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ABSTRACT

Escherichia coli has long been regarded as a model
organism in the study of codon usage bias (CUB).
However, most studies in this organism regarding
this topic have been computational or, when experi-
mental, restricted to small datasets; particularly
poor attention has been given to genes with low
CUB. In this work, correspondence analysis on
codon usage is used to classify E.coli genes into
three groups, and the relationship between them
and expression levels from microarray experiments
is studied. These groups are: group 1, highly biased
genes; group 2, moderately biased genes; and
group 3, AT-rich genes with low CUB. It is shown
that, surprisingly, there is a negative correlation
between codon bias and expression levels for
group 3 genes, i.e. genes with extremely low codon
adaptation index (CAI) values are highly expressed,
while group 2 show the lowest average expression
levels and group 1 show the usual expected positive
correlation between CAI and expression. This trend
is maintained over all functional gene groups, seem-
ing to contradict the E.coli±yeast paradigm on CUB.
It is argued that these ®ndings are still compatible
with the mutation±selection balance hypothesis of
codon usage and that E.coli genes form a dynamic
system shaped by these factors.

INTRODUCTION

Early observations in Escherichia coli suggested that codon
usage among its ribosomal protein genes is not random (1).
This observation led Ikemura (2,3) to show that usage of
preferred codons in these and other genes was positively
correlated with their respective major isoacceptor tRNA
levels, and this was explained as an adaptation of highly
expressed genes to translational ef®ciency. These observations
were quickly extended to other organisms (4,5), especially
yeast (6), where extensive studies on codon usage bias (CUB)
have been performed. These studies led to the establishment of
an E.coli±yeast paradigm, where highly expressed genes used
a preferred set of optimal codons in accordance with their

respective major isoacceptor tRNA levels. The case for higher
eukaryotes is not as clear cut, and models proposing a balance
between translational selection and mutational bias have been
proposed to account for the CUB observed in these organisms
(7±9). For example, organisms like Drosophila or
Caenorhabditis seem to resemble the E.coli±yeast paradigm
(10±13), while in other eukaryotes like humans CUB seems to
be determined by local genomic GC content.

Despite E.coli being a model for CUB, most studies
regarding this topic in this organism have been computational
or, when experimental, have been performed on relatively
small datasets. Only in yeast, and more recently worm, have
the advances of the post-genomic era and microarray
technology been applied to the study of CUB (14,15). It is
striking that the wealth of information on mRNA expression
levels for E.coli (16±19) has not been used to analyse CUB on
a whole genome basis for this organism. For example, the
traditional view establishes that genes with low CUB are
expressed at low levels (20), but to our knowledge, this
assumption has not been tested experimentally. Some authors
have proposed that the presence of rare codons in some genes
is a regulatory strategy to reduce protein levels within the cell
(21), while other authors have not found evidence for this and
maintain that rare codons are the product of mutational bias
(22). However, systematic studies of the expression levels in
these types of gene have not been reported, thus a compre-
hensive study embracing expression levels and CUB in E.coli
is required. The objective of this study, then, was to analyse
the relationship between mRNA levels obtained from different
microarray experiments and CUB in E.coli from a genomic
perspective, framing our ®ndings in the context of transla-
tional selection and mutational bias.

