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Abstract
In contrast to the widely applied approach to model soft tissue remodeling employing the concept of
volumetric growth, microstructurally motivated models are capable of capturing many of the
underlying mechanisms of growth and remodeling; i.e., the production, removal, and remodeling of
individual constituents at different rates and to different extents. A 3-dimensional constrained mixture
computational framework has been developed for vascular growth and remodeling, considering new,
microstructurally motivated kinematics and constitutive equations and new stress and muscle
activation mediated evolution equations. Our computational results for alterations in flow and
pressure, using reasonable physiological values for rates of constituent growth and turnover, concur
with findings in the literature. For example, for flow-induced remodeling, our simulations predict
that, although the wall shear stress is restored completely, the circumferential stress is not restored
employing realistic physiological rate parameters. Also, our simulations predict different levels of
thickening on inner versus outer wall locations, as shown in numerous reports of pressure-induced
remodeling. Whereas the simulations are meant to be illustrative, they serve to highlight the
experimental data currently lacking to fully quantify mechanically mediated adaptations in the
vasculature.
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1 Introduction
Vascular remodeling plays a key role in many physiological and pathophysiological processes,
as well as the success (or failure) of many clinical interventions; examples include vascular
development and aging, hypertension and atherosclerosis, and restenosis of vascular grafts.
Despite the explosion of information on vascular remodeling, from the molecular level to the
tissue level, there remains a pressing need to integrate these data into a predictive multiscale
model. Humphrey and Rajagopal said that in order to capture the salient features of these
remodeling processes ‘one must track local balances or imbalances in the continual production,
removal, [and remodeling] of individual constituents, the mechanical state in which the
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constituents are formed, and how these constituents are organized (Humphrey and Rajagopal
2002). Abdominal aortic aneurysms (AAA’s) provide a good illustration of the need for a
multiscaled microstructurally motivated mathematical model. During progression of AAA’s,
circumferential expansion, vessel wall thinning, and axial lengthening are coincident with a
progressive loss of elastin and smooth muscle and decrease in glycosaminoglycans, with
mature aneurysms consisting primarily of collagen and fibroblasts; thus, AAA’s experience
spatial and temporal variations in their geometry, microstructural content and organization,
and applied loads. To develop a predictive model for vascular remodeling, the complex
interplay between evolving material behavior, geometry, and applied loads (which together
determine the local mechanical environment) and the mechanobiological response to this
changing mechanical environment must be incorporated.

In contrast to the widely applied approach of modeling soft tissue remodeling using the concept
of volumetric growth, put forth by Skalak (Skalak 1981; Skalak et al. 1996) and extended by
many (Fridez et al. 2001; Rachev 2000; Raykin et al. 2009; Rodriguez et al. 1994; Taber
1998; Taber and Eggers 1996; Taber et al. 1995), several groups have taken modeling
approaches that can be categorized as microstructurally motivated models (Humphrey and
Rajagopal 2002; Barocas and Tranquillo 1997a,b; Driessen et al. 2003a,b, 2004a, b, 2005; Kuhl
et al. 2005; Gleason and Humphrey 2004, 2005a; Gleason et al. 2004a; Humphrey and
Rajagopal 2003; Mow et al. 1980). Whereas a true microstructural model of native tissues
requires one to include the highly complex protein interactions at many hierarchical length
scales (e.g., organization of collagen from tropocollagen, to a microfibril, to a subfibril, to a
fibril, to higher order tissue structures (Baer et al. 1992) and may be decades away,
microstructurally motivated (yet phenomenological) models will continue to provide insights
that guide experiments and help one to interpret experimental results. The commonality of all
of these microstructurally motivated models is that the underlying constitutive behavior
includes information at the microstructural level, and the remodeling of the tissue is quantified
by quantifying changes at this scale (in contrast to the volumetric approach that quantifies
changes at the whole tissue level). The key differences between each microstructural approach
is the wide variety of theoretical frameworks and constitutive and evolution equations
employed.

Here we employ the general theoretical framework described by Humphrey and Rajagopal
(2002) for soft tissue growth and remodeling. The purpose of this paper is to develop a
computational framework for vascular remodeling that is capable of quantifying spatial and
temporal changes in the local mechanical response function in terms of microstructurally
motivated metrics. We extend our (2-dimensional) framework for blood vessel remodeling to
altered mechanical loading (Gleason and Humphrey 2004, 2005a,b; Gleason et al. 2004a,b) to
a 3-dimensional framework and consider new, microstructurally motivated kinematics and
constitutive equations and new evolution equations which relate constituent growth, turnover,
and remodeling to stress and muscle activation. Our model is capable of capturing growth and
remodeling in response to individual or combined alterations in flow, pressure, and axial
stretch, based on reasonable physiological values for rates of constituent growth and turnover.
Our modeling framework and illustrative simulations can be used to motivate experimental
design to identify the most insightful experiments to be performed and to better understand
vascular growth and remodeling.

2 Theoretical framework
2.1 Kinematics

Given the need to track the production and removal of individual constituents, as well as the
mechanical states in which these constituents are formed, we model the artery as a constrained
mixture. Consider a local neighborhood about a point with position x(r, θ, z) in the loaded
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configuration; let this neighborhood κt be defined as a cylindrical sector with sides of length
rdθ, dz, and dr (Fig. 1a). Let this neighborhood be denoted κn in the locally stress-free (or
natural) configuration for the mixture, which has position X(R, Θ, Z); let this sector have sides
RdΘ, dZ, and dR. Since constituents are constrained to deform together, the current position
of each constituent j, denoted xj (rj, θj, zj), is the same as the current position of the mixture x
(r, θ, z)). Let this neighborhood be denoted  in the loaded configuration for each constituent
j about point xj; since xj(rj, θj, zj) = x(r, θ, z) for a constrained mixture, . Each constituent,
however, may possess different local stress-free natural configurations, denoted , that have
stress-free positions Xj(Rj, Θj, Zj), where ; and Xj(Rj, Θj, Zj) ≠ X(R, Θ, Z). Thus, whereas
the mixture natural configuration κn is stress-free, the individual constituents within the mixture
may be under stress in this configuration; these stresses borne by each constituent balance
resulting in a net (mixture) stress of zero in κn.

