
the mean expression level for each of the two genes using simple regression analysis. We
found that the cell fusion kinase (FUS3) affects the mean expression levels of all three
genes, STE12, FIG 1 and FUS2. We then regressed out the effect of FUS3 from all three
genes and obtained the residuals. To apply our proposed LR test and the penalized
likelihood estimation method, we further performed normal score transformation on the
residuals.

We first applied the LR test for each of the 116 kinases and chose the top 50 kinases with
the largest likelihood ratio statistics for our penalized likelihood analysis. We identified the
kinase FUS3 that mediates the co-expression patterns between STE12 and FIG 1 using the
Lasso penalty function with the tuning parameter selected by the BIC or the 2CV procedure.
In contrast, if the standard CV was used for choosing the tuning parameter, the penalized
likelihood method selected FUS3 and other five kinases. Figure 2(a) shows the co-
expression patterns for the segregants with high and low FUS3 expression levels using the
median expression as the cutoff value. We observed that when FUS3 has high expression
levels, no correlation was observed between STE12 and FIG 1. On the other hand, when the
FUS3 gene has low expression levels, we observed a strong positive correlation. Similarly,
for the STE12 and FUS2 pair, our regularization procedure with Lasso penalty identified
four potentially important kinases that may mediate their co-expression pattern, including
FUS3, checkpoint kinase (CHK1), calmodulin dependent protein kinase (CMK2) and
protein kinase of PDH (PKP2) when the BIC was used to choose the tuning parameter. An
additional protein kinase of PDH (PKP1) was identified when the 5-fold 2CV was used for
choosing the tuning parameter. Figure 2(b) shows the co-expression patterns for the
segregants with high and low FUS3 expression levels. We observed that when the FUS3
gene has high expression levels, negative correlation was observed between STE12 and
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FUS2. On the other hand, when the FUS3 gene has low expression levels, we observed a
strong positive correlation between STE12 and FUS2. These analyses indicate that yeast
kinase FUS3 mediates the co-expression patterns between the TF STE12 and the genes that
it regulates. This provides support to the model that FUS3 regulates the activity of the
transcription factor STE12 by phosphorylation (Elion, Satterberg and Kranz, 1993).

As a comparison, the p-value of the LA score for the effect of FUS3 on STE12-FIG 1 pair
based on 100,000 permutations is 0.0071, which is not significant if we adjust for multiple
comparison using the Bonferonni correction. In fact, no kinase was identified for mediating
the STE12-FIG 1 pair if the Bonferonni correction was applied for multiple testing.
However, the LA score for the effect of FUS3 on STE12-FUS2 was significant with p-value
of 6 × 10−5 based on 100,000 permutations. This was the only kinase identified by the LA
analysis for the STE12-FUS2 pair.

5.2 Identification of the SNPs that mediate the co-expression patterns between two genes
Genetic studies of gene expressions or genetical genomics have attracted much attention in
recent years due to the fact that many gene expression traits are inheritable. In typical
genetical genomics studies, both genome-wide genetic variants and gene expression data are
measured on the same subject and standard quantitative trait analysis is often conducted to
identify the genetic variants that are associated with the gene expression levels. Such genetic
variants are often called the eQTL. Sun et al. (2007) proposed to use the LA method to
analyze such eQTL data, where they study the expression of a pair of genes and treat the
variation in their co-expression pattern as a two dimensional quantitative trait. They applied
the LA method to find the gene pairs, whose co-expression patterns, including both signs
and strengths, are mediated by genetic variations and mapped these 2D-traits to the
corresponding genetic loci.

To demonstrate our methods, we consider two genes on the leucine biosynthesis pathway,
leucine biosynthesis gene (LEU2) and branched-chain amino acid transaminase gene
(BAT1), which are adjacent on the pathway (Sun et al., 08). We identified one SNP in
LEU2 that affects the mean expression of both LEU2 and BAT1 (see Figure 2(c) and (d))
and then regressed gene expression of LEU2 and BAT1 on this SNP to obtain the residuals.
We used normal score transformation on the residuals for our proposed model-based
analysis. We first chose the top 50 SNPs with the largest likelihood ratio test statistics and
then applied the proposed penalized likelihood approach to these 50 SNPs to further select
the mediating SNPs. The regularized likelihood approach with Lasso penalty identified two
SNPs, one SNP in LEU2 and another SNP in oxidant-induced cell-cycle arrest (OCA5), with
the corresponding LR-based univariate p-values of 2.07×10−7 and 0.086, when 2CV and
BIC were used for selecting the tuning parameter. Plots (c) and (d) in Figure 2 show the
scatter plots of the gene expression data stratified by the genotype at the SNP in YCL018W
and stratified by the median of the combined scores zTβ, showing different co-expression
patterns between these two genes for yeast segregants with different genotypes at the SNP in
LEU2 and with different combined scores. Due to the fact that the estimated coefficient for
the SNP in OCA5 was small, no significant difference was observed between these two
plots.