MATERIALS AND METHODS

The genomic sequence for E.coli K-12 MG1655 was obtained
from GenBank accession no. U00096 (23). All open reading
frames listed as coding for proteins (con®rmed and hypo-
thetical) were considered in this study. Basic data manipula-
tion was performed under Microsoft Excel and Star Of®ce
Calc. Statistical analysis was done using the freely available
R package (http://www.r-project.org/). Codon adaptation
index (CAI) (24), effective number of codons (Nc)
(25), whole GC and silent GC content (GC3s), the GRAVY
index of hydrophobicity (26), the aromaticity index and
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correspondence analysis on codon usage (using absolute
codon frequencies) were performed using the program
CodonW (J.F.Peden, unpublished, available at ftp://molbiol.
ox.ac.uk/cu). Correspondence analysis (COA) has been
extensively used to analyse codon usage (27) and it will not
be described here; for a comprehensive book on this subject
we advise the reader to consult M.J. Greenacre (28). mRNA
expression levels were obtained from public databases and
publications. Three datasets from different sources were
chosen for analysis in this study. In the ®rst (17),
ExpressDB at http://twod.med.harvard.edu/ExpressDB/, a
comparison was made between expression levels in E.coli
MG1655 grown to either mid log phase (LP) or stationary
phase (SP). In the second study (19), E.coli NCM3416 was
cultured in LB or M9 + 0.2% glucose medium, grown to
OD600 = 0.8 and transcript abundance and decay were studied.
The last dataset was obtained from the ASAP database (29)
(http://www.genome.wisc.edu), where three different sets of
experimental data for strains MG1655, DH5a and DH10b
grown on LB were retrieved. We will refer to this data as the
Selinger (17), Berstain (19) and ASAP (29) datasets, respect-
ively. tRNA data was obtained from the Genomic tRNA
Database (30) (http://lowelab.ucsc.edu/GtRNAdb/).

In order to test for translational selection, we devised an
index for tRNA usage, inspired by the CAI of Sharp and Li
(24). We start from the observation that for several organisms
tRNA gene copy number (tGCN) correlates strongly and
positively with tRNA levels within the cell (2,3,6,31,32). In
order to calculate this index, the absolute adaptiveness values
for each codon, Wi, are obtained in the following way

Wi = ån
j = 1(1 ± sij)´tGCNij

where tGCNij are the gene copy numbers of the respective
isoacceptor tRNAs for the ith codon and sij are selective
constraints on the ef®ciency of the codon±anticodon coupling
for the jth tRNA. In this study we set s = 0 for the natural
isoacceptor and s = 0.5 for the isoacceptors that mismatch at
the wobble position. After constructing a table of all Wi values,
the relative adaptiveness value of a codon, wi, can be obtained
as

wi = Wi/Wmax

where Wmax is the highest Wi value in the table. Then, the
tRNA adaptation index (tAI) for a given coding sequence is

calculated as the geometric mean of the wi values for each
codon present in that sequence

tAI = (ÕL
k = 1wk)1/L

where L is the length in codons of the coding sequence
(excluding any stop codons). A more complete description of
this index and its applications will be the subject of a separate
publication.

In order to study possible predictors of mRNA levels, a
generalised additive model was ®tted to the expression data
(33). This is a non-parametric regression model that has the
general form

Y = a + åp
j = 1sj(xÅj) + e

where Y is the response variable (in this case mRNA levels), xÅj

are the predictor variables, sj are a set of smooth spline
functions and e is the random error, assumed to be described
by the exponential family. The advantage of this kind of model
is that the form of the s functions are very general, freed from
restrictive parametric assumptions and the possible predictors
can be added or subtracted sequentially to the model in order
to test their suitability.

The following codes are used throughout this work to show
statistical signi®cance: *, signi®cant P < 0.05; **, very
signi®cant P < 0.01; ***, extremely signi®cant P < 0.001.

RESULTS

Quality of the microarray data

The reproducibility of microarray data was evaluated through
the computation of correlation coef®cients within and among
the datasets studied (Table 1). It can be clearly seen that these
coef®cients vary broadly (they range from 0 to 0.87),
indicating the very noisy nature of microarray experiments
and their lack of accuracy. The highest correlation coef®cients
are within datasets from the same source. The data by Selinger
shows the least agreement with other datasets, while the data
from Bernstein and ASAP seem to agree reasonably well.
Also, the number of genes studied varies widely, from less
than half the genome (Table 1) to all the known and
hypothetical ORFs. The sample of genes analysed by
Bernstein seems to be biased towards GC richness. To prove
that, a t-test was performed in order to compare mean GC

Table 1. Pairwise correlation coef®cients among gene expression levels from different microarray experiments

Bernstein Selinger ASAP
LBa M9b LPc SPd MG1655e DH5ae DH10be

M9 0.66 1
LP 0.12 0.046 1
SP ±0.0018 0.059 0.52 1
MG1655 0.54 0.43 0.017 ±0.039 1
DH5a 0.62 0.46 0.088 0.025 0.65 1
DH10b 0.61 0.50 0.050 ±0.0083 0.83 0.77 1

an = 1802.
bn = 2844.
cn = 3726.
dn = 4140.
en = 4289.
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content between the genes analysed in their LB experiment
and the whole E.coli genome and it was found that they differ
signi®cantly (t = ±5.4813***, df = 4569.47); a similar trend
was observed for the M9 experiment and also, albeit far less
marked, the LP experiment of Selinger (data not shown). This
has important implications for the study of CUB and
expression since AT-rich genes usually present the lowest
CAI values.