Since individual constituents can be produced, removed, and remodeled in different mechanical
states and to different extents, and different constituent classes can possess different natural
configurations, we must also consider different members k of the same constituent class j to
possess different natural configurations. Indeed, microscopy reveals significant variations in
the undulation of elastin and collagen fibers (Lanir 1983) as well as in the lengths of the smooth
muscle cells in blood vessels (Martinez-Lemus et al. 2004). Thus, within the locally stress-free
neighborhood , for constituent j, each member k may not be in their stress free, natural
configuration. Rather, each member k of constituent class j may possess its own stress-free
natural configuration, denoted  which has the position Xjk(Rjk, Θjk, Zjk); see Fig. 1b.

As the number of members k becomes large, rather than tracking these many individual
members of each constituent class, it is convenient to consider a distribution function Rj(κ̃n;
x) defined over the set of all possible natural configurations, {κ̃n}; the distribution function
may vary with position x within the tissue and has the characteristics,

(1)

The distribution of mass over all possible reference lengths can be written as

(2)

given (1)1, integration of Φj(κ̃; r) over all possible sets κ̃ at each radial location r yields, φj, the
total mass fraction of constituent j at radial location r.

κ̃n may be defined in terms of characteristic (infinitesimal) dimensions of a defined natural
configuration (Fig. 1c). For example, for elastin and muscle let the natural configuration κ̃n,
with position X ̃(R̃, Θ̃, Z ̃), again be defined as a cylindrical sector and let this sector have
dimensions dR̃, R̃dΘ̃, dZ ̃; κ̃n is deformed to κt defined as a cylindrical sector with dimensions
dr, rdθ, and dz. For an incompressible material, since the motion (R̃, Θ̃, Z ̃)↦ (r, θ, z) is
isochoric, then κ̃n may be defined in terms of R̃dΘ̃ and dZ ̃, leaving dR̃ to be determined from
the incompressibility constraint. Thus, let Rj(κ̃n, x) = Rj(R̃dΘ̃, dZ ̃; r) define the distribution of
constituent j over all possible natural configurations; here we restrict this distribution function
to be axisymmetric, varying with radial location r, but not with θ or z. Given this axisymmetry
assumption we may let Rj(R̃dΘ̃, dZ ̃; r) = Rj(2π R̃, L ̃; r), where κ̃n is defined in terms of 2π R̃
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and L ̃, which define the unloaded dimensions of a cylindrical shell, that have dimensions r and
ℓ (with infinitesimal thickness dr) in the loaded configuration.

For inflation and extension of an axisymmetric tube, the map that takes points from X ̃(R̃, Θ̃,
Z ̃) ↦ x(r, θ, z) is defined as r = r(R̃), θ = λ̃θΘ̃, and z = λ̃zZ ̃, which has deformation gradient,
F̃, with components [F̃] = diag{λ̃r, λ̃θ, λ̃z}, where (for elastin and muscle)

(3)

here we enforced the incompressibility constraint (det F̃ = 1) for both the mixture and the
individual constituents (which is enforced locally), see Eq. (3)3. Thus, the space of all possible
reference configurations is {κn} = {R̃, L ̃}. Given specific values for r, ℓ, and dr that defined
the current configuration, the set of deformation gradients F̃ may be calculated for each
combination of R̃ and L ̃ in the set R̃, L ̃ via Eq. (3).

For collagen, let the natural configuration κ̃n, with position X ̃(R̃, Θ̃, Z ̃), be described in terms
of fiber angles and fiber lengths. Again, let the local neighborhood κt in the loaded configuration
be defined as a sector with sides of length rdθ, dz, and dr; let us further define this sector such
that rdθ/dz = 2πr(sp)/ℓ(sp); see Fig. 1a. Consider a single fiber k of constituent j that is laid

down with a fiber stretch of  and a fiber orientation ω̃ = ωjk(sp) (Fig. 2). Of course,
this fiber will be stress free at any angle Ω̃ = Ωjk, as long as length of the fiber dγ equals the
unloaded fiber length dΓ̃ = dΓjk. The local neighborhood about this point under stress-free
conditions  will have sides RjkdΘjk, dZjk, and dRjk. Let us define this reference configuration
such that RjkdΘjk = dZjk. It can be shown that, for the case of defining RjkdΘjk = dZjk, ωjk is
related to Ωjk via

(4)

Thus, in general,

(5)

In addition, given axisymmetry and neglecting variation along the vessel length, the stretch of
any fiber,

(6)
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where Γ̃ is the effective stress-free length of a fiber over the entire radius and length of the
vessel, in contrast to dΓ̃, which is the stress-free length over the local neighborhood about a
point. Thus, given specific values for r and ℓ that define the current configuration, the fiber
stretch λ̃f and fiber angle ω̃ may be calculated for all possible combinations of Γ̃ and Ω̃ in the
{Γ̃, Ω̃}-space via Eqs. (5) and (6).