For this pair of genes, we noticed that adjusting the effect of the SNP in LEU2 on the mean
expressions of LEU2 and BAT1 played an important role in identifying the mediating SNPs.
For example, the LA score identified the LEU2 SNP as a possible mediating SNP only when
its effects on the means were adjusted.
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6. Conclusions and Discussion
We have proposed a general bivariate normal model with covariate-dependent correlations
and a likelihood-based approach for identifying the potential mediating genes or SNPs that
can affect the gene co-expression patterns between two genes. For a small set of mediating
genes, we can simply use the likelihood ratio test to evaluate the relevance of the mediating
genes. When the set is large, we have presented a penalized likelihood approach for
identifying the relevant mediating genes. When the tuning parameter is appropriately
selected, such a procedure has the important oracle property in the sense of Fan and Li
(2001). We have demonstrated the methods by simulations and applications to gene
expression data yeast segregants (Brem and Kruglyak, 2005) to identify the kinases or SNPs
that mediate the gene co-expression patterns.

In our proposed bivariate normal model, we assume that the mediator variables only affect
the correlation between two genes considered. However, some of these mediator variables
can also affect the mean expression levels of these two genes and even their variances. The
conditional normal model of Ho et al. (2009) allows such a dependency when there is only
one mediator variable. When the set of potential medicator variables is large, as in our
analysis of the real data sets, we first regressed out the effects of these variables on the mean
expressions using regression approaches and then applied our model on the residuals.
Alternatively, we can further extend our approach to perform variable selection for both
means and also the correlation of the two genes. However, allowing the variances of the two
genes under study to depend on the mediator variables in high dimensional settings is a
difficult problem and deserves further investigation.

We consider only the problem of identifying the genes and SNPs that can mediate the co-
expression between two genes. One interesting extension is to identify the genes and SNPs
that mediate the interdependence of a set of genes, such as those that belong to a certain
biological pathway. Li et al. (2004) presented a strategy of finding an informative 2D
projection to generalize LA for multiple genes by searching for the projections that
maximize the LA scores and demonstrated its application to the analysis of protein complex
gene expression data. An alternative approach to this problem is to assume a multivariate
normal model where the correlations are modeled as functions of high-dimensional
mediating genes or SNPs and to develop a similar penalized likelihood approach for
identifying the mediating variables. Other extensions for future studies include relaxing the
parametric assumptions such as the bivariate normality assumption between two gene
expression levels and the linearity assumption of the effects of the mediators on the Fisher’s
transformed correlations. Possible alternative models include bivariate t-distribution of the
gene pairs and single index or additive model for the mediating effects on the correlations.
Finally, it is also important to further study the theoretical properties of the proposed
penalized likelihood procedure when the number of candidate mediators is larger than the
sample size.
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Figure 1.
Simulation comparison with LA in ROCs for four different scenarios ((a)–(d)), where for
each scenario, 500 true positives and 500 negative controls are simulated. The curves are
formed by varying the thresholds for the LR tests and the LA scores. (a) negative controls: X
and Y are independent; (b) negative controls: X and Y are correlated but are not mediated by
Z; (c) nonlinear effect of Z on the correlation; and (d) X and Y do not follow a normal
distribution.
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Figure 2.
Results from the analysis of the yeast segregants dataset. Top panel: effects of FUS3 kinase
on co-expression patterns between transcription factor STE12 and its target genes FIG 1 and
FUS2. Bottom panel: effects of the SNPs on co-expression patterns between two genes on
the leucine biosynthesis pathway, LEU2 and BAT1, where the SNPs in LEU2 and OCA5
are identified using the Lasso penalized likelihood. For each plot, the gene expression levels
are plotted as x-axis and y-axis, the two lines are based on the least-square fits on observed
expression levels, and the samples are divided into two groups based on the median of the
mediating scores.
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