Relationship between CAI and mRNA levels

Figure 1 shows the relationship between the CAI values and
mRNA expression levels for different E.coli strains from
different research groups. We chose this index on the basis
that it has been shown to correlate highly to expression levels
in yeast (14) and it seems to perform better than other indices,
like CBI, Nc or Fop (34). It can clearly be seen that for genes
with high CAI values (>0.5) there is a strong correlation
between CAI and expression levels. Interestingly, the Lowess
®tting shows a negative correlation between genes with low
CAI values (<0.3) and their expression levels for MG1655 and
DH5a (Fig. 1C and D), and also for DH10b (not shown). This
tendency is not seen at all in Figure 1A, although these data are
not representative of AT-rich genes. In Figure 1C (Selinger
data), although this tendency is similarly not observed, there is
a conspicuous set of genes with low CAI values and high
expression levels (upper left corner of plot). The drawback of
this dataset is that a lower cut-off was selected by these
researchers in order to tag the transcripts as `detected' or `not-
detected'. This cut-off is evident at the bottom of the plot and
has the problem of excluding transcripts that are present at
very low concentrations within the cell, which in turn
in¯uences the lowess regression. The general shape of these
plots is independent of the codon bias index being considered

(i.e. CBI, Fop, tAI or Nc; data not shown). The datasets of
Selinger and Bernstein were excluded from further analysis
due to the lack of reproducibility of the former and the
unrepresentative gene sample of the latter. From the ASAP
data, strain MG1655 was selected for further analysis due to
the fact that it is the strain from which the genomic sequence
of E.coli K-12 was determined. However, all of the following
results can also be obtained by analysing the other two strains.

Correspondence analysis and partition of the E.coli
genome into codon usage groups

Aiming to study the relationship of codon bias to expression
levels, a COA on absolute frequencies of codon usage for all
ORFs was performed (Fig. 2). Four principal axes were
calculated which account for 33% of the total variation in
codon usage. The ®rst axis obtained from this analysis
correlates highly with CAI values (R = 0.8475, Kendall's
t = 0.75***) and with GC content. The second axis also
correlates with GC content and silent GC content, and these
two axes account for 23% of the observed variation. The third
and fourth axes correlate with the GRAVY (R = ±0.86,
t = ±0.57***) and aromaticity (R = ±0.50, t = 0.35***)
indices, respectively. These axes re¯ect amino acid variation
and not codon bias (35); thereafter they were excluded from
further analysis. The bottom left corner of Figure 2 shows the
distribution of ORFs along the ®rst and second principal axes.

As an exploratory approach, the data were partitioned into
three groups according to their principal axis scores using the
CLARA algorithm (36), in the R package. This algorithm ®nds
k representative objects from the sample (called medoids) and
then it assigns the rest of the dataset into k clusters according
to the similarity of each object to the medoids. For comparison
purposes a k value of 3 was selected in order to obtain a