In traditional vascular mechanics, one typically considers three configurations: a loaded
configuration βt, a traction-free (unloaded) configuration βu, and a (nearly stress-free) reference
configuration βo (Fig. 3). Here, the stress-free configuration is approximated by an excised
arterial ring that ‘springs open’ when cut radially to relieve a large part of the residual stress
(Chuong and Fung 1986). As all three configurations are measurable, this approach is
experimentally tractable. For inflation and extension of a residually stressed axisymmetric tube,
the map Xo(R, Θ, Z)↦ p(ρ, ϑ, ζ) is defined as ρ = ρ(R), ϑ = (π/Θo)Θ, and ζ = ΛZ and the map
p(ρ, ϑ, ζ) ↦ x(r, θ, z) is defined as r = r(ρ), θ = ϑ, and z = λzζ. Thus, the map Xo(R, Θ, Z)
↦ x(r, θ, z) is defined as r = r(R), θ= (π/Θo)Θ, and z = λzΛZ which has the deformation gradient
with components [F] = diag [(∂r/∂R), (πr/ΘoR), (λzΛ)] in cylindrical coordinates. Whereas the
radially cut configuration βo is a convenient and experimentally tractable configuration, it is
not necessarily stress-free at all points; i.e., in βo the local neighborhoods for all points X ̂(R̂,
Θ ̂, Ẑ) are not necessarily in their natural configuration κn for the mixture; nor are all points in
the natural configurations  for any constituent j. It is important to note, however, that the
natural configurations κn, , and {κ̃n} are not experimentally tractable. Rather, we must
prescribe the distribution of each constituent over the space of all possible natural
configurations {κ̃n} and calculate βo and βu using an appropriate stress response function. These
predicted values for βo and βu may then be compared to experimental data.

2.2 Stress response
The balance of linear momentum for each constituent class and mixture on the whole requires
that

(7)

respectively, where ρj is the mass density, vj the velocity, ṁj the (net) local mass production
per unit volume, Tj the Cauchy stress, bj the body force, pj momentum exchanges that arise
between constituents, and aj the acceleration for each constituent class j (which includes all
members k) and ρ is the density, T the Cauchy stress, b the body force, and a the acceleration
for the mixture as a whole (Humphrey and Rajagopal 2002). For a constrained mixture
undergoing a quasi-static process, in the absence of body forces, Eqs. (7)1 and (7)2 reduce to
div(Tj)T + pj +ṁjv = 0 and div(T)T = 0, respectively. Humphrey and Rajagopal (2002) note,
however, the difficulty in defining traction boundary conditions in terms of the ‘partial’ stresses
Tj and in measuring the momentum exchanges that arise between constituents, and suggest an
alternative approach wherein one defines the total mixture stress; in this manner, one need only
solve the boundary value problem on the mixture (Eq. (7)2), without concern with the partial
stress boundary condition (Eq. (7)1). Thus, let the stress of the mixture at any point be described
by a simple rule of mixtures (Gleason et al. 2004a; Brankov et al. 1975) as
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(8)

where Tj(F̃) = −pjI + 2F̃ (∂Ŵj/∂C ̃) (F̃)T is the Cauchy stress for each ‘passive’ constituent j

with deformation gradient F̃ (modeled as an elastic material),  is the ‘active’ contribution
to the Cauchy stress associated with cellular contraction, C ̃ is the right Cauchy–Green strain
tensor, [C ̃] = [F̃(F̃)T] = diag{(λ̃r)2, (λ̃θ)2, (λ̃z)2}, Ŵj is the strain-energy function for constituent
class j, and pj is a Lagrange multiplier due to (local) incompressibility for each constituent. We
will consider a mixture of four key structural constituents: elastin (e), collagen (c), smooth
muscle (m) and water (w). We will model water as an inviscid fluid, thus Tw = −pwI (i.e., 2F̃
(∂Ŵw/∂C ̃)(F̃)T = 0) and

(9)

where p = Σj∫{κ̃}(Φjpj)dκ̃ is a Lagrange multiplier due to incompressibility on the mixture as a
whole, and we consider muscle to be the only constituent with an active contribution to the
stress.

For inflation and extension of a long, straight, axisymmetric tube equilibrium require that
Trθ = Trz = 0 and ∂Trr/∂r + (Trr − Tθθ)/r = 0. Noting that Trr(ri) = −P the luminal pressure and
Trr(ro) = 0, equilibrium requires that

(10)

where T̂ = T + pI, the second term in Eq. (9), is the so-called ‘extra’ stress due to the
deformation. Axial equilibrium requires that axial force maintaining the in vivo axial extension

is , which can be written as

(11)

where ξ = 1 or 0 for a closed or open ended tube, respectively; see Humphrey (2002). For ex
vivo biomechanical testing, ξ = 1.

As noted above, we seek to prescribe local natural configurations of each constituent and
predict the global unloaded configuration βu and (nearly) stress-free configurations βo of the
mixture. To find βu, we set P = 0 and f = 0 in Eqs. (10) and (11), and solve for ri ≡ ρi and ℓ =
Lu; ro ≡ ρo, and thus, the thickness Hu may be determined from the incompressibility constraint.
If we impose a single radial cut in an unloaded vessel, the bending moment, M, is given as
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(12)

To determine βo, following Rachev (1997), we set P = 0, f = 0, and M = 0, and solve for ri ≡
Ri, ℓ ≡ Lo, and Θo; again, Ro, and thus the thickness Ho, may be determined from
incompressibility.

2.3 Constitutive equations
We will model elastin as a neo–Hookean material; thus,

(13)

where be is the elastic modulus and IC ̃ = tr(C ̃) = C̃rr + C̃θθ+ C̃zz is the first invariant of C ̃.

We model muscle as a transversely isotropic material with a circumferentially preferred
direction; thus

(14)

where bm, , and  are material parameters.

We consider collagen to be comprised of a distribution of fibers with fiber orientations ω̃ ∈
[0, 90] and fiber stretches λ̃f. For each fiber, we let

(15)

where  and  are material parameters. Each fiber is oriented in the Z ̃–Θ̃ plane, λ̃f = γ/Γ̃ is the

stretch of the fiber, where ; thus,

, where Ω̃ denotes the angle between the fiber
direction and Z ̃ axis in the reference configuration κ̃n, γ is the length of the fiber in the loaded
configuration, Γ̃ is the unloaded length of fibers oriented in the direction Ω̃; note that Γ̃ is
similar to the ‘fiber engagement’ length described by Lanir (1983) and others. Note, that, we
assume that the collagen fibers are embedded in the amorphous matrix described by the
isotropic terms in Eqs. (13) and (14). Note too that we only consider distribution functions that
possess symmetry about the r – z plane and the r – θ plane; thus the limits of integration in Eq.
(15) represent the first quadrant, which is repeated in the 2nd, 3rd, and 4th quadrant.

The active smooth muscle behavior will be modeled following Rachev and Hayashi (1999) as
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(16)

where λM is the stretch at which the contraction is maximum, λ0 is the stretch at which active
force generation ceases, Tact is a parameter associated with the degree of muscle activation,
and eθ is the base vector in the circumferential direction in the loaded configuration.

2.4 Evolution equations
For the simulations herein, we assume that the material parameters for each constituent class
remain constant for all material produced or removed. Thus, to quantify growth and
remodeling, what remains is to quantify how the distribution of mass over all possible reference
configurations Φj (R̃, L ̃; r, s) changes with position and time as the tissue grows and remodels.
Toward this end, we must quantify the rate of production and removal of each constituent and
the mechanical state (i.e., natural configuration) of all material being produced.

2.4.1 Growth and turnover kinetics—Mass balance for each constituent class j within a
mixture and for the mixture as a whole requires that

(17)

respectively (Humphrey and Rajagopal 2002). Assuming that the mixture density does not vary
significantly with position and time, (17)2 reduces to div(v) = 0. For a constrained mixture
each constituent, including water, is ‘constrained’ to deform together; thus, each constituent
has the same velocity as the mixture (i.e., vj = v and diυ(vj) = diυ(v)) and for a homogeneous
material Eq. (17)1 reduces to ∂ρj/∂s = ṁj.

Consider the local neighborhood κt about point x(r, θ z) at time s = 0 ≡ s0 in the loaded
axisymmetric, cylindrical configuration that has mass dm(s0, r) ≡ dm0, volume dυ(s0, r) =
dυ0, and mass fractions  within the region at s0, where  is the
mass of constituent j at s = 0. The mass density of the mixture and the constituents over this
region are ρ0(r) = dm0/dυ0 and . At a later time s, following some
constituent turnover, including addition or loss of mass (i.e., growth or atrophy), the region
may have a new mass, dm(r, s) ≡ α (r, s)dm0(r), new volume dυ(r, s) in the current configuration,
and new mass fractions  where . If the
mixture density remains nearly constant, (i.e., ρ (r) ≅ ρ0(r) = constant ∀ r, s, c.f., Rodriguez

et al. 1994), then dm/dm0 = dυ/dυ0 ≡ α (r, s) and . Note too, that since we
assume material incompressibility, the volume of this neighborhood in the natural
configuration (of the mixture) κn, denoted dV (s, r), is equal to the volume in the loaded
configuration dυ(r, s); thus dV (s0, r) ≡ dV0 = dυ0 and dV (s, r) ≡ dV = dυ. Since we are adding
mass (and volume), dV ≠ dV0, we let

(18)
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where [Fg] = diag{λrg, λθg, λzg} is a deformation gradient for the mapping of points from their
original natural configuration κn (s = 0) to their current natural configuration κn (s), where we
consider only axisymmetric growth (Fig. 4). λig (i = r, θ, z)are the so-called growth stretch
ratios; see Rodriguez et al. (1994),Rachev (1997), and Taber and Eggers (1996) which may be
written

(19)

In the traditional volumetric approach, one proceeds by prescribing evolution equations for
∂λig/∂t. Here, however, we take a different approach; we prescribe the overall rate of change
in mass (or volume) with respect to time and prescribe the mechanical state in which new
constituents are laid down. Thus, rather than prescribing the evolution of λig, we predict these
values.

The rate of change of mass of this region may be written as

(20)

or equivalently,

(21)

In general,

(22)

where q̂j (αj, σ̃ − σ̃h, ···) allows for the rate to depend on the mass of material present αj(s), a
stress difference(s), (σ̃(s) − σ̃h), where σ̃(s) is some stress measured relative to its homeostatic
value, σ̃h, among other factors. Because ∂αj/∂s, (∂αj/∂s)prod, (∂αj/∂s)rem are related through
(20), we must prescribe two of these three rates to specify fully the kinetics of turnover. Let
us prescribe the net growth rate of j, in general, as

(23)

Thus, the rate of production of j is
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(24)

For our illustrative examples, we let

(25)

where kB is a constant that yields a ‘basal’ rate of constituent turnover, and we let

(26)

and

(27)

here  and  are kinetic parameters. Thus, we hypothesize that the rates of
turnover and growth are mediated by mean and local circumferential stress and degree of
smooth muscle activation. Constituent removal (i.e., turnover) is mediated by the absolute
value of the difference of muscle activation and circumferential stress from basal values and
reaches a basal rate when Tact is restored. Thus, increases or decreases in these values result
in increased turnover. Growth (i.e., net change in mass) is mediated by the muscle activation
parameter Tact, the mean circumferential stress 〈Tθθ〉 = P(s)a(s)/h(s), and local circumferential
stress Tθθ. The terms in the first set of square brackets in Eq. (27) are not functions of position
while the first term in the second set of brackets is a function of position. Steady state is achieved
when the terms in the first set of square brackets reach zero; the term in the second set of square
brackets serves to control local differences in stress-mediated growth across the wall.

The rate of change of mass density of each constituent, ṁj, is related to αj and α via the relation

(28)

Thus, ṁj is proportional to the rate of change of αj/α.

2.4.2 Mechanical state of produced and removed material—In biological tissue,
material is produced and removed in the loaded configuration, under stress and strain; thus, in

Wan et al. Page 10

Biomech Model Mechanobiol. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



our simulations, material is laid down in the in vivo, loaded configuration under stress and
strain. In particular, we assume that the new material gets laid down in a homeostatic state of
strain.