Figure 1. Expression levels versus CAI for different microarray datasets. (A) Scatter plot of expression levels for strain NCM3416 grown on LB medium
versus CAI. Dataset from Bernstein. The line shown is the Lowess non-parametric local regression adjusted to the dataset. (B) Selinger dataset. Expression
levels are in loge(2max) units (for details see 17). (C) ASAP database. Strain MG1655 grown on LB. Expression levels are in log2(transcript level within
cell). (D) As (C) but for strain DH5a.
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partition of the dataset similar to one reported previously (37).
As can be seen in Figure 2, ORFs behave in a gradient like
manner, so the clustering of the objects in the boundary zones
is somewhat arbitrary. Points in the right-most cluster (group 1,
n = 1398, 33%) represent overexpressed genes that present
high CUB. The central cluster contains most E.coli ORFs
(group 2, n = 2164, 50%) and it can be considered to represent
typical E.coli genes. The left-most cluster (group 3, n = 727,
17%) contains AT-rich genes, whose codon usage differs
signi®cantly from the rest of the genome; many of them are
thought to have been horizontally transferred into the E.coli
chromosome (37±41). Codon usage tables for the three gene
groups were computed but the results are very similar to those
that have been published previously (37), thus they are not
shown here. Table S1 in Supplementary Material lists all the
genes analysed in this study and their corresponding cluster
group.

In order to validate these results and taking into account the
advice of PerrieÁre and Thioulouse (27), a COA was repeated
on relative codon frequency values (RSCU) as de®ned
previously (24). The results obtained were then compared to
the ones reported here. We have found that, at least for E.coli,
both analyses yield basically the same results when only axes
1 and 2 are analysed (data not shown). When the third and
fourth axes are analysed, important differences between them
are obtained since the RSCU values effectively eliminate the
effect of amino acid usage on the axis distribution. This does

not, however, affect the work presented here since only axes 1
and 2 are being analysed. The original analysis is henceforth
used, in order to avoid the artifactual deformation of the data
that the RSCU values can cause (27).

Further analysis of Figure 2 reveals many interesting
characteristics of the three gene groups. First, there is a strong
correlation between axis 1 scores and tAI values (R = 0.75,
t = 0.59***); genes on the right-hand side of this axis tend to
use codons that recognise the most abundant tRNAs (from a
gene copy number perspective), while genes on the left-hand
side tend to use less common tRNAs. This axis is also highly
correlated to GC content (R = 0.69, t = 0.41***), although this
correlation is higher for group 3 (R = 0.64) than for groups 1
and 2 (R = 0.37 and 0.50, respectively). This axis has largely
been considered to represent the main trend in synonymous
CUB and is thought to re¯ect translational selection. As
expected there is a positive correlation between group 1 gene
expression levels and their ®rst axis scores (R = 0.12,
t = 0.037*), while, surprisingly, groups 2 and 3 show a
negative correlation between these two variables (R = ±0.14,
t = ±0.11*** and R = ±0.22, t = ±0.13***, respectively). This
is in opposition to previous suggestions (i.e. group 3 genes are
not under translational selection, present low synonymous
CUB and hence are expressed at low levels). However, the
correlation between expression and axis 2 scores is much
higher (R = 0.46, t = 0.29***), more so for group 1 (R = 0.55)
than for groups 2 and 3 (R = 0.22 and 0.28, respectively).

Figure 2. Scatter plots of COA axis scores versus tAI, GC and expression (strain MG1655, ASAP database). Red, group 1; black, group 2; blue, group 3.
(Upper right) The Gaussian kernel density estimates for GC and GC3s content (49). Colours as before.
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Expression levels show a negative correlation to GC content
(R = ±0.41, t = ±0.29***). Axis 2 also shows a negative
correlation to GC (R = ±0.57, t = ±0.39***), although two
different trends can be seen in the scatter plot, which might
re¯ect different mutational trends among gene groups. Finally,
it can be seen that groups 1 and 2 show the same distribution of
whole GC content among their genes (xÅ = 0.53 for both
groups; Fig. 2, upper right corner), group 3 being substantially
AT rich (xÅ = 0.44). However, group 1 has a slightly higher
GC3s content than group 2 (xÅ = 0.562 and 0.547, respectively),
while group 3 displays an avoidance of GC at the silent
positions (xÅ = 0.40).