For growth and turnover of elastin and smooth muscle, we adopt the approach of Gleason and
Humphrey (2005b). Briefly, as new material is produced, we require constituent j to be

deposited via the homeostatic distribution . Rather than prescribing the functional

form of , we prescribe the functional form of the distribution of natural configurations

 that results from laying down new material with the distribution of stretches

 in the (known) loaded configuration. Although  is independent of time,

 depends on s because the state (2πr(sp), ℓ(sp)) wherein it is produced depends on

s. We let  be described by a beta probability distribution function, with independent
variables R̃ and L ̃, as

(29)

where , and  are shape parameters, B(·, ·)is the beta function,

, and

. R̄j and L ̄j are mean values of the natural configurations, and ΔR j and
ΔLj are the widths of the distribution. If we know the current state (r(sp), ℓ(sp)), we can prescribe
the mean natural configurations of the distribution as

(30)

where  and  are the mean value of the preferred homeostatic stretch distribution.

For collagen, we let the fibers be laid down at a homeostatic distribution of fiber angles
described via a sum of normal distribution functions, given as

(31)
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where ω̃ ∈ [0, 90°] is the angle between a fiber and the z axis in the loaded configuration, and
μp and σp are the mean and standard deviation of normal distribution p. In addition, we will
assume that at each fiber angle, ω̃, the fibers are laid down at a homeostatic distribution of

stretches, . As in the case for elastin and smooth muscle, rather than prescribing
the distribution of in vivo stretches and mapping these stretches back to a reference state, we
will simply prescribe the distribution of fiber lengths (dΓ̃) in the reference state; let this
distribution be denoted as B(dΓ̃, Ω̃; r, s), via a beta distribution function, as

(32)

where we recall that ω̃ = ω̃(Ω̃; s), pc(ω̃), and qc(ω̃) are shape parameters, dΓmax(ω̃, s) and
dΓmin(ω̃, s) are the maximum and minimum values of dΓ̃ (i.e., B(dΓ̃, Ω̃; r, s) = 0 for dΓ̃ >
dΓmax and dΓ̃ < dΓmin), and B(·, ·) is the beta function. Note dΓmax = dΓmean + ΔdΓ/2 and
dΓmin = dΓmean − ΔdΓ/2, where dΓmean is the mean value and ΔdΓ the width of the dΓ̃
distribution function.

The distribution of mass over all combinations of fiber angle and fiber stretch may be given
as

(33)

This distribution function has the properties

(34)

Notice that the ‘homeostatic’ distribution function R̂c(Γ̃ Ω̃; r, s) captures (qualitatively) the
fiber orientations observed in these vessels, as well as the observation that different fibers
become loaded (i.e., recruited) in different loaded configurations (Fig. 5).

3 Illustrative results
The governing equations are the kinematic equations (3), the constitutive equations (9), and
(13)–(16), equilibrium equations (10) and (11), the kinetic equations (22)–(27) which describe
the rate of constituent turnover and growth, and Eqs. (29)–(33) which describe the mechanical
state of newly produced material. Based on data from mouse carotid arteries (Gleason et al.
2007), we prescribe the initial mean values (over the cardiac cycle): the in vivo inner radius
ao = 250 μm, in vivo thickness ho = 24.16 μm, and in vivo axial length ℓo = 2πao = 1.57 mm.
Structural and material parameters were determined by fitting this constitutive model to
experimental data from mouse common carotid arteries from Gleason et al. (2007), following
the methods described in Hansen et al. (2009). The structural parameters for the mechanical
state in which constituents are laid down are

 , ω ̄1 = 0°, and ω ̄1 = 28°, and the material
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parameters are be = 103.95 kPa, bm = 0.362 kPa,
, TB = 363 kPa, λM = 2.1, and λ0 = 0.8.

Pressure-diameter, axial force-pressure, and mid-wall stress-strain plots show that these
material parameters capture the salient feature of large arteries (Fig. 6). Kinetic parameters
used for each simulation are listed below. We solved this system of equations numerically by
discretizing the radius and using an implicit time-step implemented in MatLab 7.4. We also
discretized the space of all possible natural configurations κ̃n (i.e., the R̃ − L ̃ -space for elastin
and muscle and the Γ̃ − Ω̃-space for collagen).

Given the initial loaded configuration r(0) and ℓo, we calculated values for the initial
distribution functions Φj (κ̃n, r, s = 0) (by setting r(sp) = r(0) and ℓ(sp) = ℓo in Eqs. (29), (30),
and (33)), the deformation gradient, and the components of stress for each constituent at each
node in each discretized 2-D space (i.e., R̃ − L ̃ -space and Γ̃ − Ω̃-space) at each radial location.
The components of the ‘extra’ stress were calculated by integrating the second term on the
right hand side of Eq. (9); for elastin and muscle, equation (9) represents a surface integral over
R̃ and L ̃; for collagen, equation (9) becomes a double integral over Γ̃ and Ω̃. The Lagrange
multiplier was calculated via Eq. (12)2, and the total Cauchy stress was calculated via Eq. (9).

At time s = 0+, we imposed the change in applied loads to P(s) = βPo, Q(s) = εQo, and ℓ(s) =
δℓo. To impose the assumption that the vessel aims to restore wall shear stress via
vasoregulation, we first determined the vasoactive range of radii at any time s, by solving Eq.
(10) for the inner radius with  and Tact = 0; this yields the maximally constricted and
maximally dilated inner radii (  and ), respectively. The (‘target’) inner radius that
restores wall shear stress is , as shown in Gleason et al. (2004a). If ,
then the maximal dilation is not sufficient to restore wall shear stress, and we set Tact(s) = 0
and . If  then the maximal constriction is not sufficient to restore wall shear
stress, and we set  and . If , then ; in
this case, we set  and solve Eq. (10) for Tact(s). Given this new configuration and
activation, we calculated T(s) via Eqs. (9) and (12)2.

Given the calculated values for Tθθ(s) and Tact(s), the amount of (normalized) mass produced

( ) and removed ( ) for the next time step (ds) was calculated via Eqs. (22)–
(27). The new distribution of mass at each radial location is given as,

(35)

where  is calculated via Eq. (29) for elastin and muscle, Eq. (33) for collagen, and
where the configuration in which the material is produced (r(sp)and ℓ(sp)) is the current
configuration (r(s) and ℓ(s)). Finally, Φj(κ̃n; r, s + ds) = φj(r, s + ds) Rj(κ̃n; r, s + ds). Next, we
let s = s + ds, proceeded to the next time step, and repeated these steps for a specified number
of time-steps.