Expression levels across functional groups

Figure 3 shows a series of box plots of expression levels
partitioned among gene classes and cluster of orthologous
groups (COGs) classes. It can clearly be seen that group 3
genes present the highest average expression levels (xÅ = 0.33,
SD = 1.10), followed by group 1 (xÅ = ±0.24, SD = 1.24) and
®nally group 2 (xÅ = ±0.65, SD = 1.05), although group 1
presents the uppermost extreme outliers. Interestingly this
V-shaped trend is maintained across all COGs classes with the
exception of class N (cell motility and secretion) and it is
statistically signi®cant (F2, 4232 = 244, ***P < 2.2 3 10±16). It
is interesting to notice that for some COGs classes, group 1
genes present higher average expression levels than group 3;
special mention should be given to class J (translation,
ribosomal structure and biogenesis). It is also striking that
most group 3 genes (69%) belong to COGs classes with poorly
known or unknown function (R and S) or do not belong to any
COGs class at all (Table S2 in Supplementary Material).

It should be emphasised here that the words `overexpressed'
to qualify group 1 signify that these genes tend to have
expression values that are above the median for the whole
genome (m = ±0.46). Truly highly expressed genes are a subset
of this group (since they share the same codon usage
properties with the rest of the group) and would represent
the right-uppermost genes depicted in the bottom left corner of
Figure 2. A neat codon driven de®nition of highly expressed
genes that comprises 8% of the genome may be found in the
literature (42), in which this group is labelled as putatively
highly expressed. Comparing those genes against the expres-
sion values analysed in this study reveals that these genes are
indeed highly expressed (xÅ = 0.38) and their average
expression is just higher than that of group 3.

Non-parametric regression analysis on mRNA
expression levels

In order to identify what factors might be affecting gene
expression and to carry out the analysis in greater depth, a non-
parametric regression analysis on mRNA transcript levels was
performed. As many variables as possible were included in the
model as possible predictors in order to isolate the effects of
speci®c variables whilst taking the rest of the variables into
account. These variables were tAI, CAI, CBI, Fop, GC, GC3s,
protein length (L) and the GRAVY and aromaticity indices.
The best codon bias predictors were CAI and CBI, Fop and tAI
being only slightly worse (overall adjusted R2 drops by less
than 1%); CAI was arbitrarily kept for the rest of the analysis.
GC is a better predictor than GC3s (adjusted R2 drops by 2%
when GC is replaced by GC3s). The axis scores computed

from COA were also tested, but all of them performed worse
than the biological variables (data not shown). The contribu-
tions of GRAVY and aromaticity to the model were very small
(~1%), although highly signi®cant (***P < 0.001). Table 2
shows the drop in adjusted R2 with elimination of any term in
the model. The idea of this procedure is that in deleting each
variable from the model and re-testing it statistically, the
contribution of each variable to gene expression can be gauged
and good predictors isolated. The elimination of log(L) causes
the greatest reduction in R2, showing that this is the best
predictor of mRNA concentration within the cell, followed by
GC content and CAI. These ®ndings are shown in Figure 4.

DISCUSSION

To our knowledge, this is the ®rst time a comprehensive study
embracing whole genome expression data and CUB for the
whole E.coli genome has been performed, and it has yielded
some very interesting results. The preliminary analysis on the
quality of microarray data shows that these kinds of experi-
ments are inherently noisy and of low reproducibility. Our
results agree very well with the ®ndings of Coghlan and Wolfe
(14) in their study of three expression level datasets in yeast,
where they found correlations of between 0.50 and 0.68
among different experiments. The quality of microarray data
seems to be a very important factor in this kind of analysis;
large variances may reduce the signi®cance of statistical tests
and might hide interesting trends in complex data. This might
be the case for the datasets by Bernstein and Selinger, where
unrepresentative samples were used. This precludes any
meaningful analysis of the behaviour of group 1, 2 and 3
genes against expression level when these data are used.

A thorough analysis of low codon bias genes and their
expression levels

The relationship between CAI and mRNA levels seen in
Figure 1 also agrees with the ®ndings of Coghlan and Wolfe
(14) in yeast for genes with substantially high CAI values.
However, these authors intentionally excluded genes with
very low CAI values from their analysis, considering that they
might not be under the in¯uence of translational selection,
preventing a comparison between the relationship of CAI and
expression for these genes. It would be interesting to see if the
V-shaped trend observed between CAI and expression for
strains MG1655, DH5a and DH10b in E.coli is also present in
yeast. A quick analysis made by Akashi (13) suggests the
contrary (®g. 1 in that review), showing a smooth increase in
average mRNA level with major codon usage for all genes
with detected transcripts. To our knowledge, an extensive
analysis between CUB and expression at the protein level has
not been done on a proteomic scale. In a paper by Eyre-Walker
(43) a plot of CAI versus protein level for 46 genes in E.coli is
presented (®g. 3 in the mentioned publication) and the same
trend observed for mRNA levels is observed for genes with
moderately high CAI values (>0.4), but no analysis was done
for proteins with CAI values signi®cantly smaller than 0.3
where the stronger negative correlation between expression
and codon bias is seen in our plots. We are currently
performing experiments on selected group 3 genes to verify
if they present high protein levels within the cell.

6980 Nucleic Acids Research, 2003, Vol. 31, No. 23



Correspondence analysis reveals puzzling trends in the
organisation of the E.coli genome

COA and cluster analysis have been common techniques in
the study of CUB (37,44±46), serving as powerful tools to
detect hidden trends in codon usage data. An interesting fact is

that the ®rst axis obtained from COA and other principal
component techniques (33) has long been thought to re¯ect the
effects of translational selection and thereafter to correlate
with expression levels, but to our knowledge few authors have
taken the care to test this assumption. Coghlan and Wolfe (14),
in their work on yeast, found that axis 1 is not as good a

Figure 3. Box plots of expression level (strain MG1655, ASAP database) versus gene group partitioned among COGs. Boxes, 25% quartile, median and 75%
quartile; whiskers, observations no greater than 1.5 times the interquartile range; empty dots, outliers; box widths are proportional to the square root of the
number of observations in a given class. Lines join the mean values (black dots) for each group. (All) all genes; (J) translation, ribosome structure and biogen-
esis; (K) transcription; (L) DNA replication, recombination and repair; (D) cell division and chromosome partitioning; (O) post-translational modi®cation,
protein turnover, chaperones; (M) cell envelope biogenesis, outer membrane; (N) cell motility and secretion; (P) inorganic ion transport and metabolism;
(T) signal transduction mechanisms; (C) energy production and conversion; (G) carbohydrate transport and metabolism; (E) amino acid transport and
metabolism; (F) nucleotide transport and metabolism; (H) coenzyme metabolism; (I) lipid metabolism; (Q) secondary metabolites biosynthesis, transport and
catabolism; (R) general function prediction only; (S) function unknown; ±, not in COGs.
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predictor of mRNA levels as the codon bias indices studied;
however, in an interesting work on Xenopus laevis (47) a
strong correlation between EST frequencies and axis 2
(instead of axis 1) scores was found. The case for E.coli is
quite puzzling; although the correlation between axis 1 and
tAI or CAI is high, its relationship with expression is far from
linear, and is worsened by the fact that genes with very low
CAI values have expression levels much higher than expected.
Another striking feature of gene groups is that their expression
levels behave in a similar way over all COGs with the
exception of class N, indicating that this trend is independent
of protein function. The behaviour of group 3 genes assigned
to COG class N might be explained if for example there are
fewer horizontally transferred genes in this particular instance.
Why this should be the case is puzzling at present, as the
functions of many of these genes remain to be de®nitively
assigned. Whether these are functions that are likely to have
been horizontally transferred or whether any of them are
essential to E.coli would make for an interesting future line of
research.

Although tAI is not as good a predictor of tRNA levels as
CAI or other CUB indices, it has certain desirable advantages.
First, the set of adaptive values selected are objective and do
not depend on the selection of an arbitrary set of highly
expressed genes; this is especially useful when no experimen-
tal data on expression is available for an organism. Second,
this index might be used to test for co-adaptation between the
tRNA genomic gene pool and codon usage, which can be
considered strong evidence in favour of translational selection.
This `co-adaptation' phenomenon has already been observed
in yeast and Caenorhabditis elegans (48,49) and alongside our
®ndings in E.coli serves to corroborate this general picture. A
more extensive study on how to apply this index in order to
detect translational selection and co-adaptation between
codon usage and tRNA gene number is now underway in
this group.