3.1 Altered flow
For all altered flow simulations, we let ε = 2.0 and β = δ = 1.0; that is, a two-fold increase in
flow with no change in pressure or axial length. We considered two illustrative cases: one in
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which all constituents turnover at equal rates (EQUAL RATES) and one in which constituents
are turned over at representative physiological rates (PHYSIOLOGICAL RATES).

3.1.1 Equal rates—We let
, and

. Following altered flow, smooth muscle cell relaxation (via reduction in
Tact) caused the vessel to dilate; c.f., ri(s)/ri (0−) at s = 0− before vasodilation and s = 0+ after
dilation (Fig. 7a). The vessel wall thinned with dilation (via incompressibility), and the total
circumferential and axial stress across the vessel wall increased (Fig. 7b, c). The growth is
governed by (Tact/TB − 1), (〈Tθθ(s)〉/〈Tθθ〉T − 1), and ( ) via Eqs. (26) and (27).
Following dilation, smooth muscle cells were fully relaxed (i.e., Tact=0 and (Tact/TB − 1) = −1),
and the shear stress was not completely restored to the homeostatic value (Fig. 8a). Also at s

= 0+, (〈Tθθ(s)〉/〈Tθθ〉T − 1) = 0.15 (Fig. 8b). Since , the term in the first set of square
brackets in Eq. (27) equaled 0.5 at s = 0+. The local stress increased to different extents at
different locations across the vessel wall; thus, the term in the second set of square brackets in
Eq. (27) varied across the wall, decreasing monotonically from the inner to outer wall (see Fig.
7b). Thus, the net effect of (Tact/TB − 1), (〈Tθθ(s)〉/〈Tθθ〉T − 1), and ( ) is that
gj was positive immediately following dilation, and the vessel began to accumulate mass to
different extents at different radial locations (Fig. 8c). Note that mass accumulation can be
delayed by decreasing ag2; this could cause some initial atrophy before growth occurs. The
rate of turnover is governed by (Tact/TB − 1) and (〈Tθθ(s)〉/〈Tθθ〉T − 1), according to Eq. (26);
following vasodilation, the rate of turnover increased ~2.7-fold, but varied across the wall. As
the vessel wall grew and existing constituents were replaced with new constituents with new
natural configurations, the vessel wall radius continued to increase. This increased radius and
decreased thickness caused the mean and local wall stresses to be increased further. At s = 3.1,
the vessel reached the ‘target’ radius of a(s) = 1.26ao, and the smooth muscle began to contract.
As growth and remodeling proceed, Tact asymptotically approached its basal value TB. The
total thickness increased to h/ho = ε1/3 = 1.26. Locally, however, since rates of growth varied
with radius, there were different levels of local thickening at different locations (see Fig. 7a);
thickening was slightly higher at inner versus outer wall locations. The mean and local values
of the circumferential and axial stresses were restored to initial values. Mean axial stress and
mean circumferential stress both reached a maximum value upon increase in flow at s = 0+,
and then asymptotically decreased to initial values.

Prior to dilation, the stretches in each constituent were at their homeostatic values. For example,
at s = 0−, the stretches in the muscle were distributed over the ranges  and

 (Fig. 9a). Following dilation, as the radius increased the circumferential
stretch in muscle increased to  (Fig. 9b); since there is no change in axial length
with dilation, the axial stretches remain unchanged. As constituent turnover ensued, newly
formed constituents were laid down at the homeostatic values of these stretches. For muscle,
newly formed material were laid down at  and ; thus, at time-
points when both existing and newly form constituents coexist, the total mass of muscle became
distributed over all possible combinations of in-plane stretches in a bimodal fashion (see Fig.
9c, d). Note too, that material formed immediately after dilation, when a(s) = 1.07a0, and laid
down at the homeostatic stretches becomes stretched further as the vessel continued to increase
its radius to a(s) = 1.26a0. Eventually, as the vessel reached the configuration that restores wall
shear stress and is held constant while constituent turnover continued, material at stretches
outside of the homeostatic stretches were eventually replaced with material laid down at the
homeostatic stretches (Fig. 9e, f).
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Similarly, the distribution of collagen over all possible combinations of fiber angle ω̃ and fiber
stretch λ̃f in the in vivo configuration evolved with growth and remodeling. Initially, the mean
fiber angles were ω ̄1 = 0° and ω ̄2 = 28°, and the mean stretch of these fibers equaled the

homeostatic value  (not shown). Upon vasodilation, the fiber angle and fiber

stretch ratio deformed to ω ̄2 = 29.7° and ; there was no change in ω ̄1 and since there

was no change in vessel length, there was no change in . As new collagen was produced,
however, it was laid down at the homeostatic fiber angle and fiber stretch; thus, a bimodal
distribution of (between ω ̄2 = 28° and ω ̄2 = 29.7°, in addition to the peak at ω ̄1 = 0°) resulted.
Eventually, as the vessel reached the configuration that restored wall shear stress and was held
constant and constituent turnover continued, material at fiber orientations and fiber stretches
outside of the homeostatic stretches were eventually replaced with material laid down at the
homeostatic fiber orientations and fiber stretches.

3.1.2 Physiological rates—In vivo, the rates of growth and turnover of elastin, collagen,
and muscle vary significantly. We know, for example, that the rate of turnover of smooth
muscle is significantly higher than that of collagen, but that the ratio of total mass of collagen
to that of muscle remains nearly constant. This may be simulated in our model by setting

, still requiring that . We also know that in adult vertebrates, the rate of
production and turnover of elastin is very small compared to that of muscle and collagen. This
may be simulated in our model by setting . Thus, we let

, and
. For physiological rates of growth and turnover, the circumferential and axial

stresses approach, but did not completely restore initial values (Fig. 10). In addition, the
thickness initially decreased, then thickened to h/h0 = 1.24, which is less than the ‘target’ value
of ε1/3 = 1.26. Thus, neither 〈Tθθ (s)〉 nor Tact(s) were restored and remained 2% above and
19% below homeostatic values, respectively. The mass fractions of collagen, muscle, and
elastin varied with both time and radial location, with the greatest increase in collagen and
muscle mass fraction at inner versus outer wall locations (not shown). Therefore, in addition
to non-uniform thickening, in this case, the vessel evolved from a homogeneous material to a
heterogeneous material.

3.2 Altered pressure
For this altered pressure simulation, we let β = 2.0 and ε = δ = 1.0; that is, a twofold increase
in pressure with no change in flow or axial length. We performed these simulations at the
physiological turnover rates. Following the increase in pressure, the vessel passively distended
to enlarge the lumen and simultaneously (within minutes), the smooth muscle activation
increased to  (with act (Tact/TB − 1) = 1.9, Fig. 11a) due to the lower shear stress that
occurs due to the increase in radius and unchanging flow rate. For this large increase in pressure,
the maximum smooth muscle activation was not sufficient to restore the inner radius to the
‘target’ value that restores the wall shear stress (Fig. 12a). The increased pressure increased
the in vivo radius and decreased the in vivo thickness producing a significant increase in mean
and local circumferential stress (Figs. 11b and 12b). The net effect of increased muscle
activation and increased mean and local circumferential stress, as governed by Eq. (27), was
a step increase in growth followed by a monotonic decrease with time. As growth and
remodeling proceeded, Tact asymptotically approached its basal value TB. The circumferential
and axial stresses were restored toward initial values with the mean axial stress remaining
higher than the original value. The total thickness increased to h/h0 = 2.0, which is the value
required by Laplace’s Law to restore the mean circumferential stress. Locally, since rates of
growth varied with radius, there were different levels of local thickening at different locations
(see Fig. 12a); thickening was higher at inner versus outer wall locations. This is consistent
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with the observations of Matsumoto and Hayashi (1996) that clearly showed greater thickening
on the inner versus outer wall locations. Note that the degree of non-uniform thickening may

be controlled by adjusting , with higher values of  corresponding to a higher degree of
non-uniform thickening.

4 Discussion
We have presented a 3-dimensional constrained mixture model for vascular growth and
remodeling. This model is capable of describing growth and remodeling in response to
alterations in flow and pressure. The mechanical response was modeled via a structurally
motivated, rule of mixtures-based constitutive equation. One of the utilities of mathematical
models is to motivate the experimental design; identifying the most insightful experimental
protocols and required quantities to be measured. This model has many parameters and
variables that must be quantified via experimental data. While it is difficult to directly measure
the kinetic parameters of growth and remodeling, the evolution of mass fractions and fiber
orientations may be measured via multiphoton microscopy on live tissue under mechanical
loading (see Gleason and Wan 2008; Wicker et al. 2008). In addition, it may be possible to
quantify, or at least approximate better, natural configurations for individual fibers by
evaluating their degree of undulation under various loading scenarios. Changes in mechanical
behavior can also be experimentally determined via biaxial biomechanical testing; for a given
form of the constitutive equation, material (and structural) parameters may be identified via
regression techniques (Hansen et al. 2009). To quantify growth and remodeling, of course, one
must determine these quantities at multiple time-points during this process.

A widely applied approach to model soft tissue remodeling employs the concept of volumetric
growth, put forth by Skalak (Skalak 1981; Skalak et al. 1996) and extended by many (Fridez
et al. 2001; Rachev 2000; Raykin et al. 2009; Rodriguez et al. 1994; Taber 1998; Taber and
Eggers 1996; Taber et al. 1995). In this approach, an original stress-free configuration is
allowed to grow into discontinuous (and fictitious) stress-free elements. This growth is defined
through the deformation gradient Fg; typically, for the case of remodeling in an axisymmetric
tube [Fg] = diag{λgr, λgθ, λgz}, where λgi are growth stretch ratios. The overall deformation
gradient is given by F = FeFg, where Fe is the gradient of the mapping from the traction-free
configuration to an experimentally measured configuration under applied loads (Fig. 4); for
the case of inflation and extension of an axisymmetric tube, [Fe] = diag{λer, λeθ, λez}. To
proceed, one must prescribe constitutive equations for the stress (T = T(F)) and the rate of
growth ∂λgi/∂t via evolution equations, which often depend on differences between the current
stress and some ‘target’ value of stress. Whereas the volumetric growth approach may capture
some important consequences of growth, we submit that it does not incorporate the underlying
remodeling mechanisms. In contrast, microstructurally motivated models are based on the
production, removal, and remodeling of individual constituents at different rates and to
different extents. Rather than prescribing the evolution of λgi, these quantities are predicted
based on underlying hypotheses of the overall growth, rate of constituent turnover, and
mechanical state of newly formed (or newly remodeled) material. In our simulations, we have
calculated the growth stretches at basal smooth muscle tone for the case of flow-induced
remodeling with physiological rates (Fig. 13). The radial and circumferential growth stretches
evolve toward ε1/3; the circumferential growth stretch, however, reaches steady state much
earlier than the radial growth stretch. The axial growth stretch remains nearly at λgi = 1. These
results are consistent with literature; again, these results are predicted based on the underlying
hypotheses of our model, in contrast to volumetric growth models wherein these values are
prescribed directly via evolution equations.
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It has long been postulated that the local remodeling correlates well with the local stresses
(Matsumoto and Hayashi 1996). We present a new functional form for the evolution equations
for the growth and turnover of individual structural constituents that depends on the Cauchy
stress (T) and the level of muscle activation (Tact). Recall that Tact is a parameter associated
with the degree of muscle activation. Muscle activation is ultimately a function of intra-cellular
calcium concentration but is controlled by many factors including the release of vasoactive
molecules such as nitric oxide and endothelin-1 by the endothelium and the myogenic response,
among other factors. Importantly, nitric oxide is known to inhibit and endothelin-1 is known
enhance smooth muscle cell proliferation. Similarly, whereas platelet-derived growth factor is
known to increase the rates of smooth muscle cell proliferation, it is also known to induce
smooth muscle cell contraction. Thus, clearly there is a link between signals for vasoregulation
and cell proliferation. Similarly, nitric oxide has been shown to downregulate matrix
metalloproteinase-9 (MMP-9) expression (Yang et al. 2007), which suggests a link between
vasoregulating proteins and extracellular matrix degradation. Taken together, these and many
other observations from the literature clearly support the inclusion of modeling parameters for
muscle activation in the growth and turnover of cell and extracellular matrix. There is evidence
in the literature that supports our claim that the vessel remodels to restore the muscle activation,
not the stress, to homeostatic values. For example, Kamiya and Togawa showed that wall shear
stress was restored (i.e., ri(s)) = ε1/3ri(0−)) in canine carotid arteries at six months given an
increased flow for ε < 3.5 (Kamiya and Togawa 1980). Many later reports support the finding
that wall shear stress is often restored to a target value following a sustained alteration in flow.
Results from the literature are less clear whether the mean circumferential stress is likewise
restored (i.e., that wall thickness h(s) = ε1/3h(0−)). For example, Zarins et al. reported that after
six months of a 9.6-fold increased flow in the iliac artery of an adult monkey (thus, ε1/3 = 2.1)
the vessel grew and remodeled such that ri (s) = (2.1)ri (0−), but based on their data (and
assuming no changes in axial length) h(s) = (1.3)h(0−) (Zarins et al. 1987); thus, the radius
remodeled to restore wall shear stress (and, thus, the release of vasoactive molecules), but the
wall thickness did not remodel to restore the mean circumferential stress. Indeed, their data
show that the mean circumferential wall stress after six months of elevated flow was 1.6 times
that of the initial value; clearly, in this case, wall stress was not restored. Our model predicts
similar results; namely, that for a large step change in flow, with ε = 9.6, the steady state
circumferential stress is not restored (data not shown).