The cluster analysis yielded very similar results to the ones
reported by MeÂdigue et al. (37). Their classes II, I and III are,
respectively, equivalent to groups 1, 2 and 3 in the analysis
presented in this manuscript. These classes II, I and III are
almost identical to the groups 1, 2 and 3 in this manuscript in
terms of characterisation of their functional composition as
well as in their codon usage. However, we disagree with these
authors on two points: (i) we think that E.coli genes cannot be
unambiguously split into three classes as stated (50) because
they behave in a gradient like manner and classi®cation of
genes in the boundary areas is somewhat arbitrary, indeed, it is
very hard to establish which genes are foreign solely from the
point of view of codon usage; (ii) the same pattern of codon
preferences is not observed in the three groups: while group 1
utilise codons that have GC-rich ends (Fig. 2, density plots),
group 3 genes apparently avoid these, so for certain amino

Table 2. Adjusted R2 versus term dropped in the generalised additive
model analysis for mRNA levels

Term dropped Adjusted R2a GCV scorea

None 0.41 0.827
Log(L) 0.29 0.990
GC 0.32 0.950
CAI 0.34 0.922
GRAVY 0.41 0.833
Arom 0.40 0.827

aModel [mRNA] = a + s1(CAI) + s2[log(L)] + s3(GC) + s4(GRAVY) +
s5(arom) + e ~ i.i.d. N(0,d2).

Figure 4. Non-parametric regression of mRNA levels versus CAI, GC and protein length (L). Each predictor variable is plotted against their respective spline
function s(variate, estimated degrees of freedom); dotted lines are plotted at 2 SE above and below the estimated spline.

6982 Nucleic Acids Research, 2003, Vol. 31, No. 23



acids the pattern of codon preference is inverted. Cluster
analysis is a useful exploratory technique from a statistical
point of view and it provides a general means to characterise
biological trends into discrete entities, but this type of analysis
cannot be regarded as conclusive.

The main factors that shape the E.coli genome are
translational selection and mutational bias

An important note of caution is needed here: although the
correspondence axes are uncorrelated they are not independ-
ent, and this is evident in the V-shaped distribution of genes in
this bivariate representation (Fig. 2). This plot informs us of
two hidden factors, one polarising group 3 versus group 2 and
the other polarising group 2 versus group 1. What is important
is that the correlations among expression and axis scores is in
reality a correlation between expression and some linear
combination of these hidden factors, and this should be taken
into account in order to understand the behaviour of expres-
sion levels versus gene groups. So, what are the forces shaping
the E.coli genome? The main factors that are thought to
determine codon usage are translational selection and
mutational bias (7,8), and these factors can be called upon
again to account for the trends in COA and expression levels
observed in this study. To understand how these factors might
be shaping the E.coli genome, the following points must be
taken into account: (i) group 3 genes have long been
considered to have been acquired through horizontal transfer
(37), explaining why they are so AT rich and have very low
CAI values; (ii) it has been suggested that foreign genes
ameliorate (38), i.e. present biased mutational trends that
steadily change their GC content towards that of the host;
(iii) the effect of translational selection is to restrict the
diversity of codons used in highly expressed genes, thereafter
reducing the `effective number of codons' in this set of genes
(25). Considering these points, it can be seen that the
`perpendicular' forces of amelioration and selection must be
responsible for the V-shaped distribution of genes in the codon
landscape (Fig. 2, axis 1 versus axis 2); the right horn

represents selection pulling overexpressed genes (group 1)
away from the main gene core (group 2) and the left horn
represents the force of amelioration, driving group 3 genes
inexorably towards the main core. An analogous and more
biological way of interpreting this phenomenon is to analyse
classic Nc plots (25); Figure 5 shows this plot for a
hypothetical organism (Fig. 5A) and for actual E.coli genes
(Fig. 5B). In the hypothetical case, a group of recently
acquired, AT-rich genes would move along the left-hand side
of the `hill' driven by biased mutational rates towards the
`normal' set of genes, while a set of overexpressed genes
would be split from the main core under the action of selection
and would move downwards, reducing their overall Nc values
as an adaptation to transcriptional optimisation. If, by some
measure, the main core is also under the (albeit weaker) effect
of translational selection, this group would move downwards,
stabilising its position somewhere in the middle between the
top of the hill and the overexpressed group. Analysing the real
plot for E.coli sheds much light on this issue. First, it can be
seen that group 2, although presenting the lower average
expression levels, is already transcriptionally optimised
because their Nc values are much smaller than expected
according to their GC3s content. Group 1, as expected,
presents the lowest Nc values. Group 3 is positioned near the
top, with Nc values close to their expected values and with a
conspicuous spur of genes towards the left which might
represent the more recently acquired genes.

Regression analysis is a powerful technique for
understanding the behaviour of expression levels

Considering the above discussion it is easy to understand why
CAI and other CUB indices fail to predict expression levels in
group 3 genes. After all, what determines mRNA levels are
promoter strength and mRNA stability (under suitable regu-
latory conditions due to growth phase, media, etc.) and not
codon usage, the latter being a subsequent adaptation of highly
expressed genes to translational ef®ciency. Nassal et al. (51)
describe an interesting example where two versions of the

Figure 5. Classic Nc plots for E.coli genes. (A) Hypothetical plot depicting three gene groups: one group of AT-rich, recently acquired genes (blue circle),
one group of `normal' genes, under no translational selection with moderate GC content (black circle), and one group of genes under strong translational
selection and moderate GC content (red circle). The arrows indicate the hypothetical pathways any given gene might follow in this bivariate landscape under
the forces of mutation (as amelioration) or selection. (B) Contour plots for the three gene groups considered in this study. Red cloud, group 1; black cloud,
group 2; blue cloud, group 3. These clouds represent the gene population density in the Nc±GC3s landscape, obtained from a Gaussian bivariate density
kernel estimate (49).
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opsin gene (one made up of major E.coli codons and one made
up of GC-rich ones) have indistinguishable protein levels
in vivo when appropriate leader sequences are present in the
constructs. Bacterial genomes are compact, conspicuously
lacking long intergenic regions, introns, repetitive sequences
and pseudogenes; there are strong selective pressures acting
on genome size. If group 3 genes are present in the E.coli
genome it is because they should offer some kind of selective
advantage to their host, their expression levels being deter-
mined by their regulatory sequences; these genes should go
through a slow process of amelioration before they can be
transcriptionally optimised. So, why do expression levels
increase with lower CAI values? Regression analysis presents
a powerful way of providing an answer to this question (see for
example Fig. 4). CAI is positively correlated to GC content,
but GC content is negatively correlated to expression levels,
thus a clear model appears: while expression levels are
reduced with lower CAI values, this effect is overcome by an
increase in expression due to higher AT content. The
relationship between expression and GC content is strikingly
puzzling. Konu and Li (52) found a positive correlation
between expression and GC3s in rodents, which contrasts with
the ®ndings from E.coli presented herein. However, analysis
of the rodent data relies strongly upon the elimination of one
outlier from the data and it might have been appropriate to use
non-parametric correlation tests, which are robust against non-
linearity and non-normality. A histogram of expression values
is presented (®g. 1 of that publication) where it can be clearly
seen that these data are highly skewed and far from normal,
invalidating all the calculated P values, which are of marginal
signi®cance. Regretably, Coghlan and Wolfe (14) did not
study the correlation between expression and GC content in
their work on yeast, precluding any useful comparison with
E.coli. We are studying the correlation of GC and other factors
with expression levels in Saccharomyces cerevisiae, however,
our preliminary analyses indicate that this is not the case in
this organism.

As a general conclusion, the three groups form a dynamic
system shaped by mutation and selection. Group 2 represent
the average E.coli genes, group 1 contains genes under strong
translational selection that are splitting from the E.coli genetic
core, while group 3 genes are fusing steadily with this core
driven by mutational forces. It would be interesting to align
group 1, 2 and 3 genes between E.coli strains and
phylogenetically related microorganisms and see where
ancestral sequences lie in the Nc plot. This might give insight
into the mutation±selection model, and the evolutionary path
of these genes along this adaptive landscape could be further
investigated.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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