In conclusion, we have developed a computational framework to quantify growth and
remodeling of blood vessels. We emphasize that these illustrative simulations are but a first
step to developing a predictive model for vessel adaptations. Significant experimental data is
currently lacking to fully quantify the material and kinetic parameters and validate the
underlying hypotheses. In addition, although we present a 3-dimensional model that may
incorporate material heterogeneities, we focus our attention on growth and remodeling of the
tunic media. There is an ever increasing awareness, however, that the adventitia plays a key
role in vascular remodeling, both under physiological and pathophysiological conditions. Thus,
further advancement of this computational framework will be to include both medial and
adventitial layers, each with a distinct microstructural content and organization, distinct cell
types, and therefore, distinct mechanically mediated growth and remodeling responses.
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Fig. 1.
Kinematics of a constrained mixture for constituents elastin (e), collagen (c), muscle (m) and
water (w) that reside within the same neighborhood about a point. Panel a depicts key
configurations for each constituent class j = e, c, m, and w. Panel b depicts key configurations
for different members k of the same constituent class j. Panel c depicts the use of distribution
functions to describe the distribution of constituent j over the set of all possible reference
configurations. The set of all possible reference configurations is described in terms of the
stress-free radius R̃ and length L ̃ for elastin and muscle and in terms of the stress-free fiber
length Γ̃ and fiber angle Ω̃ for collagen
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Fig. 2.
Depiction of the kinematics of an individual fiber from the stress-free configuration to the
loaded configuration
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Fig. 3.
Traditional kinematics for blood vessel mechanics which considers a loaded configuration βt,
a traction-free (unloaded) configuration βu, and a (nearly) stress-free configuration βo that
results from imposing a single radial cut in the traction free configuration
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Fig. 4.
Kinematics for the volumetric and constrained mixture approaches. Volumetric growth is
described by tracking changes in the local stress-free configuration, which is quantified by
prescribing evolution equations for the ‘growth’ deformation Fg. The elastic deformation Fe
is the gradient of the mapping of points from the current stress-free configuration to the current
loaded configuration. In the constrained mixture approach, one tracks the evolution of the
distribution of mass over all possible combinations of constituent stress-free states
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Fig. 5.
a Distribution of in vivo collagen fiber angles and stretches, b confocal microscopy image of
collagen fibers from a mouse carotid artery under in vivo loading conditions
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Fig. 6.
a Simulated results from a typical pressure-diameter test of a typical mouse carotid artery, b
simulated axial force-pressure test, and c mean circumferential stress strain data for mixture
and for constituents using proposed constitutive models with prescribed structural and material
parameters
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Fig. 7.
Flow: equal rates. a Normalized radius and local thickness at the inner and outer wall versus
time. b Circumferential stress distribution and c axial stress distribution at different time-points
during growth and remodeling
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Fig. 8.
Flow: equal rates. a Normalized muscle activation (Tact/TB − 1), b mean circumferential stress,
and c growth rate versus time
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Fig. 9.
Flow: Equal Rates. Surface describing how muscle is distributed over all possible sets of
circumferential and axial stretches at a s = 0−, b s = 0+, c s = 0.86, d s = 1.73, e s = 4.92, f s =
∞
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Fig. 10.
Flow: physiological rates. a Normalized radius and local thickness at the inner and outer wall
versus time. b Circumferential stress distribution and c axial stress distribution at different
time-points during growth and remodeling
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Fig. 11.
Pressure: physiological rates. a Normalized muscle activation (Tact/TB − 1), b mean
circumferential stress, and c growth rate versus time
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Fig. 12.
Pressure: physiological rates. a Normalized radius and local thickness at the inner and outer
wall versus time. b Circumferential stress distribution and c axial stress distribution at different
time-points during growth and remodeling
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Fig. 13.
Growth stretches λgr, λgθ and λgz predicted for flow induced remodeling under physiological
rates
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